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CLASSICAL FRACTALS

Abstract. The word ‘fractal’ was coined by Benoit Mandelbrot in the 1970s. This paper reviews
some classical fractals, namely the Koch curve and snowflake, the Sierpinski gasket and carpet, and the
Menger sponge, and describes their properties, including the concept of ‘fractal dimension’.

1. Introduction

In 1970s, Benoit Mandelbrot coined the word ‘fractal’, whose structure is made up
of parts exactly the same as its whole. In this paper we shall examine some interesting
classical fractals, and show these objects possess exact ‘self-similarity’ from its diagram
constructions. Examples used to illustrated in this paper are fractals constructed by Koch,
Sierpinski and Menger.

2. Classical Fractals

- A fractal is a pattern that appears self-similar at various scale of magnification. Those
objects possessing exact self-similarity are called regular fractals, which can be constructed
mathematically by repetitions of a given operation. Classical fractals are regular fractals
generated on a fairly simple way. :

Whenever we magnify a fractal at any scale, it shows similarity with its original
pattern, thus preserving the details upon magnification. The recurrence of the same
pattern over a range of scale is called ‘self-similarity’, which is a remarkable characteristic

of fractals. .
. There is a non-integer, representing fractal dimension, to characterize fractal objects

over a range of-scales. _
Fractals are non-smooth because iterations produce a line or surface at each gener-
ation at all scale of magnification. The non-smoothness cause the non-differentibility of

fractal objects.
A

3. The Koch Curve and snowflake

3.1. The Koch Curve

The Koch curve is generated by Helge von Koch (1870-1924) in 1904. Its construction
is illustrated in figure 1. The curve is constructed from a line segment of unit length. This
starting form, called the initiator, is the 0% generation in the construction, as shown in
step & = 0 in the figure. Its middle third portion is then extracted and replaced by 2
equal lines of length 4. This is known as the generator of the curve. We thus obtained
the 1° generation, which is a curve of 4 equal line segments of length 1/, as shown in step
k =1 in the figure. At the next generation (step k = 2), each line segment is replaced by
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Fraure 1. The construction of the Koch curve.

a scaled-down version of the generator, with the orientation.of the replacement always on
the same side of the curve. This process is repeated infintely to produce the Koch curve.
The total length of the curve is multiplied by % after each generation, and therefore

the total length of the Koch curve is infinite.
Now consider the area between the Koch curve and the original line. At step k=1,

one triangle is added, its area is
I 1 3 _ 43 | |
h=gx3x T T % @
At the next step k£ = 2, 4 new triangles are added, their sizes scaled down by a factor of
5. Thus their areas are (14)24 = (*%)A;. The total area now is

Ay = -§—A1 .' (2)

At each step, 4 times as many triangles are added to the total area, the area of each
triangle added being Y/ those added at the previous step. Thus the increase in area at
any step is *p the area added at the previous step. This gives the formula for A,, the
total area at step n,

An:[1+g~+(§)2+(§)3+---+_(g)n}f11, e

which, when summing to infinity, has a finite sum,

_ 948 (4)

Ao = = =55

Therefore, the Koch curve is a infinite length curve enclosing a finite area.
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This curve is nowhere differentiable, this is, it does not have a well defined slope at
any point.
_ Also, whenever you magnify the curve to examine its detail, it shows exact similarity
of its original pattern. As the curve is infinite in length, any scaled down subimage is also
of infinite length. Therefore, for any 2 points on the curve, no matter how close they are,
the curve between them is of infinite length.

3.2. The Koch snowflake
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initiator generator. ' Koch snowilake

Step
FIGURE 2. The construction of the Koch snowfiake.

The Koch snowflake is made up of three Koch curves with a triangle as the initiator.
For simplicity, we use a equilateral triangle with each side of unit length as the initiator.

Its construction is shown the figure 2.
It follows'from the Koch curve that the length of the coastline of the Koch snowflake
is infinite.
The bounded area in the initiator is given by half of the base multiplied by the height

of the equilateral triangle, .
L V3 _ 3

1

’——- m——— T

A 2>< 5 1 (5)
by

The total area bounded is thus given
2 _
AQO:A'—i—?yono:g\@, (6)

by using eq. (4) and eq. (5). -
Therefore the Koch snowflake has a finite area but a immeasurable perimeter.

3.3. The Randomized Koch curve and snowfiake

Figure 3 illustrates the construction of a random version of the Koch curve. The
orientation of the replacement of the generator is randomly placed either side of the
removed segment. Similarly, a randomized Koch snowflake can.be constructed and is
illustrated in figure 4.

The resulting random fractals show irregularity compared with its regular counter-
parts, respectively the exactly self-similar Koch curve and snowflake. Like its regular
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FiGURE 3. The randomized Koch curve.

counterparts, these random fractals have respective infinite length and perimeter, and
non-differentibility of its respective curve or boundary. However, these random fractals
still retain a certain degree of regularity, since at each generation, the regular features are
placed randomly either side of the extracted line segment. '

=

FIGURE 4. The randomized Koch snowflake.

