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Abstract. We develop a simple and efficient numerical scheme to solve a class of ob-
stacle problems encountered in various applications. Mathematically, obstacle prob-
lems are usually formulated using nonlinear partial differential equations (PDE). To
construct a computationally efficient scheme, we introduce a time derivative term
and convert the PDE into a time-dependent problem. But due to its nonlinearity,
the time step is in general chosen to satisfy a very restrictive stability condition. To
relax such a time step constraint when solving a time dependent evolution equation,
we decompose the nonlinear obstacle constraint in the PDE into a linear part and a
nonlinear part and apply the semi-implicit technique. We take the linear part implic-
itly while treating the nonlinear part explicitly. Our method can be easily applied to
solve the fractional obstacle problem and min curvature flow problem. The article
will analyze the convergence of our proposed algorithm. Numerical experiments are
given to demonstrate the efficiency of our algorithm.

AMS subject classifications: 65N06, 65N12, 35J60
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1. Introduction

In this paper, we develop efficient semi-implicit schemes to a class of obstacle prob-
lems as stated as follow [2, 5–7, 9, 25]. For a given energy functional E(u), we deter-
mine u ∈ K such that E(u) = infv∈K E(v) for some K = {v ∈ H1|v ≥ ψ in Ω, v =
g on ∂Ω}. The function ψ is a given obstacle function, Ω is the computational do-
main and g is the boundary condition. This class of problems can be found in various
fields including the classical problem of elastic membrane modeling, pricing model in
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financial mathematics, porus media computations, computing the torsion of an elastic-
plastic cylinder, Stefan problems for crystal growth simulation, min curvature flow in
image processing [20], and etc. For example, in the problem of elastic membrane
constrained on obstacle, the potential energy E(u) is given by

E(u) =

∫
Ω

1

2
|∇u|2 − fudx, (1.1)

where f is external force on u. For the minimal surface obstacle problem, the potential
energy is proportional to its surface area and it leads to the energy functional

E(u) =

∫
Ω

√
1 + |∇u|2 − fudx.

One possible numerical approach to this class of problems is the projected relax-
ation method [10, 28] which first reformulates the problem using elliptic variational
inequalities [13]. This class of methods is easy to implement and is proven to be con-
vergent. However, its convergence speed depends on the relaxation parameter and
the convergent might be slow in practice. To accelerate the algorithms, the multigrid
method has been adopted as discussed in [1,13,17,30].

Another way to solve the obstacle problem is via the optimization formulation.
In [16], a Langrange multiplier is used to incorporate the constraint in the functional.
In [24], a penalty term is introduced in the functional to encourage the solution to sat-
isfy the constraint. The solution obtained by this method is not exact and the penalty
parameter needs to be very small, of O(h−2). In [27], an L1 penalty is added to the
functional to relax the constraint of the obstacle. The equivalence of their formulation
to (1.1) is proven [8, 21]. A related splitting Bregman algorithm has recently been
implemented in [12, 27]. Note that the efficiency of this method depends on the ap-
plication and also on the choice of the parameters. For linear problems, i.e., when the
operator A is linear, this method converges very fast. But for nonlinear problems, i.e.,
in cases when we do not have any fast algorithm to invert A, the overall algorithm can
be less efficient. Anther constraint approach has been developed in [29,31] which iter-
atively identifies the subdomain where the constraint is active. For the region where the
constraint is inactive, the method recomputes the solution to the corresponding Euler-
Lagrange equation of the functional. An augmented Lagrangian active set method has
been proposed in [19] which takes advantage of the primal-dual formulation of the
discretized obstacle problem. In [33], a primal-dual hybrid gradient method is also
developed to solve the obstacle problem. Since the starting point of most of these
optimization methods is an energy form, they might not be able to easily extend to
fractional obstacle problems. Moreover, those methods are designed to solve an opti-
mization problem, they cannot be applied to flow problems where intermediate steps
contain the time evolution of the solution such as the min curvature flow problem.

In this work, we determine the minimizer of the variational problem by solving the
corresponding Euler-Lagrange equation. In particular, we solve

min(Au− f, u− ψ) = 0 on Ω (1.2)
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for some operator A depending on the energy to be minimized, f is some source term
and the function ψ defines the obstacle. For example, we have Au = −∆u for the
elastic membrane problem and

Au = −∇ ·

(
∇u√

1 + |∇u|2

)
(1.3)

for the minimal surface problem. Another interesting example is the fractional obstacle
problem whenA = −∆α/2u, 0 < α < 2. The solution to this fractional obstacle problem
is the minimizer of

E(u) =

∫
R

∫
R

|u(x)− u(y)|2

|x− y|n+α
dxdy

from all u such that ψ ≤ u. This problem arises from the fractional porous media
equation [3, 4]. The approach seems natural and straightforward in the first place.
However, even if the operator A is linear as in the elastic membrane problem, the
resulting equation is in fact a nonlinear one and it is in general difficult to directly
obtain a good numerical solution. One simple numerical strategy is to introduce an
artificial time and solve the resulting gradient descent equation until the steady state.
The resulting equation is a time dependent partial differential equation (PDE) and,
in practice, one might need to impose a strict CFL condition to obtain a stable time
evolution solution. It is therefore important to design a numerically efficient algorithm
to relax such stability condition.

In this paper, we propose a simple semi-implicit scheme which can handle general
obstacle problems in the form of (1.2) while can allow a relatively large time step.
Semi-implicit schemes are widely used to relax the strict stability condition on the size
of the time-marching step in solving time-dependent PDE’s. One simple example is the
computations of the curvature motion using the level set method governed by

φt = |∇φ|∇ ·
(
∇φ
|∇φ|

)
= |∇φ|κ, (1.4)

where κ = ∇ · (∇φ/|∇φ|) is the mean curvature [23]. This nonlinear equation can of
course be easily solved by the simple explicit scheme

φk+1 − φk

∆t
= |∇φk|∇ ·

(
∇φk

|∇φk|

)
.

