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1 Introduction7

CT/MRI scan becomes a very important tool in visualizing body parts. In clinical evaluation8

and treatment planning, the vessels or organs are reconstructed by image segmentation from9

a huge three dimensional data set. Typical data sets can be very large with up to thousand10

pixels in each direction nowadays to give a very good resolution in each two dimensional11

slice.12

Various segmentation methods have been proposed. One approach is to construct a13

level set function to implicitly represent the desire structure, including Chan-Vese, geodesic14

active contour, non-local level set, and etc. However, these PDE-based methods are usually15

computationally expensive. Since one usually solves their corresponding Euler-Lagrange16

equation using gradient descent, the minimizer of these energies are obtained by finding the17

steady state solution to these partial differential equations. Another disadvantage of these18

methods is that it could be too expensive to store another three-dimensional data for the19

level set function.20

Yet the most widely used method is still to simply look at a particular intensity level of21

the data set. This is due to the fact that different tissues will in general give a significant22

different intensity level in the image. However, the data set obtained from MRI might be23

seriously polluted and this reconstruction will produce many unwanted tiny features which24

cover up the important features.25

[subcell resolution]26
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In this paper, we propose regularizing the intensities at pixels/voxels only in a neigh-27

borhood of the level surface from simple thresholding. Unlike usual segmentation method,28

we do not require storage of an additional data set for the surface. We first collect these29

voxels near the level surface and then modify their corresponding intensities by applying30

a linearized ROF regularization. This results in a system of linear equations which can31

be solved efficiently. Furthermore, since on each two dimensional slice the level surface is32

usually a curve, the regularization we made is minimal in the sense that the original and33

the modified data set should be indistinguishable when we look at these two dimensional34

slices. This leaves the medical doctor freedom to judge if any fine feature in these slices is35

important.36

2 Localized ROF37

Let Ω ⊂ R3 be the whole three dimensional data set, u∗ is the threshold level for intensity38

segmentation, Bx,r0 is a ball of radius r0 centered at x and39

Ω̃r0 = {x : ∃y ∈ Bx,r such that u0(y) = u∗}
= {x : ∃y1,y2 ∈ Bx,r such that [u0(y1)− u∗] · [u0(y2)− u∗] < 0} (1)

is a radius r0 neighborhood of the level surface u−1
0 (u∗). The first definition above is a40

continuum definition for continuous domain, while the second one is more suitable for the41

current application where the intensity values are defined on discrete pixel/voxel locations.42

Instead of applying the origin ROF model [3] everywhere in Ω, we restrict the regular-43

ization only to Ω̃. This means we localize the original ROF energy to a neighborhood of the44

desire level surface, giving45

ELROF (u) =

∫

Ω

|∇u|+ λ(x)

2
(u− u0)

2

=

∫

Ω̃

|∇u|+ λ0

2
(u− u0)

2 , (2)

where46

λ(x) =

{
λ0 ≥ 0 if x ∈ Ω̃r0

∞ otherwise
. (3)

[limit cases when λ0 = 0 or ∞.]47

Theorem 2.1. Consider the following two dimensional case with the initial intensity image48

given by49

u0 = χBr1
, (4)

where Br1 is a ball of radius r1 and χ is the characteristic function. Let 0 < u∗ < 1 be the50

desire threshold intensity and Ω̃r0 is the neighborhood we are regularizing. If r1 < r0 and u51

is the minimizer to the ROF energy (2), then there exist λ∗ > 0 such that52
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Figure 1: Setup for (left) Theorem 2.1 and (right) Theorem 2.2.

