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Abstract

An adaptive level set method is implemented to solve the quasi-steady state ap-
proximation of the Stefan problem. The grid adaptivity is based on a minimization of
the Winslow functional with a monitor function coupled with the level set function.
Temperature field is computed by applying techniques from Ghost-Fluid Method [17, 5]
to the Laplace equation in the transformed coordinate system. By extending this tem-
perature using fast-sweeping method [21, 8, 9], the normal velocity of the interface is
obtained and is used to update the level set function. Several numerical examples will
also be included to demonstrate the computational efficiency of the resulting algorithm.

1 Introduction

Crystal growth is a classical problem for phase transition from liquid to solid through
heat transfer. The process of this growth starts with a small solid seed put into
a bath of undercooled liquid. The heat is then transferred to the surrounding and
this mechanism expands the solid and the instability in the growth of the interface
would drive the crystal into a dendritic shape. The resulting shape of this growth
depends on the initial profile of the seed, the surrounding temperature, the normal
velocity of the interface propagation, and more importantly, the surface tension of the
interface between solid and liquid phases. Understanding the relationship between
these parameters and the resulting dendritic shape is important. One reason is that
the properties of the final alloy, like the conductivity or the strength, strongly depend
on how the crystal evolves.

Simulation of the dendritic growth is difficult numerically due to the following
reasons. The numerical method should be able to
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1. solve the heat (or Laplace) equation on an arbitrary domain with irregular bound-
aries;

2. evolve the interface according to some physical laws;

3. handle the topological changes of the interface easily;

4. solve the problem in a reasonable time.

Different numerical schemes have been introduced and applied to this problem. They
can be categorized into the following three groups.

1. Front-tracking method [7]. This is a Lagrangian-type method in which particles
are put on the interface and are advected by the interface velocity. The location
of the interface is then represented explicitly, and therefore, the heat (or Laplace)
equation can be approximated by finite difference. Discontinuities of the material
properties between solid and liquid can be handled easily. However, new particles
have to be added to keep the interface resolutions sharp. Merging of the interface
can also be done, but special care is needed. The situation with no interface
kinetics is also difficult to deal with.

2. Phase-field method [10, 11, 12]. The interface is smeared out. A phase-variable φ
is introduced and φ→ 0 for the location in the solid phase away from the interface
and φ → 1 for the location in the liquid phase away from the interface. The
motion laws for the interface and the heat equation are modified to accommodate
with this phase variable. This results in an Eulerian method. The interface
is represented implicitly and can be calculated from the phase variable φ when
necessary. Therefore, topological changes in the interface can be easily taken care
of. The problem of this approach is that the phase-field method only reproduces
the dynamics of the interface for the sharp interface model in the limit when ∆x
goes to zero. An extra level of grid adaptivity is needed to resolve this induced
transition layer [16]. Moreover, when the physical properties between solid and
liquid are different, it is not straight forward to apply the method [13].

3. Level Set Method [18, 3, 13, 5, 4]. The interface is represented as the zero level set
of a level set function φ. This level set function is chosen initially to be a signed
distance function from the interface. Unlike the phase-field method, the level set
function will then be modified with its own motion law. As a result, there is no
arbitrary interface width introduced in the model and the sharp interface model
can be solved directly. Discontinuous properties of materials can also be handled
easily.

However, one draw back of using Level Set Method is the numerical dissipation
inherited from finite difference methods: to increase the accuracy of the solution, one
need to increase the number of grid points by, say, doubling the grids in all directions.
Some of the test cases in the references need almost 400 grids in each direction to get a
reasonable solution of the crystal structure. This is not efficient in the sense that many
grid points are far away from the interface and the solutions there are not directly used
at all in obtaining the normal velocity for updating the zero level set.
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Resolution of solutions using Level Set Method would also be vary limited by the
grid size. It should be noticed that the zero level set cannot represent regions where the
magnitude of the curvature is great than 1/∆x. Therefore, to get an accurate interface
in complex regions, one cannot only simply increases the order of the numerical method
in the evolution stage, but needs to increase the total number of grid points. This
means, the local resolution of the interface would result in a global uniform increase in
the number of grids. This can lower the efficiency of the Level Set Method.