However, because the curvature term involves the second derivative of the level set
function, the time step constraint for this explicit scheme is of order ∆t = O(∆x2).
This results in a computationally inefficient numerical method. To relax this time step
restriction, [26] has proposed a semi-implicit scheme by first adding-and-subtracting
the Laplacian of the level set function to the evolution equation, i.e.,

φt = ∆φ− (∆φ− |∇φ|κ) = ∆φ− n · ∇(|∇φ|).
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Then, following the idea of typical semi-implicit methods, the paper proposes to treat
the linear part of of this equation implicitly and the nonlinear part explicitly, and fi-
nally obtains φk+1 = (I −∆t∆)−1[φk −∆tN (φk)] with ∆t� O(∆x2). The phase-field
community has also applied a similar semi-implicit idea to stabilize the evolution of
the Cahn-Hilliard equation. For example, [15] has proposed to first add-and-subtract
a term O(∆φ) to the PDE and then treats one of them implicitly while the other one
explicitly. Stability and convergence of the approach have also been discussed. As
demonstrated in some other examples, the term added-and-substracted from the equa-
tion does not necessarily to be a linear one. In [32], we have proposed a different
semi-implicit method to approximate the solution of (1.4). Instead of extracting a lin-
ear elliptic term, we have proposed to extract a curvature term from the evolution
equation, i.e., we consider

φt = β∇ ·
(
∇φ
|∇φ|

)
− β∇ ·

(
∇φ
|∇φ|

)
+ |∇φ|∇ ·

(
∇φ
|∇φ|

)
, (1.5)

for some constant β > 0. Numerically, we can treat the first curvature term implicitly
and the rest explicitly. At each step, this corresponding update formula can be reformu-
lated as a convex optimization problem and can be solved efficiently using any recently
developed fast algorithms such as [11,12,14,22].

This paper proposes a simple strategy to extract a simple linear approximation of the
nonlinear obstacle constraint in the PDE. Such simple linear part will be treated implic-
itly while the nonlinear part will be taken care of explicitly. The proposed semi-implicit
schemes will be given in Section 2.1. In Section 2.2 we will discuss the convergence
of the numerical algorithms. Various numerical examples will be given in Section 3 to
demonstrate the efficiency of the proposed algorithms.

2. The semi-implicit method

2.1. The proposed schemes

In this work, we consider the Euler-Lagrange formulation of the obstacle problem
by solving the nonlinear equation (1.2). We consider the steady state of the following
time dependent PDE:

ut + min(u− ψ,Au− f) = 0. (2.1)

The simplest way to update the evolution equation is to use the explicit Euler method
given by

uk+1 = uk −∆tmin(uk − ψ,Auk − f)

for some time step ∆t > 0. Such constant should depends on the operator A. For
the elastic membrane and minimal surface problems, the corresponding stability con-
straints due to this CFL condition are both given byO(h2) with h representing the mesh
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size. To improve the efficiency by a semi-implicit scheme, we rewrite the equation using
the identity

min(a, b) =
a+ b

2
− |a− b|

2

and obtain

ut +
(u− ψ) + (Au− f)

2
− |(u− ψ)− (Au− f)|

2
= 0. (2.2)

When A is a linear operator, we can easily apply the semi-implicit idea and obtain the
following update formula

uk+1 =

[(
1 +

2

∆t

)
I +A

]−1 [ 2

∆t
uk +

∣∣∣(I −A)uk − ψ + f
∣∣∣+ ψ + f

]
. (2.3)

In the case when A is nonlinear, we linearlize it using A(uk+1) = Buku
k+1 and it leads

to

uk+1 =

[(
1 +

2

∆t

)
I +Buk

]−1 [ 2

∆t
uk +

∣∣∣(I −Buk)uk − ψ + f
∣∣∣+ ψ + f

]
. (2.4)

For most time dependent PDE’s, the efficiency and convergence rate depend on the
choice of time step. One always prefer a stable scheme under a relatively large time
step. In the extreme case when ∆t → +∞, these ∆t-depending updating formulas
reduce to

uk+1 = (I +A)−1
[∣∣∣(I −A)uk − ψ + f

∣∣∣+ ψ + f
]

(2.5)

and
uk+1 = (I +Buk)−1

[∣∣∣(I −Buk)uk − ψ + f
∣∣∣+ ψ + f

]
(2.6)

for the linear and nonlinear operator A, respectively.

2.2. Convergence analysis

In this section, we give a simple convergence analysis of our proposed schemes. For
simplicity, we consider the discretized versions of the above numerical methods applied
to the one dimensional case. Instead of introducing a new notation, we keep A as the
matrix representing the discretization of the differential operator A.

Theorem 2.1. Let {λi : i = 1, · · · , n} be the set of eigenvalues of the matrix A. We have∥∥∥uk+1 − uk
∥∥∥ ≤ C ∥∥∥uk − uk−1

∥∥∥
with the positive constant C given by

1 + ∆t
2 maxi |1− λi|

mini{
∣∣1 + ∆t

2 (1 + λi)
∣∣} and

maxi |1− λi|
mini |1 + λi|
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for schemes (2.3) and (2.5), respectively. Scheme (2.3) converges if

1 +
∆t

2
max
i
|1− λi| < min

i

{∣∣∣∣1 +
∆t

2
(1 + λi)

∣∣∣∣} .
Scheme (2.5) converges if maxi |1− λi| < mini |1 + λi|.

Proof. Denote

M∆t =

(
1 +

2

∆t

)
I +A and N = I −A.

