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A STUDY IN HENON MAP

Abstract.  Hénon map is a two dimensional map suggested by the French astronomer Michal Hénon
in 1976. It is o simplified model for the dynamics of the Lorenz system. The map creates a boomerang-like
shaped attractor which is known as the Hénon atiractor. The behaviour of the map corresponding to the
control of parameters is studied and the results obtained has been analyzed. ' :

. 1. Introduction

- The Hénon map consists of two variables and two parameters. It is a-two dimensional
map on the phase space (z,y). The choice of parameters will in fact promote to a quite
different solution of the system. The system will become chaos with particular values of
parameters and the chaotic behaviour of the system is the most interesting part of study. In
this paper, I am going to dicuss the principle of the mapping, leading to its chaotic behaviour
(the strange attractor), and the characteristics invovled. After these dicussions, conclusions
will be driven at the end. ' - : '

2. Governing equations
The Hénon map is defined by the transformation:
H(z,y) = (1 — az® +y,bz) . (1)
or the iteratioi}: '
Tps1 =1 — az2 + yn ‘
Ynt1 = by : : (2)
in a two-dimensional {x,y) phase space, where a aﬁd b are parameters.
By choosing b=0, the system becomes a one dimensional quadratic map Tpy1 =1 — ap?.

When considering this dynamic system, b is related to the damping or dissipation in the
system, and a is corresponding to the forcing or stress.

3. Properties of map
3.1. Transformation
The Hénon map can be separated into three maps:

(1) Hi(z,y) = (z,1 —az®+y)  anonlinear bending in the y-coordinate
(2) Hilz,y) = (bz,y) a contraction in z-direction with contraction factor &
(3) Hslz,y) = (y,7) a reflection at the diagonal

ie. H(z,y) = Hy(Ho{H:(z,9)))
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FIGURE 1. Hénon transformation on an ellipse with parameters a = 1.0 and b = 0.5

In the figure, (b} shows the bending Hi, (¢) shows the contraction H; and (d) shows the
reflection Hy. The ellipse is finally transformed to a horseshoe-like shape.
3.2. Area Reduction

- By choosing [b] < 1, an original area after iterations will shink and be reduced by a
factor of b by each iteration. Fig 1 provides the same phenomenon with b = 0.5. .
The reduction factor is given by the absolute value of the determinant of the J a.cobla.nmatﬁx T

Qazz: 1
det( b 0)

Therefore the smaller value of [0], the increase in reduction of area. The value |b] = 1 will
lead to conservation of the area.
3.3. Invertibility

Hénon map is an invertible map with H~(z,y) = H7 ' (H; (H;Y(z, y))) where Hy, H,,
Hj; are all invertible. It can also be written as a backward iteration :

ldet DT(z,y)| = = [b]."

T, = y'n.—l—l_
b
a o
Un = ZTpyr-t b_gyn+1 -1

4. Fixed point -—
~ Fixed points (7., y.) of the map exit when continuous iterations give the same pomt in
phase space. Thus the fixed pomts will satisfy the following equations:

z. = 1—az?+y.
Yxr — bSE* :

On solving, the fixed points of the henon map are:

b—1%+/(b—1)2+4a

T2 = 5
a
Y12 = bTia
(b—1)2 o , .
Fora < — = —0.1225, there is no fixed point exit since the roots are not realand when

a grows beyond -0.1225, there exists two fixed points (z1,y:) and (22, y2), where the former
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is attracting. The stability of the fixed point can be determined by the value [——-—~—”’+1 ~, the
T,

fixed point will be stable if the value is less than 1 as it indicates that the 1n1t1a1 condition

approachs the fixed point for each iteration.

