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LORENZ EQUATION

Abstract. Lorenz equation wes generated by E.N.Lorenz. In 1963,Lorenz studied a two-dimensional
fluid cell warmed from below and cooled from above.The resulting convective motion is modelled by e partial
differential equation where all the variables which expanded into an infinite modes are set identically to zero
except three of them, this gives the lorenz eguation.

1. Introduction

Lornez equation is a coulped set of three quadratic ordinary ordinary differential equa-
tions, one in fluid velocity and two in temperature, for fluid convection in a two dimensional”

- layer heated from below. Clearly the original purpose is to provide a model of convection
© process in our atmosphere which involved air warms ;rises cools and falls again. But amaz-

ingly ,these equations completely equivalent to the set of Lorenz equations occur in laser
physics explaining the phenomenon of irregularly spiking of lasers. So this equation is worth
to study. In this paper we will first analyse the Lorenz equation and find out the station-

- ary points of this equation. Then we will study the chaotic behaviour of it. We will also

discuss the period doubling and bifurcation and finally show how to calculate the Hausdorff
dimension.
2. Governing equation

The Lorenz equations is given by

X =0y - X),
Y =X(R-2)-Y,
Z=XY -bZ

where

X measures the rate of convective overturning.

Y measures the horizontal temperature variation. o

Z measures the vertical temperature variation. : -

o o the Prandtl number (the ratio of the fluid viscosity to the thermal conductivity).

R o the Rayleigh number (the difference on temperature between the top and bottom of
the gaseous system).. ' '

b measures the size of the area.

X,Y,Z € R, 0, R, b are positive.

3. Analysis of the Lorenz Equations

By consdering the Liapunov function V = X?4¢Y?2+¢Z? where V is a volume element
shows that the origin is stable and globally attracting for R < 1.For R > 1 there are two other

stationary points called Cy and C,. The stationary points are {(=1/b(R ~ 1), £4/b(R ~ 1),R—
1) and C; is the one lying in X > 0.
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Use the following linearized transformaton to deduce the stability properties of the
critical points:

x\' [ -0 o O\/[X | ‘
y | =| ®-2) -1 -x ||V - @)
Z \ Y x b)\z '

For R > 1, there are three eigenvalues,

)\1,/\2:%“0—1:}:\/(0“1)2—1—40)1%,/\3:—b.

Wh?fn R < 5@}?, all three roots have negative real part. This implies that when o =10,
b = & (, and C; are stable in the parameter range 1 < R < 5417—;’ 24.74. Let us call
this cntmal R-value be Ry. When R > Ry, the complex roots of the equation above have
positive real part C; and C. are non-stable and the real root is negative for all R. When
R = Ry, the complex eigenvalues cross the xmagmary axis and Hopf bifurcation is formed

where C; and €5 become non- stable

4. Strange attractor
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FIGURE 1. The strange ettractor with r=28, ¢ =10,b = % and initial condition (1,1,1)

By setting o =10, b = £ c and R = 28, integrated the Lorenz equations numerically and
projected onto the X YZ-spa.ce, XVY-plane, X Z—plane Y Z-plane respectively(figl), we can
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see that the trajectory shown does not interect itself if we consider the XYZ-space(figla).
Also the trajectories shown are not periodic. Furthermore, we can observed that the trajec-
tories do not appear to show a transient phenomenon. However as we continue the numerical
integration the trajectories continue to wind around and around, first on one side and then
on the other and never closing up. It is not possible to predict how the trajectory will de-
velop over a long time interval as in section 6 , you will see that the exact squence of loops
which the trajectory makes is extremely sensitive to the changes in initial conditions.

5. Attractor with different R , : i
5.1--Range of R between 0 to 99.524
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FIGURE 2. Y vs X graph for o =10, b= 8 and (a)R =0.5, (b)R =20, (c)R =99.6.

Beside considering the R-value at 28, we would like'(‘to observed the behaviour of the attrac-

tors with different R.

When 0 < R < 1, the trajectory attracted toward the origin.(fig2a)

When 1 < R < Ry(24.74), C; and C, become stable instead of the original.(fig2b)
When Ry < R < 99.524, chaotic occurs which has analysis in section 3.(figla)

5.2. Period Doubling for i between 99.524 to 100.75
When R > 99.524, periodic doubling occur with no attractor.(fig2c)
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FIGURE 3. Y vs X graph foro =10, b= % and (a)R =100.5, (b)R =99.65.

i)Between R ~ 99.98 and R == 100.795 there is a stable periodic X?Y orbit.
ii)Between R = 99.629 and R =~ 99.98 there is a stableX?Y X?Y periodic obrit. As'R
decrease to 99.8, the two loops get closer and eventually merge. Th1s is an example of the
period doubling bifurcation.

iii)Between R =~ 99.547 and R =~ 99.629, the period has doubled again.