The aim of this paper is to improve the computational efficiency of the level set
approach as in [3, 5] by applying an adaptive moving grid approach. Since this adap-
tive approach is based on structured quadrilateral grids [14, 6, 20, 19], simple finite
difference method can be used. With this novel, efficient adaptive method in place,
more physical quantities can be incorporated in the model.

The rest of the paper is organized as follow. The quasi-steady Stefan Problem will
be given in Section 2. The numerical procedures will be explained in details in Section
3. Section 4 contains several numerical examples to test the convergence rates and the
efficiency of the adaptive approach.

2 The Quasi-steady Stefan Problem

The classical Stefan problem is given by

∂T

∂t
= ks∇2T in Ωs

∂T

∂t
= kl∇2T in Ωl , (1)

with T denoting both the temperature of the crystal in Ωs and that of the supercooled
liquid Ωl, separated by the interface Σ. A level set function φ is introduced such that
the zero level set of this function gives Σ. ks and kl are related to volumetric heat
capacities and thermal diffusivities of the materials. The Gibbs-Thomson relation is
imposed on the interface,

T = −σκ− µvn on Σ , (2)

where σ is the surface tension coefficient, κ is the curvature of the interface, and µ
is the molecular kinetic coefficient. The normal velocity of the interface is computed
from

vn = [n · ∇T ] on Σ , (3)

where [.] is defined as the jump across the interface, i.e. [f ] = fs|Σ− fl|Σ. This normal
velocity will then be extended throughout the whole domain and be used to move the
level set function according to the level set equation

φt + vn|∇φ| = 0 in Ω . (4)
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If we assume that the diffusion coefficients ks and kl are large, then we obtain the
following quasi-steady Stefan problem

∇2T = 0 in Ω
T = −σκ− µvn on Σ
vn = [n · ∇T ] on Σ

φt + vn|∇φ| = 0 in Ω . (5)

3 Numerical Method

We will focus on the two-dimensional case. However, this idea can be applied to higher
dimensional space in a straight forward manner.

The numerical procedures will be mainly composed of the following steps:

1. Adapt the grid according to the level set function φ [14, 19].

2. Solve the Laplace equation with the boundary condition imposed on the interface
[17, 5].

3. Update the location of the interface by solving the level set equation.

3.1 Grid Adaptation

The adaptivity of the grid can be seen as determining a time dependent map between
the physical domain (x, y) and the computational domain (ξ, η). The computational
domain is fixed so we can think of it as the indexing space of the discretization in the
physical space. This means (ξ, η) ∈ {1, 2, . . . , nξ} × {1, 2, . . . , nη} with ∆ξ = ∆η = 1.
We write this desired mapping as x = x(ξ, η) and y = y(ξ, η).

Given a level set function φn defined on the grids (xni,j , y
n
i,j) at time tn, we would

like to find a new set of structured grids (xn+1
i,j , yn+1

i,j ) with grid points concentrated
around the zero level set. A simple idea to find such a map is to minimize Winslow’s
functional defined in the computational domain

min
(x,y)

E(x(ξ, η), y(ξ, η)) =
1
2

∫
ω
(
|∇ξ,ηx|2 + |∇ξ,ηy|2

)
dξdη , (6)

where ω in the equation is called the monitor function and controls how the grids will
be adapted. From the computational examples below, it is found that

ω(φ) = 1 + α exp(−φ2/σ2) , (7)

with α = 10 and σ = 0.1, is a reasonable choice. This monitor function is symmetric in
φ = 0, meaning that the grid points should be evenly distributed around the zero level
set independent of the sign of the function. Another property is that this function has
its largest value when φ = 0, therefore the concentration of the grid points decreases
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away from the zero level set. In [19], the authors used a Heaviside level set function,
instead of a signed distance level set function. They proposed

ω(ψ) =
√

1 + |∇x,yψ|2 , (8)

with ψ = sign(φ). In our case, the monitor function is chosen in a more natural way
such that the signed-distance property of the level set function is incorporated in the
grid adaptation.