Then the updating formula of scheme (2.3) can be written as

uk+1 = M−1
∆t

(
2

∆t
uk +

∣∣∣Nuk + f − ψ
∣∣∣+ f + ψ

)
,

which implies

uk+1 − uk = M−1
∆t

[
2

∆t

(
uk − uk−1

)
+
∣∣∣Nuk + f − ψ

∣∣∣− ∣∣∣Nuk−1 + f − ψ
∣∣∣] ,

and therefore∥∥∥uk+1 − uk
∥∥∥ ≤∥∥M−1

∆t

∥∥∥∥∥∥ 2

∆t

(
uk − uk−1

)
+
∣∣∣Nuk + f − ψ

∣∣∣− ∣∣∣Nuk−1 + f − ψ
∣∣∣∥∥∥∥

≤ 2

∆t

∥∥M−1
∆t

∥∥∥∥∥uk − uk−1
∥∥∥+

∥∥M−1
∆t

∥∥∥∥∥∣∣∣Nuk + f − ψ
∣∣∣− ∣∣∣Nuk−1 + f − ψ

∣∣∣∥∥∥ .
Since ∣∣∣∣∣∣Nuk + f − ψ

∣∣∣− ∣∣∣Nuk−1 + f − ψ
∣∣∣∣∣∣ ≤ ∣∣∣N (uk − uk−1

)∣∣∣ ,
we have ∥∥∥∣∣∣Nuk + f − ψ

∣∣∣− ∣∣∣Nuk−1 + f − ψ
∣∣∣∥∥∥

≤
∥∥∥∣∣∣N (uk − uk−1

)∣∣∣∥∥∥ =
∥∥∥N (uk − uk−1

)∥∥∥ ≤ ‖N‖ ∥∥∥uk − uk−1
∥∥∥ .

This leads to ∥∥∥uk+1 − uk
∥∥∥ ≤ ∥∥M−1

∆t

∥∥( 2

∆t
+ ‖N‖

)∥∥∥uk − uk−1
∥∥∥ . (2.7)

Since the eigenvalues of M∆t are given by
(
1 + 2

∆t + λi
)

for i = 1, · · · , n, we have

∥∥M−1
∆t

∥∥ ≤ 1

mini
{∣∣ 2

∆t + 1 + λi
∣∣} .
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Similarly, since N = I − A, we have ‖N‖ ≤ maxi {|1− λi|}. Substituting the relations
of
∥∥M−1

∆t

∥∥ and ‖N‖ into Eq. (2.7), we get

∥∥∥uk+1 − uk
∥∥∥ ≤( 1

mini
{∣∣1 + ∆t

2 (1 + λi)
∣∣}
)(

1 +
∆t

2
max
i
{|1− λi|}

)∥∥∥uk − uk−1
∥∥∥

=
1 + ∆t

2 maxi {|1− λi|}
mini

{∣∣1 + ∆t
2 (1 + λi)

∣∣} ∥∥∥uk − uk−1
∥∥∥ = C1

∥∥∥uk − uk−1
∥∥∥

with

C1 =
1 + ∆t

2 maxi {|1− λi|}
mini

{∣∣1 + ∆t
2 (1 + λi)

∣∣} .
If

1 +
∆t

2
max
i
|1− λi| < min

i

{∣∣∣∣1 +
∆t

2
(1 + λi)

∣∣∣∣} ,
it holds

C1 =
1 + ∆t

2 maxi {|1− λi|}
mini

{∣∣1 + ∆t
2 (1 + λi)

∣∣} < 1.

The scheme converges.
The proof for scheme (2.5) is similar. Denote I+A, I−A by M and N respectively.

The updating formula (2.5) can be written as

uk+1 = M−1
(∣∣∣Nuk − ψ + f

∣∣∣+ ψ + f
)
.

We have
uk+1 − uk = M−1

(∣∣∣Nuk − ψ + f
∣∣∣− ∣∣∣Nuk−1 − ψ + f

∣∣∣)
and ∥∥∥uk+1 − uk

∥∥∥ ≤ ∥∥M−1
∥∥∥∥∥∣∣∣Nuk − ψ + f

∣∣∣− ∣∣∣Nuk−1 − ψ + f
∣∣∣∥∥∥ . (2.8)

Focusing on the second factor in Eq. (2.8), we have∣∣∣∣∣∣Nuk − ψ + f
∣∣∣− ∣∣∣Nuk−1 − ψ + f

∣∣∣∣∣∣ ≤ ∣∣∣N (uk − uk−1
)∣∣∣ ,

and therefore∥∥∥∣∣∣Nuk − ψ + f
∣∣∣− ∣∣∣Nuk−1 − ψ + f

∣∣∣∥∥∥ ≤ ∥∥∥∣∣∣N (uk − uk−1
)∣∣∣∥∥∥ =

∥∥∥N (uk − uk−1
)∥∥∥ .

Substituting this to (2.8), we obtain∥∥∥uk+1 − uk
∥∥∥ ≤ ∥∥M−1

∥∥∥∥∥N (uk − uk−1
)∥∥∥ ≤ ∥∥M−1

∥∥ ‖N‖∥∥∥uk − uk−1
∥∥∥ .
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Since M = I +A and N = I −A, we have

∥∥M−1
∥∥ ≤ (min

j
{|1 + λj |}

)−1

and ‖N‖ ≤ max
i
{|1− λi|} .

Denote maxi{|1−λi|}
minj{|1+λj |} by C2, we have∥∥∥uk+1 − uk

∥∥∥ ≤ C2

∥∥∥uk − uk−1
∥∥∥ .

If maxi {|1− λi|} < minj {|1 + λj |}, we have C2 = maxi {|1− λi|}/minj {|1 + λj |} < 1
and therefore the scheme (2.5) converges. �

For scheme (2.5), the convergence condition fully depends on the eigenvalues of
matrix A. Denote the smallest and largest eigenvalues as λmin, λmax, respectively. For
a special case that λmin > 0 and λmax − λmin < 2, the condition is satisfied. For scheme
(2.3), the condition and convergence rate depend on both the eigenvalues and time
step. If λmin > 0 and λmax − λmin < 2,

min
i

{∣∣∣∣1 +
∆t

2
(1 + λi)

∣∣∣∣} = 1 +
∆t

2
min
i
{(1 + λi)} .

