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Abstract

We propose an explicit finite difference scheme to solve nonlinear time-dependent
equations. While applying to linear equations, this scheme is proven to be second or-
der accurate in time and unconditionally stable for arbitrary time step size. Unlike the
Crank-Nicloson scheme or other implicit schemes, however, this scheme can easily be im-
plemented for a wide range of equations. We will give numerical examples to demonstrate
the simplicity and the computational efficiency of the method.

1 Introduction

Time-dependent evolution equations are important in modeling many physical phenom-
ena. When there is an evolution of some physical property, denoted by T (t,x), one can
model the change in this quantity by the following evolution equation,

∂T (t,x)
∂t

= L[T (t,x)] , (1)

with some differential operator L. For simple cases when this operator is linear, the
resulting time-dependent evolution equations can be solved relatively easily. Over the
years, there have been a large number of schemes proposed [16].

On the other hand, for nonlinear operator L, it is still not clear how to solve the
resulting nonlinear evolution equation efficiently. One possible way is to follow a similar
approach to linear cases. Using the idea of method of line, we can first discretize the
operator L and get a system of ODE,

dT

dt
= A(T )T , (2)

where A(T ) is a nonlinear operator involving T , and T = (T1, T2, . . . , TN )T with Ti =
T (xi).

Different ways to treat the term A(T )T yield different numerical methods. The sim-
plest one is the explicit scheme, which discretizes the equation in this way

Tn+1 = [I + ∆tA(Tn)]Tn , (3)

where I is the identity operator. As is well-known, such an explicit scheme makes for ease
in programming with a code for an explicit scheme usually containing only a few lines
even for high dimension problems. However, there is a trade-off in computational time
coming from the stability requirement. Inherited from the explicit scheme for solving the
equations with linear L, this explicit scheme for nonlinear equation also has a stability
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condition on the time step size one can use. In many cases, this condition could be
relatively restrictive and this could make the method impractical.

One way to relax this stability restriction is to use the method of regularization,
sometimes called the method of precondition. In [15], the author has proposed stabilizing
the evolution equation by adding and subtracting a Laplacian operator. For example, it
is possible to introduce a new operator by rewriting the evolution equation as

∂T (t,x)
∂t

= β∆T + L̃(T ) , (4)

with L̃ = L − β∆. This modified equation could then be solved by

Tn+1
i − Tn

i

∆t
=

β

2
(∆Tn+1 + ∆Tn) + L̃(Tn) . (5)

One advantage of doing these manipulations is that the resulting numerical scheme is
unconditionally stable for arbitrary time step size. This idea may also be applied to
a wide range of nonlinear evolution equations. However, the main drawback of this
approach is that it is not clear how to relate the parameter β and the nonlinear operator
L.

Other than regularization, the time step restriction may also be relaxed by using
implicit, or semi-implicit, schemes. The most-used representatives from this class are
motivated by applying the backward Euler scheme or the Trapezoidal rule in time. The
schemes are given by

Tn+1 = [I −∆t A(Tn)]−1Tn , (6)

and (Crank-Nicloson)

Tn+1 =
[
I − ∆t

2
A(Tn)

]−1 [
I +

∆t

2
A(Tn)

]
Tn . (7)

Even though these numerical schemes are unconditionally stable, in many cases, espe-
cially in high dimensional problems, it is not trivial how to invert the operator (I − λA)
computationally efficiently.

There are two general approaches to invert the operator (I−λA). The first group uses
Multiplicative Operator Splitting (MOS) methods. A common feature of these methods
is splitting the complicated operator into a product of some simple operators, so that
each of these operators can easily be inverted. Mathematically, we approximate equation
(2) by

Tn+1 =
K∏

k=1

[I −∆tAk(Tn)]−1Tn . (8)

The second group of methods is called Additive Operator Splitting (AOS) methods
[17, 2, 10]. The idea is to split the operator (I − ∆tA) into a summation, rather than
multiplication as in MOS, of some simple operators. Mathematically, we have

Tn+1 =
1
m

K∑

k=1

[I −∆tAk(Tn)]−1
Tn . (9)

There are a few advantages of using AOS schemes over MOS schemes. Perhaps the most
important one is that we can easily apply parallel computing. Computationally, each
simple operator can first be inverted by a different processor separately. Then Tn+1

can be computed by summing over all these solutions. This makes the inversion highly
efficient.