The Euler-Lagrange equation for the above minimization problem can be derived

∇ξ,η · (ω∇ξ,ηx) = 0
∇ξ,η · (ω∇ξ,ηy) = 0 . (9)

Notice that the equations above are elliptic and uncoupled. Therefore, they can be
solved easily using standard iterative schemes like SOR or PCG.

3.2 Coordinate Transformation

The next step is to solve the Laplace equation in this new set of grid points (xn+1, yn+1).
This can be done by using the following coordinate transformation

dx = Adξ +Bdη

dy = Mdξ +Ndη , (10)

where
A =

∂x

∂ξ
, B =

∂x

∂η
, M =

∂y

∂ξ
and N =

∂y

∂η
(11)

are determined from the local grid information. Using this transformation and defining
∆ to be the Jacobian of this transformation, we can rewrite the gradient operator in
the Cartesian coordinates as

∇x,y =
1
∆

(
−M ∂

∂η
+N

∂

∂ξ
,−B ∂

∂ξ
+A

∂

∂η

)
. (12)

The Laplacian is then replaced by the Beltrami operator given by

∇2
x,yT =

1
∆

[
∂

∂ξ

(
(B2 +N2)Tξ − (AB +MN)Tη

∆

)

+
∂

∂η

(
(A2 +M2)Tη − (AB +MN)Tξ

∆

)]
. (13)

Notice that our approximation of the Beltrami operator at T (ξi, ηj) uses a linear com-
bination of the 9 grid points centered at (ξi, ηj), i.e. {Ti,j , Ti−1,j−1, Ti,j−1, Ti+1,j−1,
Ti−1,j , Ti+1,j , Ti−1,j+1, Ti,j+1, Ti+1,j+1}.

However, special care is needed when the grid point is located near the interface.
Since a boundary condition is imposed on the interface, the Ghost Fluid Method is used
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[17, 5]. For example, consider the one-dimensional case where we assume φi−1φi > 0
and φiφi+1 < 0, i.e. the interface is located between the grid point at xi and xi+1

but not between xi−1 and xi. By the Ghost Fluid Method, the Laplacian at xi can be
approximated by

∇2
hTi =

Ti−1 − 2Ti + T ∗i+1

∆x2
, (14)

where T ∗i+1 is the value extrapolated from T (φ−1(0)), Ti, and/or Ti−1, depending on
the desired accuracy.

In the two dimensional case with the Cartesian coordinates, we only need to check
the above condition on φi,j with the 4 neighboring grid points (xi±1, yj) and (xi, yj±1).
However, with the adaptive grids, a total of 8 points (ξi±1, ηj), (ξi, ηj±1) and (ξi±1, ηj±1)
need to be considered in general.

3.3 Temperature Extension

After the temperature is computed in both domain Ωs and Ωl, we need to compute the
jump of its normal derivative across the interface. This can be done using the following
extension algorithm [2, 4].

1. Define T 1 = χΩ1T and T 2 = χΩ2T , where χ{} is the characteristic function and
is defined to be 1 if (x, y) is in the subscripted domain and is 0 otherwise.

2. Define T 1
n = χΩ1(~n · ∇T ), T 2

n = χΩ2(~n · ∇T ).

3. Define T 1
nn = χΩ1(~n · ∇Tn), T 2

nn = χΩ2(~n · ∇Tn).

4. Extend T 1
nn and T 2

nn to Ω2 and Ω1, respectively, by solving

(T 1
nn)τ +H(φ)~n · ∇T 1

nn = 0
(T 2
nn)τ −H(−φ)~n · ∇T 2

nn = 0 , (15)

where H(.) is the Heaviside function.

5. Extend T 1
n and T 2

n to Ω2 and Ω1, respectively, by solving

(T 1
n)τ +H(φ)(~n · ∇T 1

n − T 1
nn) = 0

(T 2
n)τ −H(−φ)(~n · ∇T 2

n − T 2
nn) = 0 . (16)

6. Compute vn = T 1
n − T 2

n .