Then
1 + ∆t

2 maxi {(1− λi)}
mini

{∣∣1 + ∆t
2 (1 + λi)

∣∣}
is a strictly decreasing function of ∆t and is smaller than 1 for any ∆t > 0. One
can choose ∆t as large as possible to get faster convergence rate. As ∆t → +∞, the
convergence rate convergence to maxi{1 − λi}/mini{1 + λi}, the convergence rate of
scheme (2.5).

For the case when A is nonlinear and can be linearized as A(u) = Buu, the updating
formula is quite similar to the linear A case. We just replace A in both schemes (2.3)
and (2.5) by Buk to get:

uk+1 =

[
I +

∆t

2
(I +Buk)

]−1 [∆t

2

∣∣∣(I −Bn
uk

)
uk − ψ + f

∣∣∣+
∆t

2
(ψ + f)

]
, (2.9)

and

uk+1 = (I +Buk)−1
[∣∣∣(I −Buk)uk − ψ + f

∣∣∣+ ψ + f
]
. (2.10)

Their convergence are given by the following theorem.

Theorem 2.2. Let n denote the number of eigenvalues of Buk and denote all eigenvalues
by λki , i = 1, · · · , n. We have∥∥∥uk+1 − uk

∥∥∥ ≤ Ck1 ∥∥∥uk − uk−1
∥∥∥ and

∥∥∥uk+1 − uk
∥∥∥ ≤ Ck2 ∥∥∥uk − uk−1

∥∥∥
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for (2.3) and (2.5), where

Ck1 =
1 + ∆t

2 maxi
{∣∣1− λki ∣∣}

mini
{∣∣1 + ∆t

2 (1 + λki )
∣∣} and Ck2 =

maxi
{∣∣1− λki ∣∣}

minj

{∣∣∣1 + λkj

∣∣∣} ,
respectively. Scheme (2.9) converges if

1 +
∆t

2
max
i

{∣∣∣1− λki ∣∣∣} < min
i

{∣∣∣∣1 +
∆t

2
(1 + λi)

∣∣∣∣}
for all uk. Scheme (2.10) converges if

max
i

{∣∣∣1− λki ∣∣∣} < min
j

{∣∣∣1 + λkj

∣∣∣}
for all uk.

The proof of this theorem is similar to that of the previous one and is omitted here.
Note that since the condition depends on Buk and therefore uk, we are not able to
provide a more relaxed condition on the convergence of the iteration. Having said
that, the above schemes still work well for many applications as will be demonstrated
later in the example section. For cases that the conditions in the theorem are indeed
satisfied, the numerical convergence speed is in fact better than the estimates as stated
in the above theorems.

If we compare the expressions between C1 and C2 in the above two theorems,
we can see that as the time step goes to infinity, the constant C1 approaches to C2.
Similar property is observed also for the constants Ck1 and Ck2 . In other words, the
schemes (2.3) and (2.9) behave similar to (2.5) and (2.10) respectively as ∆t goes to
infinity. This behaviour in convergence speed related to time step is also observed in
our numerical experiments. In some experiments we monitor the residual error instead
of the error, similar convergence behavior is also observed.

3. Numerical experiements

In this section, we test our schemes for different applications. In all experiments,
we set the external force f = 0. In these discretized obstacle problems, the residual
matrix r is defined as ri,j = min(Aui,j − f, ui,j − ψi,j) and the residual error is defined
as

eresid =

√
h
∑
i

r2
i and eresid =

√
h2
∑
i,j

r2
i,j

for the 1D and 2D cases, respectively. For those examples whose exact solution uexact
is known, we compute the error as e = ‖u− uexact‖. L∞ norm is used if not stated oth-
erwise. For all experiments, we take our initial condition as the shape of the obstacle.
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3.1. A membrane constrained obstacle problem

For the membrane constrained obstacle problem, A is the negative Laplacian oper-
ator which is linear. The corresponding Euler-Lagrange equation can be written as:

min(−∆u− f, u− ψ) = 0.

We denote the mesh size by h and use the standard central difference to approximate
Au.

3.1.1. One dimensional cases

Here, we test two examples with the zero Dirichlet boundary condition given in [27,
31]. The first obstacle is given by

ψ1(x) =


100x2 for 0 ≤ x ≤ 0.25,

100x(1− x)− 12.5 for 0.25 ≤ x ≤ 0.5,

ψ1(1− x) for 0.5 ≤ x ≤ 1.0,

with exact solution

u1,exact(x) =


(100− 50

√
2)x for 0 ≤ x ≤ 1

2
√

2
,

100x(1− x)− 12.5 for
1

2
√

2
≤ x ≤ 0.5,

u1,exact(1− x) for 0.5 ≤ x ≤ 1.0.

Fig. 1 shows the result by schemes (2.5) and (2.3) with different size of the time
steps. For comparison, we also provide the plots of the error and the residual in
Figs. 1(b) and (c), respectively. We observe that the explicit scheme has difficulty in
converging to the exact solution for a relatively large time step given by ∆t = h2 (the
orange solid line with plus signs). The residual in the solution seems to get stuck with
no improvement in the accuracy. When we increase the step size to 2h2, the iteration is
unstable and the solution diverges. The convergence is improved when we reduce the
time step to ∆t = 0.5h2 (the blue solid line with circles). Concerning the scheme (2.3)
with a small time step, we find that the method behaves similar like an explicit scheme
(the yellow solid line with cross signs overlaps with the blue solid line with circles).
But since the semi-implicit scheme allows one to use a significantly large time step, we
are able to converge to the steady state solution in a faster speed. As we can see from
Fig. 1(b), the solution converges much faster in the first few hundred iterations when
we increase the size from ∆t = h2 to 5h. The accuracy of scheme (2.5) does not seem
to be as good as some other results. But the scheme (2.5) still converges to the exact
solution as we refine the mesh as shown in Fig. 2.