However, both of these types of operator splitting schemes require a clever choice of
splitting

A(Tn) =
K∑

k=1

Ak(Tn) . (10)
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The method for splitting might be equation-specific or might not be easy to generalize in
high dimensions.

In this paper, we propose applying a simple operator splitting method based on the
so-called Alternative Direction Explicit (ADE) scheme [7, 1]. Similar to the AOS schemes,
this proposed numerical scheme can be easily parallelized. More importantly, this ADE
scheme can not only be implemented in a way similar to an explicit method, but is also
unconditionally stable similar to an implicit method.

The paper is organized as follows. In Section 2, we first revisit the Alternative Di-
rection Explicit (ADE) scheme proposed in [7, 1], which was developed to solve the heat
equation. Then we will generalize the scheme in Section 3 to solve other evolution equa-
tions by deriving an explicit expression to split the operator A. In the same section, we
will also show the accuracy and the stability of applying the ADE scheme to a wider
range of L. In Section 4, we use some numerical examples to demonstrate the simplicity
of applying the ADE scheme to higher order and nonlinear equations in both one- and
two-dimensional spaces. Finally in Section 5, we give numerical examples to show the
improvement in the time step size.

2 The ADE Scheme for the Heat Equation

In this section, we review the previous analysis in [7, 1] applying the ADE scheme to solve
the heat equation. For simplicity, we only deal with the one-dimensional case. Similar
analysis can be applied to higher dimensional equations.

The following ADE scheme was first used to solve the heat equation

∂T

∂t
=

∂2T

∂x2
(11)

with the boundary conditions T (x0) = T0 and T (xN+1) = TN+1.
Given the solution Tn at t = tn, we use the following algorithm to determine Tn+1,

defined at tn+1, on grid point x = xi with i = 1, 2, . . . , N ,

1. Set un
i = Tn

i and vn
i = Tn

i for i = 1, 2, . . . , N ;

2. For i = 1, 2, . . . , N , solve

un+1
i − un

i

∆t
=

un+1
i−1 − un+1

i − un
i + un

i+1

∆x2
; (12)

3. For i = N, N − 1, . . . , 1, solve

vn+1
i − vn

i

∆t
=

vn
i−1 − vn

i − vn+1
i + vn+1

i+1

∆x2
; (13)

4. Compute

Tn+1
i =

un+1
i + vn+1

2
. (14)

Notice that according to the index-sweeping-like procedures in Step 2 and Step 3, both
un+1

i and vn+1
i can be computed explicitly. When we calculate un+1

i in Step 2, because
the index is in the ascending order, we have already known the value un+1

i−1 on the right
hand side of (12). Similarly, when we calculate vn+1

i in Step 3, because the index is now
in the descending order, we have already known the value vn+1

i+1 on the right hand side of
(13). As a result, the whole method is fully explicit.

Other than its explicitness, another interesting property of the ADE scheme concerns
the accuracy. In truncational analysis, although the accuracies in computing u and v
in Step 2 and Step 3 are both O[∆t2,∆x2, (∆t/∆x)2], the averaging step in Step 4 will
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cancel out all the terms in the form of (∆t/∆x)r. Therefore, the overall scheme will have
the following leading order terms from the truncational analysis

−∆t2

12
Tttt − ∆x2

12
Txxxx . (15)

Perhaps the most important property is that the Von Neumann stability analysis shows
that this numerical scheme is unconditionally stable for all ∆t > 0.

3 Operator Form

In this section, we will generalize the above technique to a wider class of linear equations
in higher dimensions. Given a linear time-dependent equation,

∂T

∂t
= L(T ) , (16)

we first discretize the right hand side of the equation, which implies

∂T

∂t
= AT + b . (17)

Now, we decompose the matrix A into L+D+U , where D is the diagonal part of A, and
L and U are the strictly lower and the strictly upper triangular part of A, respectively.
Further, defining B and C by

B = L +
1
2
D and C = U +

1
2
D , (18)

we can express the ADE scheme as

Tn+1 =
1
2

[
(I −∆tB)−1(I + ∆tC) + (I −∆tC)−1(I + ∆tB)

]
Tn +

1
2

[
(I −∆tB)−1 + (I −∆tC)−1

]
b . (19)

The matrices (I±∆tB) and (I±∆tC) are all either lower triangular or upper triangular.
Thus their corresponding inverses can be found easily by using simple forward or backward
substitution. In the algorithm mentioned in Section 2, these two substitutions are simply
done by switching the indexing direction. Therefore, the computational complexity for
each time step would be the same as the standard explicit scheme, i.e. O(N) where N is
the number of grid points in the space direction.