4. The Sierpinski gasket and carpet

The Sierpinski gasket (or ﬁriangie) is generated by Waclaw Sierpinski (b 1882). Fig-
ure 5 illustrated the construction of the sierpinski gasket. The gasket is constructed from
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o : FIGURE 5. The construction of the Sierpinski gasket.

a filled triangle as the initiator in 2-dimensional space. The generator is the triangle with
a inverted triangle formed by joining the mid-points of the 3 sides of the initiator being -
removed. For simplicity, again we use a equilateral triangle each side of unit length as the
initiator. 3 half-scale triangles now remain, so Y4 of the area of the original triangle has
been removed. The process is repeated for each triangle remaining. At the 27¢ generation
(step k = 2), ¥4 of the area of 3 triangles is removed, each of which is 1/, of the area of the
original triangle’s area. Therefore the total area Ry removed by the repetition process is
given by, with the original area R,

ORI O RS
RO .
—R. | (9)

Therefore the same size as the original space has been extracted. However, there
are points still left in the Sierpinski gasket. It means that those points existing in the

Sierpinski gasket with area zero are separated. ‘
A similar procedure can be performed by using a square as the initiator. Then

subtract a square at /3 scale from centre, leaving 8 sub-squares. This gives a Sierpinski
carpet, as shown in figure 6.
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FIGURE 6. The construction of the Sierpinski carpet.

5. The Menger sponge

Step k=0 k=1 k=2 k=0
initiator generator . Menger spenge

FIGURE 7. The construction of the Menger sponge. ,

The Menger sponge is generated by Karl Menger (1926). Figure 7 iliustrated the
construction of the Menger sponge. The sponge is constructed from a cube as the initiator
in 3-dimensional space. The generator is formed by subdividing faces of cube into 9
congruent squares and drilling through each central square to the oppsite central square.
~ At the 1°* generation, seven ' scale cubes has been removed, remaining twenty 4 scale
cubes, so “4; of the volume of the original cube have been removed. The process is
repeated for each cube remaining. At the 2™ generation, hz of the volume of 20 cubes is
extracted, each of which is 14; of the volume of the original cube’s volume. For V to be
the original volume, the total volume V., extracted by this process is

Voo =V 7(§)S+7[(%)3}2 x 20+7[(§-)3}3 x 2o2+--] (10)
;%[1+»§g?+ (-;-g)er---] | (11)
~V. )

So again we have removed a region of the same size as the original space, but we still have
points left in the Menger sponge. Again, those points existing in the Menger sponge with
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volume zero are separated.

6. Fractal Dimension

Fractal objects have self-similarity at various scale of magnification. Smuall parts of
the object contain scaled down versions of the whole. Consider an obJect to be subdivided
into N copies of itself at scale e, its dimension D satisfies

D
N = (3) , (13)
€ _
from which D can be obtained directly by |
log(V)
= (14)
log(7/)

For example, squares can be subdivided into 4- coples at ' scale, 9 copies at Y4 scale, 16
copies at /4 scale and so on. In this case,

_logd  log% logl6
~log2  log3 log4

=2 (15}
the dimension equals 2. A cube can be subdivided into 8 copies at 1/2 scale, 27 copies at
5 scale. Its dimension is given by

_ log3 _ log27 (16)
~ log2  log3 '

which is in consistent with our usual sense of integer dimension of a square and a cube.
For the Koch curve we have 4 copies at 3 scale. Thus

Iog 4

= 1.2619, 17
10g3 {a7)

to 4 decimal places, which is a non-integer dimension between 1 and 2. The Sierpinski
gasket has 3 copies at !4 scale, so has dimension

log 3
D=5

= 1.5850 , 18
) 850 (18)

-

to 4 decimal places. The Menger sponge contains 20 copies at Y scale, giving dimension

of :
_log20

log 3

= 2.7268 , (19)

to 4 decimal places, this is a non-integer dimension between 2 and 3.

This definition of dimension applys only for objects containing exact subcopies of
themselves. These exact fractals have the same dimension for all their parts. However,
many realistic objects are not so well behaved. Their dimension just can be defined only
locally and therefore should be computed computationally.
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Consider a small regular region centre on a particular point. In 1-dimensional space
a neighbourhood is a short line segment, in 2-dimensionals it is a small circle, in 3-

dimensions it is a small sphere, each having the reference point at its centre. Now define
the correlation sum, C, for the particular radius r:

7 1 N N
Cr = lim ———— Glr — ||=: — =4}, 20
w2, 90 Il (20)
where
11 fa>0
g(o‘)“{o fa<0. - (21)
The power-law relation for the scaling region says that '
C, x rPc | (22)

where D¢ is called the correlation dimension.
Figure 8 shows a correlation dimension plot of log(C;) against log(r) for the Koch

curve. The slope represents the correlation dimension D¢ of the koch curve. By Linear .
Regression analysis, the slope D¢ computed is 1.2667 with error 0.0317, which agrees

with the theoratical result, 1.2619:

log{C,) "t

log(r) |
FIGURE 8. Determining the correlation dimension for Koch curve, the log(r) — log(Cy)’ plot, with
slope Do = 1.2667 £ 0.0317.

7. Conclusion

We have already illustrated some constructions of classical fractals, namely the Koch
curve and snowflake, the Sierpinski gasket and carpet, and the Menger sponge, which
have self-similarity at all scales. Each small portion of the object contains identical copies
of the whole.

Fractals are not smooth, they generally look rough. Iterations would not produce a
smooth object. It produce a line or surface at various scale, causing non-smoothness and
hence non-differentibility of fractal objects.
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We also introduced the concept of fractal dimension, which is non—iﬁteger in nature,
to quantitatively characterize the geometrical structure of complicated fractal objects over

a range of scales.

‘REFERENCES

[1] AppisoN PAUL S. (edt), Fracials and chaos: an illustrated course, Institute of Physics Publishing,

1997
[2] CriLiy A. J., EArNsHA R. A., JONES H., Fractels and Chaos, Springer-Verlag, 1991

[3] FEDER J., Fractals, Plenum Press, 1938 _
[4 Perrcen H. O, J rGENS H., SauPE D., Chaos and Fractals: New Frontiers of Science, Springer-

Verlag, 1992
[5] WiLLtams G. P., Chaos Theory Tamed, Joseph Henry Press, 1997