Now, we consider the number of iterations required for different schemes to achieve
a residual error of 10−3 on different grids, as shown in Table 1. Our semi-implicit



630 H. Liu and S. Leung

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

ψ

u

(a)

0 100 200 300 400 500 600 700 800

number of iteration

-7

-6

-5

-4

-3

-2

-1

0

1

lo
g(

er
ro

r)

plot of log(error)

explicit h2/2

explicit h2

dt=h2/2

dt=h2

dt=h/2
dt=h
dt=5h
no time

0 100 200 300 400 500 600 700 800

number of iteration

-8

-6

-4

-2

0

2

4

lo
g(

re
si

cu
al

 e
rr

or
)

plot of log(residual error)

explicit h2/2

explicit h2

dt=h2/2

dt=h2

dt=h/2
dt=h
dt=5h
no time

(b) (c)
Figure 1: (Example 3.1.1 with the first obstacle ψ1) The number of grids is 64. (a) The result by scheme
(2.5) after 1000 iterations. (b) The log(error) of scheme (2.5) and scheme (2.3) with different time steps
with respect to the number of iterations. (c) The residual error.

Table 1: (Example 3.1.1 with the first obstacle ψ1) The number of iterations required by different schemes
to achieve a residual error of 10−3.

h 1/64 1/128 1/256 1/512

∆t = 0.5h2
Semi 898 3630 13959 53788

Explicit 961 3626 13977 53760
∆t = h2 Semi 450 1816 6987 26891
∆t = h Semi 562 546 619 751
∆t = 5h Semi 1191 2036 3148 4777
∆t = 10h Semi 2083 4062 7463 11741
Without time Semi 30958 109896 418497 1154881
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Figure 2: (Example 3.1.1 with the first obstacle ψ1) The plot of error with respect to h with the numerical
solution obtained by scheme (2.5).

Table 2: (Example 3.1.1 with the first obstacle ψ1) The corresponding L1 error when schemes achieve a
residual error of 10−3.

h 1/64 1/128 1/256 1/512

∆t = 0.5h2
Semi 3.67E-2 4.00E-3 1.04E-4 1.92E-4

Explicit 1.25E-3 2.49E-4 2.84E-4 2.17E-4
∆t = h2 Semi 3.43E-3 9.05E-4 1.24E-4 1.77E-4
∆t = h Semi 5.88E-3 1.08E-2 1.21E-2 1.07E-2
∆t = 5h Semi 3.09E-3 1.63E-3 8.60E-4 6.40E-4
∆t = 10h Semi 5.48E-4 4.62E-4 2.78E-4 2.58E-4
Without time Semi 1.12E-3 1.41E-4 1.30E-4 3.21E-7

Table 3: (Example 3.1.1 with with the first obstacle ψ1) Number of iterations required to achieve L1 error
less than h.

h 1/128 1/256 1/512

∆t = 0.5h2
Explicit 1874 8663 39171
Semi 1852 8593 39095

∆t = h2 Semi 918 4272 19506
∆t = 5h2 Semi 173 826 3827
∆t = 20h2 Semi 963 198 919
∆t = 5h Semi 502 1006 1941
∆t = 10h Semi 477 963 1820

Without time Semi 447 907 1656

method with ∆t = h can efficiently reduce the number of iterations. Table 2 gives the
corresponding L1 error to the exact solution when achieve this residual error accuracy.
Although our semi-implicit scheme with ∆t = h has a larger error, a slightly more
number of iterations can already effectively reduce the error to the same order as that
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Figure 3: (Example 3.1.1 with the second obstacle ψ2) The computational mesh has 64 points. (a) The
result by scheme (2.5) after 1000 iterations. (b) The log-error of scheme (2.5) with respect to the number
of iterations.

Table 4: (Example 3.1.1 with the first obstacle ψ1) The L1 error by different schemes after 1000 iterations.

h 1/128 1/256 1/512

∆t = 0.5h2
Explicit 6.47E-2 4.25E-1 7.13E-1
Semi 6.43E-2 4.25E-1 7.13E-1

∆t = h2 Semi 5.00E-3 2.23E-1 5.97E-1
∆t = 5h2 Semi 4.20E-3 1.07E-3 1.63E-1
∆t = 20h2 Semi 7.59E-3 4.33E-3 1.07E-3
∆t = 5h Semi 3.13E-3 3.94E-3 4.61E-3
∆t = 10h Semi 2.95E-3 3.66E-3 4.16E-3

Without time Semi 2.75E-3 3.34E-3 3.61E-3

of other schemes. In Table 3, we look at different schemes and obtain the number of
iterations required so that the L1 error is less than h. To achieve the same accuracy,
for small ∆t such as ∆t = 0.5h2 or ∆t = h2, there is no big difference among these
schemes. As the time step goes larger, we can see that the number of iterations is
significantly reduced. In Table 3, as we refine the mesh, the number of iterations seems
to increase. But note that the stopping criterion (chosen as h) is more demanding as the
mesh is refined. Next, we compare the convergence behavior of different schemes and
various ∆t’s and h’s with a fixed number of iterations. The L1 error of each setting after
1000 iterations are shown in Table 4. For most choices of ∆t’s and h’s, the resulting
L1 error is in the order of 10−3. If ∆t is small, the convergence rate is affected and is
slower (the right upper part of Table 4). As long as ∆t is large enough and for a fixed
number of iterations, the convergence behavior of scheme (2.3) is not sensitive to the
choice of ∆t and h, and achieves error with similar order to that of scheme (2.5).
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The second case has the following obstacle with two peaks:

ψ2(x) =


10 sin(2πx) for 0 ≤ x ≤ 0.25,

5 cos(π(4x− 1)) + 5 for 0.25 ≤ x ≤ 0.5,

ψ2(1− x) for 0.5 ≤ x ≤ 1.0,

with the exact solution given by

u2,exact(x) =


10 sin(2πx) for 0 ≤ x ≤ 0.25,

10 for 0.25 ≤ x ≤ 0.5,

u2,exact(1− x) for 0.5 ≤ x ≤ 1.0.

