APPENDIX

A.1. Estimation

When there are p exposure variables, the model becomes, for j =1, 2, 3,

p
i = + 2 BT+ &
=1

Because of measurement error, instead of the true covariates T', we observe their

respective surrogates R. R is related to T by an additive error model as

R, = T; +¢g,, E(eg,) = 0, Var(eg,) = o7,

for i« = 1,...,p. The true latent variable T} is assumed to have mean pu; and
variance U%i . We designate the correlation between different exposures T; and

T; as pr, 1, , and between the random errors eg, and eg; as pg, g;-

When there are p exposure variables,
. “ " A A A ~ ~ ~ !/
E (61,62, 3, 511, Br2, Bz, - Bprs By, Bs) =

AT'B (a1, a9, a3, Bi1, Bi2, Biz, - - -, Bot, Bozs Bpa)

where
A L W ® A
~ \ # Var(R) +pp ’
_ (1 ©
B = ( p Cov(R,T)+ pp' ) ® A,
pp 0 0
A=10 p, 0
0 0 pf
and
m(l = P.)? pa(1 = Fu)Pa psP3
A = | 2p(1—F)F pa((1— Po)(1 — Pa) + PoPa) 2psPa(l — Pa)
pP? P2Pa(1 — Py) p3(1 — Py)?
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p = (f4,-..,pp) is the mean vector of R = (Ry,...,R,)"; Var(R) = (v;;) is the
variance and covariance matrix R = (Ry, ..., R,) with v; = 0%, + 0} and v;; =
PT,1,0T,01; + PR.,R,OR,OR,; for i # j; Cov(R,T) = (c;;) is the covariance matrix
of R=(Ry,...,R,) and T = (1T1,...,T,) with ¢; = 07, and ¢;; = pr, 17,0107,
fori # j; U ®V = (u;;V) for U,xn = (uij) and V iy = (v;5), the Kronecker
product, is an mp x ng matrix expressible as a partitional matrix with u;;V as

the (7, j)th partition, i =1,...,mand j=1,...,n.

In order to obtain unbiased estimates of the association between T and y, the
crude biased estimates need correction. Asymptotically unbiased estimates for
a1, ag, as, B, Biz, Bis, - -, Bp1, Bp2 and B3 can be obtained by multiplying the
crude estimates by B! A , which equals to

1 —p/(Cov(R,T) 'Var(R) — I)
( 0 Cov(R,T) 'Var(R)

) ® ATA

with 0 being a p x 1 column vector with all elements equal to zero. Simplifying
the expression, we obtain the adjusted estimates a1, aso, as, Bn, Blg, Blg, ceey

ﬁpl; ﬁp2 and ﬁp:a for ai, o, as, B, Biz, iz, - - -, ﬁpl; ﬁp2 and ﬁp:a where

(G1, G, a3) = AJTA(Gy, o, d3) —

p'(Cov(R,T) 'Var(R) — I) ® A'A (Bn; Bra, Prs, - . >Bp1> Bp% Bp?))/

(6117 6127 6137 ERI) pr Bp% Bpi’))/ =
Cov(R,T) 'Var(R) ® A'A (3117 Bra, Prs, . >Bp1> Bp% Bp?))/ .



A.2. Precision

A.2.1. Variance-covariance matrix of the maximum likelihood esti-

mates for p, P, and Py

Since the likelihood function is proportional to

1
L x P;Z;“ PXﬁA (1 — Paa — PAA)nA“ {PaaPAA + Z(l — Paa — PAA)2}n22 ,

the numerical values of P,, and P44 can be obtained by solving dlog L/0P,, = 0
and 0log L/OPss = 0, that is

Naa NAq ngo{Pas — 5(1 — Paa — Pan)} 0
Paa 1_Paa_PAA PaaPAA+i(1_Paa_PAA)2

and
naa NAq n22{Paa_%(1_Paa_PAA)} _ 0
Paa 1 — Poa — Paa PaaPAA—i—i(l—Paa—PAA)2

Substituting P,, and Paa by pP3 + (1 —p)(1 — P,)? and p(1 — P4)* + (1 — p)P?
respectively, we have two equations in terms of three quantities of p, P, and Pj.
We need one extra assumption. We assume that P, = P4 = P, in this paper. On

some occasions, p is known externally and P, and P4 can be estimated separately.

if P, and P4 are assumed to be equal to P,,;

_2(1 —p)(l - Pa) )

2pPA
P =
( —2p(1 — Pa)

if p is known and P, and P4 can be estimated separately.

2(L-p)P,

The variance-covariance matrix of the maximum likelihood estimates are esti-
mated by inverting the observed information matrix, in which each element is
the negative of the second derivative of the log likelihood function. The observed

information matrix is, thus, equal to

0?log L 0?log L
ana aPaaaPAA
-’ v
0*log L 0*log L
aPaaaPAA anlA



where
—(1-2P,) —2(1—p—PFy)

v = ,
1 2P,  —2(p—Pp)
oPZ, P2, (1 = Paa — Pan)?  2{PuaPan + ;(1 — Poa — Paa)?}

noo{Paa — %(1 — Puy — Pan)}?
{PuaPan+ 5(1 = Pou — Pan)*}?’

H? loglL, B N Aq n 3n99
aPaaaPAA B (1_Paa_PAA)2 Q{PaaPAA+i(1_Paa_PAA)2}

n22{PAA - %(1 - Paa - PAA)}{Paa - %(1 - Paa - PAA)}
{PaaPan + 3(1 — Pug — Pan)?}? 7

0?log L NnaA NAq N2

= - +
0P34 P34, (1= Pu—Paa)?  2{PuaPas+ (1 — Poa — Pan)?}

192{ Paa — %(1 — Puu — Paa)}?
{PaaPAA + i(l - Paa - PAA)2}2 ’

P = pP2 +(1—p)(1 — Py)* and Paa = p(1 — P,)? + (1 — p) P2. The unknown
parameters in the observed information matrix are replaced by their maximum

likelihood estimates.

A.2.2. Variance-covariance matrix of the adjusted estimates

We denote o = (a1, g, 3)" and B; = (B;1, Bja, By3) for j =1,...,p. Then, for

t,7=1,....,pand s,t =1,2,3,

Cov(ds,&y) = o'Dga + (B),...,8,) (FF'® Dy + Var(F)@r.r,) (8),...,8,)
—o (F'@Dy) (B,...8) — (B,..8) (FeD,) a

Cov(Bis, Bjt) = (B, B8,) (B @7} + 8:8,® Dat) (BY,....8,)



Cov(as, th) = o' (5,0 Dgy) (B, 752;)/ - (B, - 75;;) (Gi®@ror;+
siF'® Dgy) (8,...,8,)

where 7} and s; are the ith row of Ae_lA and Cov(R,T) 'Var(R), respec-
tively; D;;, a 3 X 3 matrix, is the variance and covariance matrix of 7; and
rj; E;j, a p X p matrix, is the variance and covariance matrix of s; and s;;
F is a p dimensional column vector with the ith element as pi's; — fi;; G is
a p x p matrix with the (g, h)th element as Y7_, ji;Cov(kjg, kni) with Ky, the
(u,v)th element in Cov(R,T) 'Var(R); and Var(F) is a p x p matrix with
(4,7)th element as Y>0_) >0 fisfteCov(kai, k) + boy Sty ksike; Cov(fis, fu) +
Cov(fii, f1;) — b1 ksiCov(fis, f1;) — Xi—y kg Cov(fis, ).