In [2, 4], the above PDE’s are solved in the τ -direction for few iteration steps. However,
because of the restriction in the step size coming from the CFL condition, the resulting
speed of information extension would be relatively slow. To resolve this problem, we
determine the steady state solution of the above PDE’s directly by considering the
time-independent extension equations. Equations (15) and (16) are replaced by

H(φ)~n · ∇T 1
nn = 0

−H(−φ)~n · ∇T 2
nn = 0 , (17)
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and

H(φ)(~n · ∇T 1
n − T 1

nn) = 0
−H(−φ)(~n · ∇T 2

n − T 2
nn) = 0 , (18)

respectively. Then, these PDE’s are solved using the idea of the fast sweeping method
[21, 8, 9]. Note that all equations are in the form of

uTξ + vTη = R(ξ, η) . (19)

With upwind differencing, we get the following iterative scheme for Ti,j with 1 ≤ i ≤ nξ
and 1 ≤ j ≤ nη,

T k+1
i,j =

[
∆η{(u− |u|)T k′i+1,j − (u+ |u|)T k′i−1,j}+
∆ξ{(v − |v|)T k′i,j+1 − (v + |v|)T k′i,j−1} − 2∆ξ∆ηRi,j

]

−2(∆η|u|+ ∆ξ|v|) , (20)

for k = 1, 2, · · · and k′ = k or k + 1, depending on the direction of the sweeping.
Computationally, the determination of k′ is automatic and this sweeping procedure
can be done, for example, by the following piece of code in FORTRAN,

DO I=1,NX

DO J=1,NY

T(I,J)=UPDATE_T(T,R,I,J)

ENDDO

ENDDO

DO I=NX,-1,1

DO J=1,NY

T(I,J)=UPDATE_T(T,R,I,J)

ENDDO

ENDDO

DO I=1,NX

DO J=NY,-1,1

T(I,J)=UPDATE_T(T,R,I,J)

ENDDO

ENDDO

DO I=NX,-1,1

DO J=NY,-1,1

T(I,J)=UPDATE_T(T,R,I,J)

ENDDO

ENDDO

DO J=1,NY

DO I=1,NX

T(I,J)=UPDATE_T(T,R,I,J)

ENDDO

ENDDO

DO J=NY,-1,1

DO I=1,NX

T(I,J)=UPDATE_T(T,R,I,J)

ENDDO

ENDDO

DO J=1,NY

DO I=NX,-1,1

T(I,J)=UPDATE_T(T,R,I,J)

ENDDO

ENDDO

DO J=NY,-1,1

DO I=NX,-1,1

T(I,J)=UPDATE_T(T,R,I,J)

ENDDO

ENDDO
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with the function UPDATE T given by the expression (20).
Although the normal velocity vn obtained from the above algorithm is defined at

all grid points, a normal direction extension algorithm is still implemented to reduce
the numerical error [4, 15]. At each point (xi, yj),

1. determine the closest point on the interface to that point, given by

(x∗, y∗) = (xi, yj)− φ(xi, yj)~n , (21)

where ~n is the normal vector at the point (xi, yj).

2. use cubic interpolation to determine vn(x∗, y∗) and assign

vn(xi, yj) = vn(x∗, y∗) . (22)

3.4 Updating the Level Set Function

The level set equation in the transformed coordinates is given by

φt +
vn
∆

√
aφ2

ξ + 2bφξφη + cφ2
η = 0 , (23)

where a = B2 + N2, b = −(AB + MN), c = A2 + M2 and ∆ = AN − BM . This
Hamilton-Jacobi equation is solved using a fifth order WENO-LF scheme in space and
a third order TVD-RK scheme in time.

3.5 Reinitialization

To reduce the error in determining the zero level set by interpolation, it is desirable
to preserve the signed-distance property of the level set function. This can be done by
solving

φτ + S(φ0)(|∇φ| − 1) = 0 , (24)

with S(.) approximating the signum function. In the transformed coordinates, the
above equation reads

φτ + S(φ0)
(

1
∆

√
aφ2

ξ + 2bφξφη + cφ2
η − 1

)
= 0 . (25)

Again, this Hamilton-Jacobi equation is solved using a fifth order WENO-LF scheme
in space and a third order TVD-RK scheme in time. Few iterations in the τ -direction
are sufficient to get a regular level set function near the zero level set.