1. if λ∗ < λ0, u−1(u∗) = u−1
0 (u∗);53

2. if λ0 < λ∗, u−1(u∗) is empty.54

Proof. The idea follows from the calculations in [2, 4]. The minimizer to the energy (2) can55

be explicitly defined in this case56

u =

{
0 if 0 ≤ λ0 ≤ 1

r1(
1− 1

λ0r1

)
χBr1

if λ0 > 1
r1

.
(5)

Let57

λ∗ =
1

r1(1− u∗)
. (6)

If λ0 < λ∗, we have u < u∗ and therefore the simple segmentation using the threshold u∗58

will give the empty set. If λ∗ < λ0, u(Br1) = (1 − 1/λ0r1) > u∗ which gives the same59

segmentation as the original function u0.60

Theorem 2.2. Consider the following two dimensional case with the initial intensity image61

given by62

u0 = χBr1
, (7)

where Br1 is a ball of radius r1 and χ is the characteristic function. Let 0 < u∗ < 1 be the63

desire threshold intensity and Ω̃r0 is the neighborhood we are regularizing. If r0 < r1 and u64

is the minimizer to the ROF energy (2), then u−1(u∗) = u−1
0 (u∗).65

These two theorems imply that any fine features in the observed data set will be removed66

only when its scale is smaller than the tube radius r0 and with a regularization parameter λ067

smaller than some critical λ∗. Moreover, if these features appear as a sudden change in the68

intensity, it will either be completely removed or remain unchanged. It will not be removed69

gradually by shrinking.70
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3 Localized Linearized ROF71

[1] has recently proposed linearizing some nonlinear non-local filters not only to speed up72

the computations, but also to produce a better quality and fidelity images. The underlying73

observation is that the corresponding nonlinear version u(t,x) goes away from the original74

data u0, while the linearized version keeps the direct knowledge of u0.75

The original Euler-Lagrange equation for the above localized ROF is given by76

ut = ∇ ·
( ∇u

|∇u|
)
− λ0(u− u0) (8)

in Ω̃r0 with u = u0 for x ∈ Ω\Ω̃r0 . Linearizing this equation gives77

ut = ∇ ·
( ∇u

|∇u0|
)
− λ0(u− u0) (9)

with the corresponding energy78

ELLROF =

∫

Ω

1

2

|∇u|2
|∇u0| +

λ(x)

2
(u− u0)

2 . (10)

In fact, the minimizer to (10) can be found by simply solving the following linear inhomo-79

geneous anisotropic Helmholtz equation in Ω̃80

λ0u−∇ ·
( ∇u

|∇u0|
)

= λ0u0 . (11)

Now we study some properties of these minimizers to the proposed localized linearized81

ROF energy (10).82

Theorem 3.1. Consider the following two dimensional case with the initial intensity image83

given by84

u0 =
√

x2 + y2 . (12)

Let u∗ > 0 be the desire threshold intensity and Ω̃r0 is the neighborhood we are regularizing.85

If r0 < u∗, the reconstruction surface u−1(u∗) lies inside u−1
0 (u∗).86

Proof. For a given threshold level u∗ > 0, the level surface u−1
0 (u∗) is a circle of radius87

u∗. The condition r < u∗ implies that the domain Ω̃r0 is an annulus given by {u∗ − r0 <88 √
x2 + y2 < u∗ + r0}. Assuming the solution is independent of θ and is in the form of u(r),89

equation (11) implies90

urr +
1

r
ur − λ0u = −λ0r , (13)

with the boundary values u(u∗ − r0) = u∗ − r0 and u(u∗ + r0) = u∗ + r0. We first study two91

limit cases. If λ0 → ∞, the minimizer to (10) is u = u0. For the other limit when λ0 = 0,92

we have93

u(r) = c1 + c2 log(r) , (14)
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with c2 = 2r0/[log(u∗+r0)−log(u∗−r0)] > 0. Since u′(r) = c2/r > 0 and u′′(r) = −c2/r
2 < 0,94

we conclude u(r) > r. This implies the original surface u−1
0 (u∗) shrinks to u−1(u∗) for the95

case λ0 = 0.96

Now, introducing v(r) = u(r)− r, we have97

vrr +
1

r
vr − λ0v = −1

r
, (15)

with the boundary values v(u∗ − r0) = v(u∗ + r0) = 0. The above analysis is therefore98

equivalent to say that λ0 = 0 implies v(r) > 0 for ∀r ∈ (u∗ − r, u∗ + r) and λ0 →∞ implies99

v(r) = 0 for ∀r ∈ (u∗ − r, u∗ + r).100

Now we consider any finite λ0 > 0. If the function v(r) has a global minimum at r∗ on101