The result by the scheme (2.5) and error behavior of different schemes are shown in
Fig. 3. The numerical solution matches very well with the exact solution. We observe
also that a larger time step provides faster convergence at the beginning meaning that
the method can capture the macroscopic structure of the solution quickly in the first
few hundred iterations.

3.1.2. A two dimensional case

We now consider the following two dimensional obstacle problem with the zero Dirich-
let boundary condition where the obstacle is given by ψ = max{0, 0.6− 8|(x− 0.5)2 +
(y − 0.5)2|}. In Fig. 4, we plot the obstacle, the result by the scheme (2.5) and the
residual error behavior. To initialize the time-dependent evolution, we use the obstacle
as the initial condition so that the initial residual error is quite large. But it damps
significantly after even the first iteration. In Fig. 4, we show only the residual error
after the second iteration.

3.2. A minimal surface obstacle problem

For the minimal surface obstacle problem, we write the problem in the HJB form
min(Au− f, u− ψ) = 0, where A is defined as in (1.3).

3.2.1. A one dimensional case

For the discretization in 1D case, to compute uk+1, we discretize (Au)i as:

(Au)i =

[
−∇ ·

(
∇u√

1 + |∇uk|2

)]
i

= alui−1 + aui + arui+1,

with a = −(al + ar) and

al = − 1

h2

1√
1 + ((uki − uki−1)/h)2

and ar = − 1

h2

1√
1 + ((uki+1 − uki )/h)2

.
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Figure 4: (Example 3.1.2) The domain is [0, 1]2 and the mesh is 64 × 64. (a) The shape of the obstacle.
(b) The result by scheme (2.5) after 500 iterations. (c) The log residual error with respect to the number
of iterations.

The obstacle is given by ψ = 10 sin2(π(x+1)2) for x ∈ [0, 1]. The result and residual
error behavior of scheme (2.6) are shown in Fig. 5. The residual error of the explicit
scheme with different time steps is also plotted for comparison. In this example, we
can see the advantage of our scheme. The residual error of our scheme with a large
time step reduces fast.

3.2.2. A two dimensional case

For the 2D case, we use the finite difference discretization [30]

Aui,j = acui,j + awui−1,j +e ui+1,j + asui,j−1 + anui,j+1,
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Figure 5: (Example 3.2.1) The domain is [0, 1] and the grid size is 64. (a) The obstacle and the result by
scheme (2.6). (b) The residual error with respect to the number of iterations.

where ac = 1− (aw + ae + as + an) and

aw = − 1

2h2

 1√
(
ui,j−ui−1,j

h )2 + (
ui,j−ui,j−1

h )2 + 1
+

1√
(
ui,j−ui−1,j

h )2 + (
ui−1,j+1−ui−1,j

h )2 + 1

 ,
ae = − 1

2h2

 1√
(
ui+1,j−ui,j

h )2 + (
ui+1,j−ui+1,j−1

h )2 + 1
+

1√
(
ui+1,j−ui,j

h )2 + (
ui,j+1−ui,j

h )2 + 1

 ,
as = − 1

2h2

 1√
(
ui,j−ui−1,j

h )2 + (
ui,j−ui,j−1

h )2 + 1
+

1√
(
ui+1,j−1−ui,j−1

h )2 + (
ui,j−ui,j−1

h )2 + 1

 ,
an = − 1

2h2

 1√
(
ui+1,j−ui,j

h )2 + (
ui,j+1−ui,j

h )2 + 1
+

1√
(
ui,j+1−ui−1,j+1

h )2 + (
ui,j+1−ui,j

h )2 + 1

 .

This scheme is monotonic and thus convergent.

In our experiment, we use f = 0 and the zero Dirichlet boundary condition.
The computational domain is (x, y) ∈ [0, 1]2. Here we use the same obstacle ψ =
max{0, 0.6− 8|(x− 0.5)2 + (y − 0.5)2|} as in Section 3.1.2. The obstacle and our result
obtained by the scheme (2.6) are showed in Figs. 6(a) and (b). In this example, we also
monitor the residual error. We plot in Fig. 6(c) the convergence of the residual error
from different schemes and with different time step. For the residual error, a larger
time step in general gives a better convergence speed. For scheme (2.4), as the time
step goes to infinity, the convergence curve converges to that of scheme (2.6).
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Figure 6: (Example 3.2.2) The computational domain is (0, 1)2. The mesh is 64 × 64. (a) The obstacle
and (b) the result by scheme (2.6). (c) Comparison of residual error for different scheme with different time
step.

3.2.3. Comparison of different semi-implicit schemes

Our schemes (2.4) and (2.6) are just one possible semi-implicit discretization for the
minimal surface obstacle problem. In this subsection, we compare our scheme with
some other semi-implicit schemes. The first scheme is the one used in [26] which reads
as follows:

uk+1 − uk

∆t
− β∆uk+1 + β∆uk = min(Auk − f, u− ψ), (3.1)

where ∆u is the Laplacian of u, β is some positive constant. This is the simplest semi-
implicit scheme.
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If we take a closer look on the operator A for this problem, we have

A = −∇ · ∇u√
1 + |∇u|2

= −∇ 1√
1 + |∇u|2

· ∇u− 1√
1 + |∇u|2

∆u.