For the rest of this section, we will use these matrix notations to analyze the accuracy
and the stability of the ADE scheme.
Theorem 3.1. If the diagonal elements of A are all non-positive, the ADE scheme (19)
is second order accurate in time.
Proof. For simplicity, we take b = 0. Because the diagonal elements of A are all non-
positive, the matrices (I −∆tB) and (I −∆tC) in (19) are both nonsingular. Therefore,
we can expand these inverses and get

Tn+1 =
1
2

{[
I +

∞∑
m=1

∆tm(Bm + Bm−1C)

]
+

[
I +

∞∑
m=1

∆tm(Cm + Cm−1B)

]}
Tn

=
{

I + ∆tA +
∆t2

2
A2 +

1
2
∆t3 (B3 + B2C + C2B + C3) + O(∆t4)

}
Tn . (20)

We complete the proof by comparing this expression with the exact solution of (17), given
by

Tn+1 = exp(∆tA)Tn

=
∞∑

m=0

1
m!

(∆tA)mTn . (21)
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¤
Here we give two proofs of the stability property of the ADE scheme.

Theorem 3.2. If A is symmetric negative definite, the ADE scheme (19) is uncondi-
tionally stable.
Proof. For simplicity, we will prove only the stability of the operator (I −∆tB)−1(I +
∆t C). The stability of (I−∆t C)−1(I+∆tB) can be proven similarly. And, the averaging
of these two operators will still be stable.

Defining B̃ = I −∆tB and C̃ = I + ∆t C, we have

B̃T + B̃ = 2I −∆t (B + BT ) = 2I −∆tA . (22)

Because −A is positive definite, we can define ‖.‖−A as the norm induced by the
matrix −A. The induced norm of B̃−1C̃ is then given by

‖B̃−1C̃‖2−A = sup
x6=0

(B̃−1C̃x,−AB̃−1C̃x)
(x,−Ax)

= sup
x 6=0

(x,−C̃T B̃−T AB̃−1C̃x)
(x,−Ax)

. (23)

Replacing C by (A−B), the matrix C̃T B̃−T AB̃−1C̃ can be rewritten as

C̃T B̃−T AB̃−1C̃ = (I −∆t B + ∆tA)T B̃−T AB̃−1(I −∆tB + ∆t A)
= A + ∆tA(I −∆t B)−1A + ∆t A(I −∆tB)−T A

+∆t2A(I −∆tB)−T A(I −∆tB)−1A

= A + ∆tAB̃−T (∆t A + B̃T + B̃)B̃−1A

= A + 2∆t (B̃−1A)T (B̃−1A) . (24)

This implies

‖B̃−1C̃‖2−A = 1− 2∆t sup
x6=0

‖B̃−1Ax‖22
‖x‖2−A

< 1 , (25)

for all ∆t > 0. Thus, we have

ρ(B̃−1C̃) ≤ ‖B̃−1C̃‖ < 1 (26)

for all ∆t > 0. ¤
Theorem 3.3. If A is lower-triangular with all diagonal elements negative, the ADE
scheme (19) is unconditionally stable.
Proof. Let dj < 0 be the diagonal elements of the matrix A. The spectral radius of
B̃−1C̃ is then given by

ρ(B̃−1C̃) = max
j

∣∣∣∣
1 + ∆t dj/2
1−∆t dj/2

∣∣∣∣ < 1 (27)

for all ∆t > 0. And, this implies stability.
Using the same idea, if A is upper-triangular with all diagonal elements negative, the

ADE scheme (19) is also unconditionally stable. ¤

4 Further Applications

In this section, we generalize the ADE scheme and apply it to both higher order and
nonlinear equations. Section 4.1 deals with linear equations. A generalization to nonlinear
equations will be given in Section 4.2
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4.1 Linear Equations

4.1.1 Heat Equation with Variable Coefficients

Applying the ADE technique to the equation

∂T

∂t
= ∇ · [k(x)∇T ] (28)

where k(x) > 0 and using central differencing to approximate the gradient operators, we
have

B =
1

∆x2




k1 0 0 · · · · · ·
k3/2 k2 0 0 · · ·
0 k5/2 k3 0 · · ·
...