3.6 A Predictor-Corrector Approach

Traditionally, the moving grid technique updates the objective function and the loca-
tion of the grids in the following way:
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1. Given the grids (xn, yn) and the function φn(xn, yn) defined at tn, update φn and
get φn+1/2(xn, yn). This step is denoted by the operator Exn .

2. With the function φn+1/2(xn, yn) fixed, adapt the grid to obtain (xn+1, yn+1).
The output of this step is denoted by A(φn+1/2).

3. Interpolate and determine φn+1(xn+1, yn+1) at (xn+1, yn+1). The interpolation
procedure is denoted by Ixn+1 .

The problem with the above procedure is the excessive numerical dissipation in the
operator Ixn+1 . To reduce this error, different types of interpolation scheme were
introduced [19].

In this work, a predictor-corrector approach will be used.

1. The procedures Exn and A(φn+1/2) are considered as a predictor step. The func-
tion φn+1/2(xn, yn) is considered as a prediction of the function values at the next
time step tn+1, and it is only used to give the new location of the grids .

2. A new operator Exn→xn+1 is introduced. This operator couples the level set
equation with the grids motion driven by the velocities

F =
dx

dt
and G =

dy

dt
, (26)

in terms of the following transformation

dt = dτ

dx = Fdτ +Adξ +Bdη

dy = Gdτ +Mdξ +Ndη , (27)

where the local grid information is given by

A =
∂x

∂ξ
, B =

∂x

∂η
, M =

∂y

∂ξ
,N =

∂y

∂η
and ∆ = AN −BM . (28)

Now the Level Set equation in this moving grid coordinates is given by

φτ − FN −GB
∆

∂φ

∂ξ
− GA− FM

∆
∂φ

∂η
+
vn
∆

√
aφ2

ξ + 2bφξφη + cφ2
η = 0 , (29)

4 Numerical Examples

4.1 Example 1

This example is used to test the convergence of different quantities, including the
temperature, the normal velocity and the location of the interface at time t = 0.1.
There are two disjoint interfaces fixed in the domain, i.e. two level set functions φ and
ψ will be used to define the interfaces at t = 0.

φ = r − 0.3
ψ = r − 0.8 . (30)
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The temperatures on the interfaces are fixed to be

T = −0.0005/0.3 when φ = 0
T = −0.5 when ψ = 0 (31)

initially. Figure 1 shows the contour lines of the temperature field computed using
50-by-50 and 100-by-100 rectangular grids. Solution, with the computational grids in
the physical space using the proposed adaptive grids, are plotted in Figure 2 and 3.

Several quantities will be measured. The first one is the temperature on the interface
φ = 0. Cubic interpolation will be used to interpolate the computed solutions on
r = 0.3 at each degree. L1 and L∞ errors are then computed. Because the exact
temperature can be computed easily, we can also compute the L1-error of the numerical
solution using ∫

|T − Texact|dxdy =
∫
|T − Texact|∆dξdη , (32)

where ∆ is the Jacobian of the transformation in the adaptive grid mapping. As seen
on the first row in Figure 6, by adaptive grids toward φ = 0, we can lower the error
near the interface by approximating a factor of 3. The x-axis represents Log(min ∆),
with ∆ is the grid area, and the y-axis is the logarithm of the corresponding errors.

The normal velocity of the interface at t = 0 can also be computed and is given by

vn|φ=0 =
299

180 log(8/3)
. (33)

The L1 and L∞ of the errors on the interface φ = 0 using different number of grid
points are plotted on the third row in Figure 4.