Based on (2.2), if we replace the first operator A using the above relation, the PDE
becomes

ut +
u− ψ

2
− 1

2
∇ 1√

1 + |∇u|2
· ∇u− 1

2

1√
1 + |∇u|2

∆u

=
|(u− ψ)− (Au− f)|

2
+
f

2
. (3.2)

Then we have the following semi-implicit scheme:

uk+1 − uk

∆t
+
uk+1

2
− 1

2

1√
1 + |∇uk|2

∆uk+1

=
1

2
∇ 1√

1 + |∇uk|2
· ∇uk +

|(uk − ψ)− (Auk − f)|
2

+
ψ + f

2
. (3.3)

The terms on the left hand side of (3.3) are very similar to that of (3.1). In (3.1), the
implicit term is β∆uk+1 whereas in (3.3) the implicit terms are

uk+1

2
and − 1

2

1√
1 + |∇uk|2

∆uk+1.

In both schemes, we have a Laplacian term as the implicit term. The difference is that
in (3.1), the coefficient of the Laplacian term is a constant and in (3.3) the coefficient
varies in each iteration. In some sense, (3.3) can be taken as an expanded version of
(3.1) with adaptive coefficient.

In the discretization, we approximate Au in both schemes using the formula intro-
duced in Section 3.2.1. For ∆u, we use central difference. For the coefficient of the
Laplacian term in (3.3), simply using central difference on ∇u makes the scheme not
working. Instead, we use the following averaged approximation:(

1

2

1√
1 + |∇uk|2

)
i

=
1

4

 1√
1 +

(
(uki+1 − uki )/h

)2 +
1√

1 +
(
(uki − uki−1)/h

)2
 .

Then we approximate the first term on the right-hand side of (3.3) by(
1

2
∇ 1√

1 + |∇uk|2
· ∇uk

)
i

=
1

2h2

(
bk
i+ 1

2

uki+1 − bki− 1
2

uki−1

)
,

where

bk
i+ 1

2

=

(
1 +

uki+1 − uki
h

)− 1
2

and bk
i− 1

2

=

(
1 +

uki − uki−1

h

)− 1
2

.
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Figure 7: (Example 3.2.3) The domain is [0, 1] and the grid size is 64. Comparison of residual error for
different semi-implicit schemes for the one dimensional minimal surface problem. (a) ∆t = 10h. (b)
∆t = 100h. In the legend, “Lap” denotes scheme (3.1). “LapAdap” denotes scheme (3.3). “Semi” denotes
scheme (2.4).

We test the performance of the above two schemes and compare them with our
semi-implicit scheme. In Fig. 7, the residual error behavior for different schemes with
the same time step are shown. We test scheme (3.1) with β = 0.5 and 1, scheme
(3.3) and scheme (2.4) with time step 10h, 100h and grid size 64. In Fig. 7, we can
see that the two residual errors by scheme (3.1) give the two slowest convergence
rates. Surprisingly, smaller β gives better convergence rate. We think it might because
the Laplacian term is just an artificial term. This term only stabilizes the scheme and
has no contribution to the convergence behavior. Compared to scheme (3.1), scheme
(3.3) gives better result which implies that adapting the linearized operator helps the
convergence. Among all of the schemes, our proposed scheme (2.4) gives the best
convergence rate. The residual error by scheme (2.4) decreases much faster than that
of the other schemes. Since the implicit terms in scheme (3.3) and scheme (2.4) are
separated from the nonlinear operator, they contain some information of the operator
and thus gives better results than (3.1), which is an artificial scheme. Similarly, since
(2.4) linearizes more portion from the nonlinear operator than (3.1), it gives better
result.

Numerically, scheme (3.3) only needs to store the matrix representation of the
Laplacian. In each iteration, one just multiplies the matrix with a diagonal matrix
whose nonzero elements representing the updated coefficients. But scheme (2.4) needs
to regenerate every element of the matrix representing the linearized operator. So com-
pared with (2.4), scheme (3.3) is indeed more efficient.

3.3. A fractional obstacle problem

In this example, we consider the fractional obstacle problem given by min(Au −
f, u − ψ) = 0 where A = −∆α/2 is the negative fractional Laplacian for 0 < α < 2.
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Figure 8: (Example 3.3) (a) The numerical solution from different schemes. We use h = 0.5 and ∆t =

400hα/2 for the semi-implicit scheme, ∆t = 0.5hα/2 for the explicit scheme. (b) Comparison of the
convergence behavior where the error refers to ‖ui+1 − ui‖. We also plot the reference curve y = −0.57x
using a black dash line. (c) The constant C2 versus the mesh size h.

A linear quadrature-finite-difference numerical scheme has been introduced in [18] to
compute fractional Laplacian which is adopted in our experiment. In the experiment,
we use f = 0 and A = −∆α/2. The obstacle ψ is given by

ψ(x) = 2−απ−1/2Γ

(
1− α

2

)
Γ

(
4− α

2

)
(1− (1− α)x2)+.

We choose α = 0.5 and use computational domain x ∈ [−8, 8]. If we use mesh size
h = 0.5, the condition in Theorem 2.1 on A is actually satisfied with C2 = 0.7771.

Fig. 8(a) shows the results from different schemes. We can see in Fig. 8(b), the
scheme (2.5) converges better than our estimate. As ∆t goes to infinity, the scheme
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(2.3) behaves similar to that of the scheme (2.5), the same as our prediction. And the
scheme (2.5) gives the best convergence speed. In our experiment, if we use h = 0.1,
the condition on A in Theorem 2.1 is no longer satisfied. But both schemes still work
well with almost the same convergence behavior as h = 0.5. The behavior of C2 with
respect to h is shown in Fig. 8(c). We can see C2 increases as the mesh refines. But,
scheme (2.5) converges well in all cases.