. . . . . . . . . . . .
0 · · · 0 k(2n−1)/2 kn




(29)

where ki = −[k(xi−1/2) + k(xi+1/2)]/2 or −k((xi−1/2 + xi−1/2)/2), and C = BT .
Therefore, A is symmetric negative definite. Using Theorem 3.2, we can easily prove

that the resulting ADE scheme is unconditionally stable for arbitrary ∆t > 0.

4.1.2 Linear Advection Equation

Another interesting example is the linear advection equation. Applying the forward
differencing in time and the central differencing in space, we obtain

un+1
i = un

i −
a∆t

2∆x
(un

i+1 − un
i−1) , (30)

which is well-known to be unconditionally unstable for all ∆t > 0. However, employing
the idea of the ADE scheme, we obtain an unconditionally stable scheme by slightly
modifying (30). Numerically, we only need to replace either un

i+1 or un
i−1 in the above

scheme by un+1 using

1. Set ũn
i = un

i and ûn
i = un

i for i = 1, 2, . . . , N ;

2. For i = 1, 2, . . . , N , solve

ũn+1
i = ũn

i −
a∆t

∆
(ũn

i+1 − ũn+1
i−1 ) ; (31)

3. For i = N, N − 1, . . . , 1, solve

ûn+1
i = ûn

i −
a∆t

∆
(ûn+1

i+1 − ûn
i−1) ; (32)

4. Compute

un+1
i =

ũn+1
i + ûn+1

2
. (33)

We can also easily generalize this type of central scheme to a higher degree of accuracy.
For example, we can have

un+1
i = un

i + ai∆t




i−1∑

j=1

αju
∗
j +

N∑

j=i+1

αju
∗
j


 , (34)

where αi+k = −αi−k and the ∗-state can be n or (n + 1), depending on the direction of
the indexing. Here we briefly analyze the resulting method. We consider only half of the
ADE scheme, in which we use un+1

j for j < i and un
j for j > i. The other half can be
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analyzed in the same way. Using the Fourier analysis, with I =
√−1, we can compute

the amplifying factor of the scheme which is given by

ξ =
1− ai∆t

∑N
j=i+1 αj exp[Ik(j − i)∆x]

1 + ai∆t
∑i−1

j=1 αj exp[Ik(j − i)∆x]
. (35)

Thus ‖ξ‖ = 1, which implies stability.
Although stable, these schemes are non-dispersive. This means that oscillations could

be generated near discontinuity. Therefore, this type of central ADE scheme is not
recommended for solving hyperbolic-type equations with discontinuity in the solution.

In addition to the central differencing used above, we can also use the upwind dif-
ferencing to discretize the space derivative. Guaranteed by Theorem 3.3, the resulting
scheme is stable, and therefore convergent, for all ∆t > 0.

4.1.3 Fourth-order Diffusion Equation

For the higher order diffusion equation

∂T

∂t
= −Txxxx , (36)

the stability condition for the standard fully explicit scheme is ∆t = O(∆x4). It is possible
to relax this condition using the fully implicit scheme or the Crank-Nicloson-type scheme.
However, for higher dimensions or problems with complicated geometry, any dimensional
splitting techniques, including the popular ADI method, may no longer be useful. The
main difficulty is that the operator in each direction cannot be solved as easily as the
Laplace operator.

Of course, one could use FFT to solve this type of equation. However, it is still
necessary to solve the system of ODE’s which governs the evolution of each mode,

dT̃k

dt
= −k4T̃k . (37)

For higher frequency modes, these equations are stiff and, therefore, require a very small
time step ∆t.

Applying the ADE scheme to this equation, we have

B =
1

∆x4




−3 0 0 · · · · · ·
4 −3 0 0 · · ·
−1 4 −3 0 · · ·
...

. . . . . . . . . . . .
0 · · · −1 4 −3




(38)

and C = BT . More importantly, guaranteed by Theorem 3.2, this resulting numerical
scheme is unconditionally stable for any ∆t > 0.

4.2 Nonlinear Equations

In this section, we will mainly emphasize the following two classes of nonlinear equations.
These classes have wide applications in many fields of applied mathematics. Solving them
efficiently is then especially important.

The first type is the Hamilton-Jacobi equations. These equations are hyperbolic and,
in general, the stability condition for any explicit scheme is only O(∆x). Compared with
those elliptic equations as in previous sections, this condition is relatively less restrictive
and therefore the improvement in using ADE is not obvious. The second class is more
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important. They are nonlinear diffusion equations which for example govern motions of
thin film flows or remove noise in image processing.