Period doubhng occur again for the range 145 < R < 166 and the range 215.364 < R < oo.

5.3. Bifurcation

B A x X 1 L 1 I
99.2 89.4 99.6 99.8 100 1002 $004
R

FIGURE 4. Bifurcation diagram with 100.5> R >99.1.
As R decreases further, more period doubling bifurcations occur. Franceschini stated

that the next bifurcations occur at R ~ 99.529 and R = 99.5255 and the intervial between
bifurcations is decreasing rather rapidly as R decreases.
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5.4. Semi- periodicity
From the above topic, we know that where is the range of R for penod doubling occured,

then what is the behaviour just below an period doubling windows?Let us examine this below.

{v)
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FIGURE 5. Z vs X groph for o =10, b= % and (a)R =214, ()R =205, (c)R =198.

Fig.5(a) show the behaviour when R = 214(The periodic orbit lost its stability in aperiod
doubling bifurcation at R ~ 215.97); looks like stable periodic behaviour. The tubes here
are very thin. Fig.5(b) show the behaviour at R = 205, the behaviour is XY semi-periodic
and have two non-symmeatric regions. In each of them we can see non-syminetric chaotic
behaviour. Fig.5(c) shows the behaviour when R = 198. The two non-symmetric tubes
expanded enough to overlap and become symmetric chaos.

Semi- periodicity can also be observed in intervals below the other period doubling windows.
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6. Sensitivity to Initial Conditions

X againet drw with ieftial condiion (£,1,13 : X againat Bros wilh iibial coneition (0.99,1,1)
T ¥ T T

The two X against time gra.phs above show that w1th two slightly different initial condi-

- tions(X=1 and X=0.99 respectlvely and Y,Z remain unchanged), The trajectories are similar -
from t=0 to t=18,but after t>18,the paths of the trajectories have a large difference.This is *

one of the characteristics of chaos and this explain why long term predlctlon of the weather
is not possible.

7. Hausdorff dimension

By giving an upper bound for the Hausdorff d1men51on of this attractor, we can write
the Lorenz system in the form ;

X+o(X-Y)=0,
Y+0X+Y+XZ=0,

Z+bZ - XY = —b(R+0). h
(3)
making the change of variable X = X, Y 2 Y, Z - Z — R — ¢.It is then easy to see that
the inequality . S
- _
-2-]u|2+X2+Y2+bZ2:b(R+a)Z .
' - 2
< (b—1)72 2
<(b-1)Z +4(b-1)(R o)
| (4)
deuce that
(R + o)

Lim suplu(t)] < "2"“"5\/(5—_—“““1‘*)'

where v = (X,Y, Z), | =min(1,0)(with a bounded initial condition, the trajectory remains
bounded). - ‘
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If S(t) is the mapping ug — u(t), its derivative L(t,uq) is the linear mapping of #3 into R,
€ — L(t,ug)é where L(t,ug) U(t) is the t-volume of the linearization of (3):

' +J_JA(u)U =0,U(0)=¢

where A(u)U = A,U + AU + B(w)U and.

g 00\ /0 <00 0 0 0
0 0.2 0 00 ~Y -X 0

Now determine the numbers w;(L(t,up)), j= 1,2,3:

w3 (L(t, uo)) < .exzpl—o +b+ 1}
wa(L(t, ug)) < ea:p(kg —0)t
(6)

~where ky = —(U+z:\1/)1zt;(1%+a}, m = maz(l,b,0) and § > 0 is arbitrarily small. Finally,
wa(L(t,u)) € 1, ug, if for d = 1 + 5, we have _ T
k2
<2 72
ds +'1+b+0’+k2

This calculation shows that the Hausdorff dimension d of Lorenz attractor with b =8 o=

10, R = 28 satisfies d<2.538.... -

[+]

8. Conclusion

‘We have studied some characteristics behaviour of Lorenz equations. We know that for

different value of Reyleigh number R, the behaviour of the equation is very difference but for
some range of K, the behavoiur repeated. For a certain range of R, period doubling occur
and we can observed clearly from the bifurcation diagram. Also we have studied the chaotic
behaviour of the lorenz equation and find that it is very sensitive to both changes in initial
conditions and changes in the integrating routine.
Lorenz equation has been studied by mathematicians and others for many years and which
has generated several significant problems, and there is still some uncertainties.Hope in the
future we can anaylsis this equation more deeply and can apply it to other fields like laser
physics.
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