(u∗ − r, u∗ + r), we have v(r∗) ≤ 0 and vr(r
∗) = 0.102

1. v(r∗) < 0. Since vr(r
∗) = 0, we have vrr(r

∗) ≥ 0. This gives103

vrr(r
∗) +

1

r∗
vr(r

∗)− λ0v(r∗) > 0 (16)

which contradicts with (15).104

2. v(r∗) = 0. Using (15), we have105

vrr(r
∗) =

−1

r∗
< 0 . (17)

This implies there exists r̃ in the neighborhood of r∗ such that f(r̃) < 0, which con-106

tradicts with the assumption that v(r∗) the a global minimum.107

This implies that the global minimum of v(r) are 0 only at r = u∗ ± r0. We now conclude108

v(r) > 0 for ∀r ∈ (u∗ − r, u∗ + r).109

Figure 1 shows some numerical solutions to (15) for various λ0. The top-most curve110

corresponds to the case when λ0 = 0. As we increase λ0, i.e. to reduce the regularization,111

the deviation of the solution v(r) from zero reduces. Yet, it stays positive for all λ0. As λ0112

tends to infinity, we have v(r) ≡ 0. Since v(r) > 0 for all λ0 > 0, we have u−1
0 (u∗) shrinks to113

u−1(u∗).114

As a final remark to this case when |∇u0| = 1, the proposed regularization is reduced to115

the following L2 regularization116

EL2 =

∫

Ω

1

2
|∇u|2 +

λ(x)

2
(u− u0)

2 . (18)

117

The amount how much the surface shrinks depends on the parameter λ0.118
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Figure 2: (Proof for 3.1) An illustration of v(r) as λ0 changes.

Theorem 3.2. Consider the following two dimensional case with the initial intensity image119

given by120

u0 =
√

x2 + y2 . (19)

Let u∗ > 0 be the desire threshold intensity and Ω̃r0 is the neighborhood we are regularizing.121

Let ū be the minimizer to (10) for λ0 = 0 and ũ be the minimizer to the same energy for122

some other λ̃ > 0. If r0 < u∗, the reconstructed surface ū−1(u∗) lies inside ũ−1(u∗).123

Proof. Let w = ū− ũ. We have124

wrr +
1

r
wr − λ̃ũ = 0 , (20)

with the boundary conditions w(u∗ ± r0) = ũ(u∗ ± r0) = 0. Let125

f(r) = λ̃ũ(r)r > 0

g(r) =

∫ r

u∗−r0

f(r′)dr > 0 , (21)

we get126

w(r) =
log r − log(u∗ − r0)

log(u∗ + r0)− log(u∗ − r0)

∫ u∗+r0

u∗−r0

g(r′)
r′

dr +

∫ r

u∗−r0

g(r′)
r′

dr′ > 0 . (22)

This implies that ū > ũ for ∀r ∈ (u∗ − r0, u
∗ + r0). Therefore we have the reconstructed127

surface ū−1(u∗) lies inside ũ−1(u∗).128

The shrink in the fine feature will depends on magnitude of r0.129
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Theorem 3.3. Consider the following two dimensional case with the initial intensity image130

given by131

u0 =
√

x2 + y2 . (23)

If r0 < u∗, the regularized level surface u−1(u∗) stays inside the r0-neighborhood of the original132

level surface u−1
0 (u∗), i.e.133

u−1(u∗) ∈ Ω̃r0 . (24)

Proof. This property comes from the maximum principle of the elliptic equation. Since134

min
∂Ω̃r0

u0 < u∗ < max
∂Ω̃r0

u0 , (25)

the maximum principle implies135

min
∂Ω̃r0

u0 < u|Ω̃r0
< max

∂Ω̃r0

u0 , (26)

and this leads to the conclusion.136

Theorem 3.4. Consider the following two dimensional case with the initial intensity image137

given by138

u0 =
√

x2 + y2 . (27)