A general way to deal with these nonlinear equations is to express them as

∂T

∂t
= A(T )T + b(T ) , (39)

where A(T ) is now a nonlinear operator involving T . This operator and the source term
b(T ) will then be linearized by using T = Tn. For example, a simple implicit scheme can
be given by

Tn+1 − Tn

∆t
= A(Tn)Tn+1 + b(Tn) . (40)

Here, we follow a similar approach.

4.2.1 H-J Equations

These equations are widely used in Level Set Methods [11] or image segmentation. For
example

1. Level Set Equation
φt + vn|∇φ| = 0 . (41)

2. Reinitialization equation

φt + S(φ0)(|∇φ| − 1) = 0 . (42)

To solve these equations using the ADE scheme, we first rewrite them as

∂φ

∂t
+ H(∇φ) = 0 , (43)

with a corresponding Hamiltonian. Traditionally, the time-derivative can be approxi-
mated using a high order TVD Runge-Kutta method [13], while the Hamiltonian can
be discretized using the Osher-Sethian scheme [11], the Lax-Friedrichs scheme (LF) [4],
the Local Lax-Friedrichs (LLF) scheme [14], the Roe-Fixed scheme [14], or the Godunov
scheme [3]. Among them all, LF, or LLF, is the easiest to implement. For a general
Hamiltonian, we have the numerical Hamiltonian

Ĥ(∇φ) = H

(
φ+

x + φ−x
2

)
− α

(
φ+

x − φ−x
2

)
, (44)

where φ±x are the forward and the backward difference approximations of the derivative
which can be obtained using a high order ENO [13, 14] or WENO [6] reconstruction, and
α is the dissipation coefficient given by

α = max
∣∣∣∣
∂H(p)

∂p

∣∣∣∣ . (45)

For simplicity, we first consider the case where φ±x are obtained using the first order
forward and backward difference, respectively. Therefore, we have the following approxi-
mation for the H-J equation,

∂φi

∂t
+ H

(
φi+1 − φi−1

2∆x

)
− α

(
φi+1 − 2φi + φi−1

2∆x

)
= 0 . (46)

Now, we apply the idea of the ADE scheme. To make the operator (I−∆tB)−1 simple to
calculate, all values of φ inside the nonlinear Hamiltonian will be taken on t = tn. This
gives
(

1 +
α∆t

2∆x

)
φn+1

i =
(

1− α∆t

2∆x

)
φn

i +
α∆t

2∆x
(φ∗i+1 + φ∗i−1)−∆tH

(
φn

i+1 − φn
i−1

2∆x

)
, (47)
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where φ∗ can either be φn+1 or φn depending on the direction of the indexing. This
resulting scheme is unconditionally stable for all ∆t > 0, proven by Theorem 3.2, and
second order accurate in time and first order accurate in space.

In evaluating the Hamiltonian, we can actually implement a high order ENO or WENO
scheme for the derivative, i.e.
(

1 +
α∆t

2∆x

)
φn+1

i =
(

1− α∆t

2∆x

)
φn

i +
α∆t

2∆x
(φ∗i+1+φ∗i−1)−∆tH

(
(φn

i )+x + (φn
i )−x

2

)
. (48)

However, because of the ∆x order diffusion term, the overall accuracy in space will not
be significantly improved.

Notice that this technique can also be applied to the linear advection equation by
treating H(∇φ) = u · ∇φ.

4.2.2 Nonlinear Diffusion Equations

Another class of nonlinear equations is the nonlinear diffusion equations. They can be
found in image processing or thin film flow modeling. We list only a few of them here.

1. The modified lubrication equation

∂h

∂t
+ hα ∂4h

∂x4
= 0 (49)

for some α ∈ R. One possible numerical scheme is to follow the one in Section 4.1.3
where the diffusion coefficient can be approximated by (hn)α.
One variation of the above equation is the lubrication equation, given by

∂h

∂t
+

∂

∂x

(
hα ∂3h

∂x3

)
= 0 . (50)

More details in solving this equation will be given later in Section 5.3.
2. The equation for Total Variation (TV) denoising [12] is given by

∂u

∂t
= ∇ · [g(|∇u|)∇u]− λ(u− u0) , (51)

with g(|∇u|) = 1/|∇u|. This equation can be solved easily using a scheme similar
to the one in Section 4.1.1. More details in solving this equation will be given later
in Section 5.4.