5. Bifurcation
At particular a values, there will be an increase in number of fixed points, which gives

rise to a period doubling. The system will undergo this continuously and bifurcate to a
period of infinity, which is a chaotic system. -
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FIGURE 2. Bifurcation diagram with parameter b = 0.3 and range of parameter 0 < a < 1.4

TABLE 1
The period doubling Cascade

k | Period | Parameter ax )
0 1 -0.1225
177 2 0.3675
2 4 0.9125 4.844
3 8 1.026 4.3269
4 16 1.051 4.696
5 32 1.056536 4.636
6 64 1.05773083 4.7748
7 128 1.0579808931 | 4.6696
8 | 256 | 1.05803445215 | 4.6691
9 | 512 | 1.05804592304 | 4.6691
10 | 1024 | 1.05804837980 | 4.6694
11| 2048 | 1.058048905931

The above table shows the the parameter a; for the period doubling cascade in Hénon
transformation for b = 0.3. @ = 0.3675 is the beginning of a period doubling transistion to
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chaos with a., ~ 1.058048. & is defined to be equal to &

0 = limy 00 0, = 4.669201609......

k— Qp—1
Or41 — Gk

which is an universal constant.

6. Periodic and chaotic behaviour

. The Fergenbaum number

The parameters are controls of the system. The choice of these: parameters can result
(x,¥) to iterate in a periodic or chaotic way.

Periodic case
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F1GURE 3. (a) The time series of:s (b) The time series of y, {c) The pemod 2 attractor of Henon map

with pammeters a=09andb=03

Cheotic case

) I

FI1GURE 4. (a) The time seies of z, (b) The time series oy y, (c) The strange attractor of Hénon map

x4 £ X2 T 7.a

with parameters a = 1.4 and 6 =10.3
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For different values of a, there exits different fixed points. For chaos, it does not behave
in a periodic way and thus the number of fixed points increases to infinity and a strange
attractor is produced.

!
7. Study in chaotic system
7.1. Strange attractor

The strange attractor indicates the long term behaviour in phase space of the chaotic
system. The Hénon attractor is boomerang-liked and is self similar.
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FIGURE 5. The atrange attractor of Hénon map with parameters a = 1.4 and b=0.3

At ¢ = 1.4, solutions seemn to jump around the attractor randomly. It has the characteristic
of a “fractal”, which has a similar structure when it is scaled down.

7.2. Correlation dimension

As the attractor has a fractal structure, its fractal dimension can be calculated. One of
the definition of fractal dimension is the correlation dimension. In calculating this correlation
dimension, we consider the correlation between points in a ball of radius € which scales as €
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raised to some power. Here we deﬁne:
ERT log C(e , 0 fora<@
dcm’r = i.lme—m lgfe where 9(0{) — :
Cle} = limy.oeo 3z 2,500 — |izi — 5]]) 1 fora>0

logCle) wi -

loge
FIGURE 6. The plot of log C{e) vs log ¢

The figure is the log/log plot in which the slope is the correlation dimension. The correlation |
 dimension is calculated to be 1.2090 &+ 0.0064.
7.3. Trapping region

There is a trapping region in which no orbit with initial points in it can escape out of
the region. Since the attractor attracts points near by, the attractor will be.included in the
region.

FIGURE 7. The trapping region the chaotic system with parameters a = 1.4 and 6 =10.3

7.4. Sensitivity to initial condition

One of the important characteristics of the chaotic system is its sensitivity to initial
conditions. A slight difference in initial data will lead to quite different behaviour. The time
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series of two different initial conditions are shown below and are compared to each other.

{a)

FIGURE 8. (a) The time series of z with initial condition (zg,%0) = (0,0), (b) The time series of z'
= {0.00001,0), (c) The difference between two time series of

with initial condition (zf,y})
different initial conditions
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{b)

{d)

FIGURE 9. Plot of Zgym vs. g with (e) m=1, () m=2, (c)m=3 (d)m=4

7.5. Correlation between ordits

Although the different initial conditions will finally turn to the attractor, there is no
correlationship between each other even they are close together. Except for the case that
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the second initial point is a point in the first obit.
Since the initial condition (xj,v)) is set to be (Z,,,¥,,) which is in the orbit of initial
condition (zg,%o), there is correlation between two orbits as shown in the figure.

8. Conclusion

The long term behaviour of this dynamic system of some chosen @ would run into a
simple pattern of motion which is the strange attractor, the study of this system gives a
understanding of “chaos” which actually is not so random and arbitary as we have thought.
Although this is not totally random in pratice, there is still a long way to go to completely
understand its behaviour.
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