3.4. The min curvature flow

In this example, we consider the min curvature flow problem in the level set formu-
lation [20] where we try to solve the following time dependent obstacle problem given
by

ut = |∇u|min(0, κ),

where κ = ∇ · ∇u|∇u| is the curvature of u. Using our approach, the PDE becomes

ut =
|∇u|

2

(
∇ · ∇u
|∇u|

)
− |∇u|

2

∣∣∣∣∇ · ∇u|∇u|
∣∣∣∣

and is discretized as

uk+1 − uk

∆t
=
|∇uk|

2

(
∇ · ∇u

k+1

|∇uk|

)
− |∇u

k|
2

∣∣∣∣∇ · ∇uk|∇uk|

∣∣∣∣ .
The term ∇u is approximated by the central difference. To approximate ∇ · (a∇u), we
use the following scheme:

[∇ · (a∇u)]i,j =
1

h

[
ai+ 1

2
,j

(
ui+1,j − ui,j

h

)
− ai− 1

2
,j

(
ui,j − ui−1,j

h

)
+ ai,j+ 1

2

(
ui,j+1 − ui,j

h

)
− ai,j− 1

2

(
ui,j − ui,j−1

h

)]
with ai+ 1

2
,j = 1

2(ai,j + ai+1,j) and ai,j+ 1
2

= 1
2(ai,j + ai,j+1). In our experiment, we use

a 4-folded star as our initial shape. The computational domain is [0, 1]2. The mesh is
128×128. If the explicit scheme is used, due to the CFL condition, the time step should
be of O(h2). For our semi-implicit scheme, the time step is chosen as ∆t = h/16. The
initial shape and and its evolution by our method is given in Fig. 9.

4. Conclusions

We introduced a semi-implicit method to solve a class of obstacle problems. The
idea is to extract a good linear approximation of the nonlinear obstacle constraint in
the PDE based on a simple formula which expressed the min-operator by the absolute
operator. We have demonstrated that our scheme can efficiently solve different kinds of
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Figure 9: (Example 3.4) The computational domain is (0, 1)2 with the grid given by 128× 128. The time
step is chosen as ∆t = h/16.

obstacle problems, including the membrane constrained obstacle problem and the min-
imal surface obstacle problem. Our methods can be easily extended to solve the frac-
tional obstacle problem and the min curvature flow problem. Because the semi-implicit
discretization allows a relatively large time step, the overall algorithm is computation-
ally very efficient. We have also analyzed the convergence of our scheme. Although the
constraint on C1 or C2 might seem to be quite restrictive, numerical examples show that
our scheme works well even if the discretization might sometimes violate these condi-
tions. From our numerical experiment, our scheme has the best convergence behavior
among several semi-implicit schemes.
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[19] T. KÄRKKÄINEN, K KUNISCH AND P. TARVAINEN, Augmented lagrangian active set methods
for obstacle problems, J. Optimization Theory Appl., 119(3) (2003), pp. 499–533.

[20] R. MALLADI AND J. A. SETHIAN, Flows under min/max curvature flow and mean curvature:
applications in image processing, Lecture Notes Comput. Sci., 1064 (1996).

[21] O. L. MANGASARIAN, Sufficiency of exact penalty minimization, SIAM J. Control Opti-
mization, 23(1) (1985), pp. 30–37.

[22] S. OSHER, Y. MAO, B. DONG AND W YIN, Fast linearized Bregman iteration for compressive
sensing and sparse denoising, Commun. Math. Sci., 8 (2010), pp. 93–111.

[23] S. J. OSHER AND R. P. FEDKIW, Level Set Methods and Dynamic Implicit Surfaces,
Springer-Verlag, New York, 2003.

[24] R. SCHOLZ, Numerical solution of the obstacle problem by the penalty method, Numer.
Math., 49(2-3) (1986), pp. 255–268.

[25] L. SILVESTRE, Regularity of the obstacle problem for a fractional power of the laplace
operator, Communications on Pure and Applied Mathematics: A Journal Issued by the
Courant Institute of Mathematical Sciences, 60(1) (2007), pp. 67–112.

[26] P. SMEREKA, Semi-implicit level set methods for curvature and surface diffusion motion, J.
Sci. Comput., 1-3 (2003), pp. 439–456.

[27] G. TRAN, H. SCHAEFFER, W. M. FELDMAN AND S. J. OSHER, An l1 penalty method for
general obstacle problems, SIAM J. Appl. Math., 75(4) (2015), pp. 1424–1444.

[28] R. TREMOLIERES, J.-L. LIONS AND R. GLOWINSKI, Numerical Analysis of Variational
Inequalities, volume 8, Elsevier, 2011.



Numerical Analysis of a Dynamic Contact Problem 643

[29] F. WANG AND X.-L. CHENG, An algorithm for solving the double obstacle problems, Appl.
Math. Comput., 201(1) (2008), pp. 221–228.

[30] C. WU AND J. WAN, Multigrid methods with newton-gauss-seidel smoothing and constraint
preserving interpolation for obstacle problems, Numer. Math. Theory Methods Appl., 8(02)
(2015), pp. 199–219.

[31] L. XUE AND X.-L. CHENG, An algorithm for solving the obstacle problems, Comput. Math.
Appl., 48(10) (2004), pp. 1651–1657.

[32] G. YOU AND S. LEUNG, A fast semi-implicit level set method for curvature dependent flows
with an application to limit cycles extraction in dynamical systems, Commu. Comput. Phys.,
18(1) (2015), pp. 203–229.

[33] D. ZOSSO, B. OSTING, M. XIA AND S. OSHER, An efficient primal-dual method for the
obstacle problem, J. Sci. Comput., 73(1) (2017), pp. 416–437.