3. Texture/Cartoon decomposition in image processing [8]

∂u

∂t
= − 1

2λ
∆

[
∇ ·

( ∇u

|∇u|
)]

− (u− u0) . (52)

To discretize the equation, we use a similar approach as in the TV-denoising equa-
tion. Again, we can treat g(|∇u|) = 1/|∇u|, while the term in the square bracket
[·] can be approximated by

αx−
i,j ui−1,j + αx+

i,j ui+1,j + αy−
i,j ui,j−1 + αy+

i,j ui,j+2 + α0
i,jui,j . (53)

Next, we can apply a standard central differencing for the Laplacian, giving an
expression based on the following 13 values ui,j , ui±1,j , ui±2,j , ui,j±1, ui,j±2 and
ui±1,j±1. It is then straight forward to apply the ADE techniques.

5 Test Cases

The computations below are done in a cluster system with each node having a 3.0 GHz
hyperthreading Pentium IV processor and 2GB of memory.
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5.1 The Fourth-order Heat Equation

We solve
Tt = −Txxxx , (54)

with the initial condition T = 1 when x > 0.5 and T = 0 otherwise. The boundary
conditions are T (x = 1) = 1, T (x = 0) = 0 and Tx = 0 at both end points. Using
different numerical schemes, we compute the solution at t = 6.25× 10−8.

Figure 1 shows the solutions obtained using the standard fully explicit scheme with
∆t = 0.1∆x4 and using the ADE scheme with ∆t = ∆x4, 2∆x4 and 10∆x4 respectively.
Notice that using the standard explicit scheme, the stability condition is given by ∆t <
0.125∆x4.

0.52 0.54 0.56 0.58 0.6 0.62 0.64

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

1.06 FTCP 0.1
ADE 1
ADE 2
ADE 10

0.4 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6
−0.2

0

0.2

0.4

0.6

0.8

1

FTCP 0.1
ADE 1
ADE 2
ADE 10

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
FTCS 0.1
ADE 0.1

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−4 |FTCS−ADE|

Figure 1: (Example 5.1) First row shows solutions using the standard explicit scheme with
∆t = 0.1∆x4 and the proposed ADE scheme with much larger step sizes. First figure on the
second row shows a comparison of two schemes using the same ∆t = 0.1∆x4.

We also performed a convergence test for the same equation. The initial condition we
chose is

T (x, t = 0) = cos(2πx) in x ∈ [0, 1]. (55)

The exact solution can easily be computed,

Texact(x, t) = exp(−16π4t) cos(2πx) . (56)
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N \∆t 0.5/4004 1.0/4004 2.0/4004 4.0/4004

21 0.00214777236180 0.00214777236586 0.00214777237287 0.00214777239804
41 0.00052974323039 0.00052974332658 0.00052974371361 0.00052974526166
81 0.00013114337822 0.00013114944076 0.00013117370438 0.00013127075711
161 0.00003273907817 0.00003312413074 0.00003466433462 0.00004082485682

Table 1: (Example 5.1) L2 Errors.

N \∆t 0.5/4004 1.0/4004 2.0/4004 4.0/4004

21 - 1.66381009134637 1.71177376531252 -
41 - 2.00071013686408 1.99944714308720 -
81 - 2.00072867857121 1.99997111723545 -
161 - 1.99999479735959 1.99993994756767 -

Table 2: (Example 5.1) Order of convergence in the t-direction, (r1)k,l.

Table 1 shows the L2 errors defined by

Ek,l =
√∑

i

(Ti − Texact(xi, tfinal))
2∆xl (57)

at tfinal = 1/1002 using different step sizes ∆tk. To compute the accuracy of the method,
we assume the leading order of the error can be expressed in the form

Ek,l = ω1∆tr1
k + ω2∆xr2

l . (58)

Using the data from Table 1, we define

(r1)k,l =
1

log 2
log

(
Ek,l − Ek−1,l

Ek+1,l − Ek,l

)
and (r2)k,l =

1
log 2

log
(

Ek,l − Ek,l−1

Ek,l+1 − Ek,l

)
. (59)

Their numerical values are given in Table 2 and 3. It is clear that the numerical scheme
is second order accurate in both the t- and x-directions.

5.2 A Hamilton-Jacobi Equation

We solve
φt + H(φx) = 0 , (60)

N \∆t 0.5/4004 1.0/4004 2.0/4004 4.0/4004

21 - - - -
41 2.12099072959563 2.12101174641717 2.12109585752083 2.12143234224636
81 2.04909457955820 2.05460090325181 2.07684012570413 2.16941638856231
161 - - - -

Table 3: (Example 5.1) Order of convergence in the x-direction, (r2)k,l.
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with H(p) = − cos(p + 1). We discretize the x-axis by 201 grid point and solve the
equation up to tfinal = 0.15. To approximate φ±x , we use only simple forward and
backward differences.