The regularized level surface u−1(u∗) is smooth.139

4 Numerical Method140

In this section, we present a symmetric discretization to (11). For simplicity, we consider141

the following two dimensional case. It is straight-forward to generalize the discretization to142

higher dimensions. Let g(x, y) = |∇u|−1. We apply the following symmetric discretization143

∇ · (g∇u) = gi+1/2,jui+1,j + gi−1/2,jui−1,j + gi,j+1/2ui,j+1 + gi,j−1/2ui,j−1

−(gi+1/2,j + gi−1/2,j + gi,j+1/2 + gi,j−1/2)ui,j , (28)

where gi±1/2,j±1/2 are regularized gradients given by144

gi+1/2,j = g(xi+1/2, yj) =
1√

[D+
x u0(xi, yj)]2 + [D0

yu0(xi, yj)]2 + ε2

gi−1/2,j = g(xi−1/2, yj) =
1√

[D−
x u0(xi, yj)]2 + [D0

yu0(xi, yj)]2 + ε2

gi,j+1/2 = g(xi, yj+1/2) =
1√

[D0
xu0(xi, yj)]2 + [D+

y u0(xi, yj)]2 + ε2

gi,j−1/2 = g(xi, yj−1/2) =
1√

[D0
xu0(xi, yj)]2 + [D−

y u0(xi, yj)]2 + ε2
, (29)
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with ε to prevent division by zero, D+, D− and D0 are the forward, the backward and145

the central differences, respectively. This results in a symmetric positive definite system of146

linear equations, which can be solved efficiently using any well-developed numerical method147

for solving a system of linear equations.148

5 Example149

5.1 Synthetic Objects150

The clean surface in this example is given by151

u1(x) = 0.2−min(|x− 0.35|, |y − 0.65|, |z − 0.5|)
u2(x) = 0.2−min(|x− 0.65|, |y − 0.35|, |z − 0.5|)
u3(x) = 0.01−min(|x− 0.75|, |y − 0.75|, |z − 0.5|)
u4(x) = 0.1−min(|x− 0.25|, |y − 0.25|, |z − 0.5|) . (30)

We have tried the following four different input surfaces. For the clean version, we have the152

clean surface defined by a distance function153

u
(1)
0 (x) = max(u1, u2, u3, u4) , (31)

and the Heaviside version154

u
(2)
0 (x) = H [max(u1, u2, u3, u4)] . (32)

With noise, we have155

u
(3)
0 (x) = max(u1, u2, u3, u4) + N(0, σ) , (33)

where N(0, σ) is the usual Gaussian noise with zero mean and standard deviation σ = 0.01.156

The corresponding Heaviside version is157

u
(4)
0 (x) = H [max(u1, u2, u3, u4) + N(0, σ)] . (34)

With u0 obtained with a Heaviside function, we use u∗ = 0.5. For the cases with u0158

comes directly from the distance function, we have u∗ = 0. The size of this data set is159

128× 128× 128. The total computational time for those clean examples are approximately160

12 seconds implemented in MATLAB. For those noisy data, the Heaviside version takes161

around 63 seconds while the distance function case uses approximately 31 seconds.162

5.2 Real Data163

The resolution of each slice is 303× 303 with totally 305 slices. It takes approximately 390164

seconds to compute the solution in MATLAB.165
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Figure 3: (u
(1)
0 : clean distance function data) (Left) Original and (right) regularized.
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Figure 4: (u
(2)
0 : clean heaviside data) (Left) Original and (right) regularized.
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Figure 5: (u
(3)
0 : noisy distance function data) (Left) Original and (right) regularized.
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Figure 6: (u
(4)
0 : noisy heaviside data) (Left) Original and (right) regularized.
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Figure 7: (Left) Original and (right) clean.
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Figure 8: (Left) Original and (right) clean.
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Figure 9: (Left) Original and (right) Clean. The intensity image should be very similar.
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Figure 10: (Left) Original and (right) Clean. The intensity image should be very similar.
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