The last row in Figure 4 shows the errors in the location of the crystal interface
at t = 0.1. The shape of the crystal is always a circle with expanding radius. The L1

error is measured by ∫ 2π

0
|φ(r = rexact, θ)|dθ , (34)

with φ(r = rexact) is computed using cubic interpolation.
Least square fitting is then used to approximate the slope of the graphs. Because

∆ = O(h2) where h is the length of the grid cell, we multiply the slope of the graphs
by 2 and the rates are given in Table 1. In the cases of adaptive grids, we notice that
the grid distortion is so serious that it affects the accuracy when the number of grids
is small. We also show the convergence rates by ignoring the data using 50-by-50 grids
in Table 1.

4.2 Example 2

The initial condition is a square of length 0.2. The computational domain Ω = [−1, 1]2.
Temperature on the interface is given by T = −0.0005κ and that on the outer boundary
{x = ±1} ∪ {y = ±1} is given as −1. The interfaces from t = 0 to 0.2 in increment
of 0.025 are plotted in Figures 5-7. Grid anisotropy can be eliminated by increasing
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Figure 1: Temperature contours using 50-by-50 and 100-by-100 uniform rectangular grids.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 2: Temperature contours computed by 50-by-50 grids adapted to both the zero level
sets φ = 0 and ψ = 0.

Uniform (a) (b)
L1 L∞ L1 L∞ L1 L∞

T |φ=0 at t = 0 1.05 1.00 1.07 1.06 - -
T |Ω at t = 0 2.02 1.88 0.87 0.69 1.19 0.98
vn|φ=0 at t = 0 1.44 1.39 0.59 0.80 1.22 1.20
φ = 0 at t = 0.1 1.39 1.32 0.52 0.92 1.21 1.40

Table 1: Convergence rates for difference quantities using both uniform and adaptive grids.
(a) and (b) are obtained using grids adapted to both φ = 0 and ψ = 0. Data from 50-by-50
grid points are dropped on column (b).
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Figure 3: Temperature contours computed by 100-by-100 grids adapted to both the zero
level sets φ = 0 and ψ = 0.

the total number of grids. Comparing the solutions in the first row of Figure 5 with
Figure 6, only around one-forth of grid points are needed in the adaptive grid to get
similar results from uniform rectangular grids.

4.3 Example 3

This example simulates crystal anisotropy in the sense that the crystal grows in some
preferred directions. The Gibbs-Thomson relation on the interface is given by [1]

T = −σ(~n)κ− µ(~n)vn , (35)

with

σ(θ) = σ

{
1 +As

[
8
3

sin4
(

1
2
ms(θ − φs)

)
− 1

]}

µ(θ) = µ

{
1 +Ak

[
8
3

sin4
(

1
2
ml(θ − φk)

)
− 1

]}
. (36)

Here ms and mk determine the mode of symmetry of the crystal, φs and φk determine
the angles of the symmetry axis made with the x-axis, As and Ak are the strength of
the anisotropy and θ is the angle made between the normal vector ~n and the x-axis.

Three different initial conditions are imposed:

(a) Square with sides 1/6.

(b) Square with sides 1/6 and rotated by π/4.

(c) Four-fold initial condition given by

r = r0 + p0 cos 4θ , (37)

with r0 = 0.05 and p0 = 0.01.
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Figure 4: Convergence tests. The first and second column correspond to the results using
uniform rectangular grids and grids adapted to both φ = 0 and ψ = 0, respectively. The
first row shows the convergence of temperatures on φ = 0. Convergence of temperatures in
the whole domain are shown on the second row. Third row shows the convergence of the
normal velocity on φ = 0 at t = 0. The convergence of the location of φ = 0 at t = 0.1 using
different type of grids are shown on the last row.
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Figure 5: (Example 2) Evolution of the interface at increments of 0.025 from t = 0 to 0.2
using 150-by-150, 200-by-200 and 400-by-400 uniform rectangular grids with two different
orientations of the initial profile.
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Figure 6: (Example 2) Evolution of the interface at increments of 0.025 from t = 0 to 0.2
using 100-by-100 and 150-by-150 adaptive grids. The second row shows the grid points at
the last time step.
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Figure 7: (Example 2) Evolution of the interface at increments of 0.025 from t = 0 to 0.2
using 100-by-100 and 150-by-150 adaptive grids with another orientation for the initial seed.
The second row shows the grid points at the last time step.
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Figure 8: (Example 3a) 50-by-50, 100-by-100 and 150-by-150 adaptive grids, As = Ak = 0.5,
σ = µ = 0.0005 and ms = mk = 4. Second row shows the adaptive grids at the last time
step.