On the left hand side of Figure 2, we show the solutions using the ADE scheme with
∆t = 0.01∆x and 15∆x. Because 15∆x = 0.15 = tfinal, the solution ADE15 is essentially
obtained by using only one time marching step. On the right hand side of the same figure,
we compare the solutions at t = tfinal using different ∆t.
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Figure 2: (Example 5.2) Solutions using the proposed ADE scheme with ∆t = 0.01∆x2 and
15∆x2 at tfinal = 15∆x2. Comparisons of the solutions using different step sizes are shown
on the right hand side.

5.3 The Lubrication Equation

This equation was studied extensively in [18]

∂h

∂t
+

∂

∂x

(
f(h)

∂3h

∂x3

)
= 0 , (61)

where f(h) = h1/2. To regularize the equation, one can replace f(h) by

fε(h) =
h4f(h)

εf(h) + h4
, (62)

with ε = 10−11. The initial condition of this equation is given by

h(x) = 0.8− cos(πx) + 0.25 cos(2πx) . (63)

On both end points at x = 0 and x = 1, we impose reflective boundary conditions, i.e.
we have h′ = h′′ = 0. Numerically, on the left boundary, we set h−1 = h1 and h−2 = h2.
Similar boundary conditions are imposed on the other end point at x = 1. In this
numerical test, we use 501 grid points to discretize the x-direction, or ∆x4 = 1.6×10−11,
and ∆t = 10∆x4.

Using the proposed ADE approach, we have
(

1 +
βα0

2

)
hn+1

i =
(

1− βα0

2

)
hn

i −β(α+2h
∗
i+2 +α+1h

∗
i+1 +α−1h

∗
i−1 +α−2h

∗
i−2) , (64)
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where

β =
∆t

∆x4
, α0 = 3(fn

i+1/2 + fn
i−1/2) ,

α−2 = fn
i−1/2 , α−1 = −(fn

i+1/2 + 3fn
i−1/2) ,

α+1 = −(3fn
i+1/2 + fn

i−1/2) , α+2 = fn
i+1/2 . (65)
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Figure 3: (Example 5.3) Figures on the first row shows the solution of the lubrication equation
at t = k × 1.25 × 10−4 for k = 1, . . . , 8. Second rows show the solution at a later time
t = k × 10−4 for k = 1, . . . , 8.

Solutions are plotted in Figure 3. Although the exact solution for this problem is not
available, our solutions look reasonably close to those in [18].

5.4 TV denoising

Here we study in detail the method of applying TV regularization in image processing
[12] using the proposed ADE scheme. Given a noisy image u0, we solve the following
equation to remove the noise,

∂u

∂t
= ∇ · (g(ux, uy)∇u)− λ(u− u0) , (66)

where
g(ux, uy) =

1√
u2

x + u2
y + ε

. (67)
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In this numerical test, we take ∆x = ∆y = 1, ε = 10−10. The test image we used is a
512-by-512 pixels image of Elaine, as shown in Figure 4. This image is taken from the
USC-SIPI Image Database [5]. To obtain a noisy version of the original clean image, we
add 20% random uniform noise, i.e.

unew
0 = uold

0 + 0.2βχ , (68)

where β is the maximum gray level of the image, which equals 256, and χ is a uniform
random variable from [−1, 1].

Figure 4: (Example 5.4) Original noisy image of Elaine and the one with 20% more noise.

For the standard fully explicit scheme, the stability condition is given by

∆t = O(
√

u2
x + u2

y∆x2) . (69)

In practise, this condition is too restrictive in flat regions where u2
x + u2

y ' 0. To relax
this restriction, [9] has proposed multiplying the right hand side of equation (66) by a
factor of |∇u|. The paper has argued that away from the places where g(·) is singular,
the steady state solution from solving this new equation is the same as the one obtained
from the original equation. With this extra factor, the stability condition can be relaxed
to

∆t = O(∆x2) . (70)

However, in the current paper, we do not implement this idea.
Violating this stability condition, we first implement the standard explicit scheme

using ∆t = 0.1∆x2. The numerical results after 104 iterations are shown in Figure 5.
Applying the ADE approach to equation (66) directly, we have

