Copyright (©1993 by the HPSC Group of the University of Colorado

ements o atla

Lloyd D. Fosdick
‘EliZabeth R. Jessup The following are members of

Carolyn J. C. Schauble the HPSC Group of the Department of Computer Science
lat the University of Colorado at Boulder:

19 August 1988

Revised Lloyd D. Fosdick

. Elizabeth R. Jessup
20 September 1993 Gitta O. Domik

Carolyn J. C. Schauble

High Performance Scientific Computing
University of Colorado at Boulder

Matlab i i Matlab
Contents 5.3 Comments 20
54 White Space oL 21
1 What is Matlab? 1 5.5 Continued Lines oL 21
2 Getting Started 2 6 Input/Output 21
2.1 Bringing Up Matlab 2 6.1 UNIX Commands within Matlab 22
22 Standard Help oo 3 6.2 Session Log 22
6.3 Saving Data o o 23
3 Some Examples 3 6.4 mat-Files 23
3.1 Simple Matrix Manipulation 4
3.2 Polynomial Curve Fitting 5 7 Graphics 23
33 SimplePlots . . . o o 6 7.1 Hardcopy Plots 24
7.2 Multiple Plots 25
4 Short Outline of the Language 8 7.3 Typesof X-Y Plots oo 26
4.1 Types . . 8 7.4 Labeling Plots o 27
4.2 NAMES . o o v o e e 9 7.5 Three-Dimensional Plotting 30
4.3 Scalar Constants 9 7.5.1 Three-dimensional grids 30
4.4 Display Format L. 9 7.5.2 Contour plots 31
4.5 Vector Constants o 0 10 7.6 SL[I)l)lOtS 32
4.6 Matrix Constants oL 11 .
4.7 Arithmetic Operators, 12 8 That’s it! 34
4.8 Expressions and Statements L. 12
4.9 Compatibility 13
4.10 Array References 14
4.11 Relational and Logical Operators 14
4.11.1 Relational operators 15
4.11.2 Logical operators 15
4.12 Control Statements L oL 16
4.12.1 forstatemento 16
4.12.2 whilestatement 16
4.12.3 if statemento oL 17
1.12.4 Furtherhelp oo o oo 17
4.13 Built-in Functions 17
5 Matlab Scripts and User-Defined Functions 18
51 ASample Scripto o o 18
5.2 A Sample Function 0o oL 19
CUBoulder : HPSC Course Notes CUBoulder : HPSC Course Notes

Elements of Matlab*

Lloyd D. Fosdick
[Elizabeth R. Jessup
Carolyn J. C. Schauble

19 August 1988
Revised

20 September 1993

1 What is Matlab?

Matlab! is an interactive system for matrix computations. It has a simple
command language that allows you to easily multiply and invert matrices,
solve systems of linear equations, and perform many other operations on
rectangular arrays of numbers. X-Y plots on the screen or printer can be
done easily in Matlab.

It is often used interactively as if it were a very powerful hand calculator.
But you can also use Matlab in a programmable mode; you just write scripts
for it much as you do for other command languages. You can also create
your own functions which can be invoked interactively or from scripts.

The examples in this document were run on UNIX? workstations; both

*This work has been supported by the National Science Foundation under an Ed-
ucational Infrastructure grant, CDA-9017953. It has been produced by the HPSC
Group, Department of Computer Science, University of Colorado, Boulder, CO 80309.
Please direct comments or queries to Elizabeth Jessup at this address or e-mail
jessupQ@cs.colorado.edu.

Copyright ©1993 by the HPSC Group of the University of Colorado

TMatlab is a trademark of The MathWorks, Inc.

2UNIX is a trademark of AT&T.

2 Matlab

% matlab
<PRO-MATLAB>
(c) Copyright The MathWorks, Inc. 1984-1991
A1l Rights Reserved
Version 3.5e 24-Jul-1991
HELP, DEMO, INFO, and TERMINAL are available
>> ..
>> quit
0 flop(s).
%

Figure 1: Matlab window — initial state.

a SUN 3/60 under the SunView® window environment and a DECstation?
5000/200 under the X Window System® were used. A basic knowledge of
UNIX is assumed for the remainder of this text.

2 Getting Started

These notes are intended to get you started, providing only the bare essen-
tials. The Matlab manual [MW9 90] is the basic reference.