All solutions are obtained at increments of 0.025 from t = 0 to 0.2. The outer boundary
condition is imposed on r = 0.95 given by T = −1.

Figure 8 shows the solutions using adaptive moving grids with initial condition (a).
The mode of symmetry in the Gibbs-Thomson relation is 4. Comparing the solutions,
the resolution of the solutions using 100-by-100 adaptive grids is similar to that of
200-by-200 uniform adaptive grids. The numerical dissipation is reduced by having
grid points concentrated around the zero level set of φ, comparing with Figure 9.

Solutions with the initial configuration (b) are plotted in Figures 10-11. Similar to
case (a), we get similar resolution of solutions using only around one-forth of total grid
points in the adaptive method than that from the uniform rectangular grids.

Figure 12-13 show the solutions with the initial shape given by (c). The surface
tension coefficient and the kinetic coefficient are half of the cases (a) and (b). The
growth is now becoming more sensitive to the initial profile and the resulting shape of
the crystal will be more complex. The mode of symmetry of the crystal is increased to
6. Again, we obtain similar shape of the crystal using only one-forth of grid points in
the adaptive method than that from the uniform grids.
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Figure 9: (Example 3a) 100-by-100 and 200-by-200 uniform rectangular grids, As = Ak =
0.5, σ = µ = 0.0005 and ms = mk = 4.
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Figure 10: (Example 3b) 50-by-50, 100-by-100 and 150-by-150 adaptive grids, As = Ak = 0.5,
σ = µ = 0.0005 and ms = mk = 4. Second row shows the adaptive grids at the last time
step.
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Figure 11: (Example 3b) 100-by-100 and 200-by-200 uniform rectangular grids, As = Ak =
0.5, σ = µ = 0.0005 and ms = mk = 4.
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Figure 12: (Example 3c) 50-by-50, 100-by-100 and 150-by-150 adaptive grids, As = Ak = 0.5,
σ = µ = 0.00025 and ms = mk = 6. Second row shows the adaptive grids at the last time
step.
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Figure 13: (Example 3c) 100-by-100, 150-by-150 and 200-by-200 uniform rectangular grids,
As = Ak = 0.5, σ = µ = 0.00025 and ms = mk = 6.

4.4 Example 4

The last example demonstrates the situation where there are more than one initial seed.
Two four-folded seeds, with shapes same as in (37), are dropped into the super-cooled
bath with centers at

(a) (±0.10,±0.10),

(b) (±0.05,±0.05).

The Gibbs-Thomson relation on the interfaces are given by T = −0.0005κ. Tempera-
ture on the outer boundary r = 0.95 is defined as −1.0. Solutions at t = 0 to 0.1 using
150-by-150 grid points are shown in Figure 14-15.

5 Conclusion

An adaptive Level Set Method has been implemented to solve the quasi-steady Stefan
problem. Numerical examples show that this adaptive algorithm can give high resolu-
tion solution using few number of computational grids. Comparing with the solutions
using uniform rectangular grids, approximately only one-forth of grid points are needed
in this adaptive method to give similar resolutions of the solutions. This results in an
efficient numerical method to deal with problems containing a complex interface.

Of course, the adaptive approach presented in this paper can also be applied to
other applications of Level Set Method.
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Figure 14: (Example 4a) Two four-fold initial seeds are put at (±0.10,±0.10). Interfaces at
t = 0 to 0.1 at increment of 0.0125 are shown on the left hand side. The grid points at the
last time step on the right hand side.
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Figure 15: (Example 4b) Two four-fold initial seeds are put at (±0.05,±0.05). Interfaces at
t = 0 to 0.1 at increment of 0.0125 are shown on the left hand side. The grid points at the
last time step are plotted on the right hand side.
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