[
1 +

α

2
(g+

x + g−x + g+
y + g−y ) +

λ∆t

2

]
un+1

i,j =
[
1− α

2
(g+

x + g−x + g+
y + g−y )− λ∆t

2

]
un

i,j + αg+
x u∗i+1,j + αg−x u∗i−1,j

+αg+
y u∗i,j+1 + αg−y u∗i,j−1 + λ∆t(u0)i,j , (71)

where α = αx = αy = ∆t/(∆x∆y),

g±x = g(D±
x un

i,j , D
0
yun

i,j) and g±y = g(D0
xun

i,j , D
±
y un

i,j) . (72)
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Figure 5: (Example 5.4) (From left to right, top to bottom) Steady state solutions using the
standard fully explicit scheme with ∆t = 0.1∆x2 and λ = 0.005, 0.010, 0.020 and 0.050.

With this discretization, we have computed the solution using ∆t = 0.1∆x2. The
solution is shown in Figure 6. It is similar to the one we obtained previously. However,
because the ADE scheme eliminates the stability restriction, we have also implemented
the cases where ∆t = 10∆x2 and 40∆x2. The numerical solutions are shown in Figures
7 to 8. From the plot of the change in the TV, we see that these steady state solutions
are obtained using as few as 50 iterations.

Because we are able to use a much larger time step without violating any stability
condition, we can obtain the steady state solution in much fewer iterations. This speedup
in the computational efficiency is clearly shown in Figure 9 and 10. From these plots,
we see that for those cases with smaller step sizes, steady state solutions are obtained
using approximately 3000 iterations. For those cases with larger step sizes, the steady
state solution is reached after only around 50 iterations. However, from Figure 11, as we
further increase the step size ∆t from 10∆x2 to 40∆x2, there is no extensive improvement
in the speed of convergence. One possible reason is that the error from the numerical
scheme has significantly grown when we increase ∆t.
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Figure 6: (Example 5.4) (From left to right, top to bottom) Steady state solutions using the
proposed ADE scheme with ∆t = 0.1∆x2 and λ = 0.005, 0.010, 0.020 and 0.050.

To compare the computational speed of using different methods, we have also calcu-
lated the total CPU time for 104 iterations using the standard explicit method and the
ADE scheme, respectively. On average, the standard explicit scheme requires 0.7851 sec-
ond/iteration, while the ADE scheme requires 0.8631 second/iteration. It seems like the
ADE scheme takes longer. However, if we look at the total computational time to reach
the steady state solution, we see that it takes approximately 45 seconds for the ADE
scheme but approximately 4000 seconds for the standard fully explicit scheme. The ADE
scheme is still overall much faster and speeds up the computations by a larger factor.

The final point we want to make is that one needs to be very cautious in using the
standard fully explicit scheme with a stability violating ∆t. Different from the situation
in Section 5.1, the numerical solution from the explicit scheme may not blow up. We have
performed tests to see how the TV of the image varies with the step size. Figure 12 shows
the solutions using some larger ∆t with λ = 0.010. The TV of the image actually decreases
for the first few iterations, goes up a little bit for the next few and finally stays relatively
flat. More importantly, the TV-norm of these steady state solutions depends on the ∆t
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Figure 7: (Example 5.4) (From left to right, top to bottom) Steady state solutions using the
proposed ADE scheme with ∆t = 10∆x2 and λ = 0.005, 0.010, 0.020 and 0.050.

we have chosen. This is a subtle issue computationally in using a conditionally stable
scheme. On one hand, if we follow the stability condition of the standard explicit scheme,
∆t has to be in the order of

√
u2

x + u2
y, which makes the computations impractical. On

the other hand, if we ignore this condition and use a relatively small (intuitionally) step
size, a wrong solution may unfortunately still stay stable. Therefore, it is not clear if the
steady state solutions we obtained above in Figure 5 using the standard explicit scheme
really correspond to the true steady state solutions of equation (66). In other words,
one cannot be sure how much the steady state solution is affected by the stability in the
numerical scheme.

6 Conclusion

We have successfully applied an unconditionally stable, while still explicit, scheme to non-
linear evolution equations. This resulting method has shown a significant improvement
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Figure 8: (Example 5.4) (From left to right, top to bottom) Steady state solutions using the
proposed ADE scheme with ∆t = 40∆x2 and λ = 0.005, 0.010, 0.020 and 0.050.

in the computational efficiency, as clearly demonstrated by different numerical examples.
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