2.1 Bringing Up Matlab

If you have to login to a different machine than the server in order to run
Matlab and you are using an X terminal, make sure the DISPLAY environment
is set properly. This can be done by typing the command

3SUN and SunView are trademarks of Sun Microsystems, Inc.
TDEC is a trademark of Digital Equipment Corporation.
5X Window System is a trademark of M.I.T.

CUBoulder : HPSC Course Notes

Matlab 3

setenv DISPLAY yourterminalname:0

from the UNIX shell. Without this, the plot window will not appear on your
screen.

Once you are in the directory from which you wish to use Matlab, you
can start it by typing the command

matlab

from the shell. The basic Matlab environment will be activated, and your

window should appear as shown in Fig. T.

2.2 Standard Help

Notice the message on the initial Matlab window:
HELP, DEMO, INFO, and TERMINAL are available

Fach of these facilities may be entered by typing the appropriate name. When
help is entered, a list of topics appears. To narrow the choice, just enter

help aparticulartopic

and helpful information on aparticulartopic will be brought to the screen.
The info command provides the address of The MathWorks, Inc.; it also
tells you how to obtain more information on Matlab.

[he terminal command lists the graphic terminals capable of running
Matlab.

Typing demo brings a list of possible Matlab demonstrations to the screen.
You only need to type the demo number and follow the instructions in the

window to see some pretty plots. Try a few to see what Matlab can do.

3 Some Examples

This section demonstrates some basic matrix and plotting commands. As you
read about each, type in the statements, as printed in this font, followed
by a carriage return. Matlab prints out each variable as it is assigned.

CUBoulder : HPSC Course Notes

4 Matlab

3.1 Simple Matrix Manipulation
The following statements create matrices A and B:

A=1[12; 35]
B [45;67]

The matrices created by these statements are:

12 15
=(33) #-(07)

You can create new matrices by using A and B in expressions. The
statements

C=A+B
D=A=xB

S 16 19
C:(g 12)’ D:(dz 50)

Notice that the multiplication operator, *, used with two matrices produces

create the matrices

correct matrix multiplication.
The statement

E =4

makes E the transpose of A; i.e.

=

[SeR
[S1aRVE)
S~—

And the statement
F= A*A

makes F the product of A and its transpose; i.e.
5 13
r= (13 34 >

CUBoulder : HPSC Course Notes

The statements

Matlab

ot

Y = [1; -1]
X=A\Y

give the solution to the equation
Ax X =Y

that is,

In order to get a feel for the notation here, think of the backslash operator,
\, as denoting division from the left so that A \ Y in Matlab is equivalent to
the mathematical expression A=! x Y.

We can also use the backslash operator to solve a system with a rectan-
gular coefficient matrix. In the case that the coefficient matrix A has more
rows than columns, Matlab returns the least squares approximation to the

solution.

3.2 Polynomial Curve Fitting

In the preceding section (3.1), we saw how to find the least squares solution
to an overdetermined linear system. Sometimes, the least squares problem
is not presented as a matrix problem but rather as a collection of data to
be approximated in the least squares sense by a polynomial. One way to
determine the coefficients of that polynomial is to set up and solve the ap-
propriate overdetermined linear system. Another way is to call the matlab
function polyfit to determine those coefficients.

Suppose, for example, that we’d like to make a polynomial approximation
of the function y = sin(x) in the z-interval [0, 7] given the values

y =10,0.7071, 1.0000,0.7071,0.0000]

at the x values

@ =1[0,0.7854, 1.5708, 2.3562, 3.1416].

Typing
p = polyfit(r.y.2)

CUBoulder : HPSC Course Notes

6 Matlab

0.2 L L L L L L
0 0.5 1 1.5 2 25 3 3.5

Figure 2: A cubic fit to the sine function on [0, #].

finds the coefficients
p = [—0.3954,1.2420, —0.0049]
of the cubic approximating the given data y in the least squares sense. Typing
pvals = polyval(p,z)

then evaluates that cubic at the given values of x.
Figure 2 shows the the sine function on the interval [0, 7] with the sampled
points marked by circles. The least squares cubic is shown by the dotted line.

3.3 Simple Plots

The statements

U = 0:pi/20:2%pi
V = sin(U)
plot(U,V)

CUBoulder : HPSC Course Notes

o]

Matlab 7 Matlab

create a plot of the sine function on the interval [0, 27] as shown in Fig. 3. The
first statement creates a vector of 41 values beginning at zero, in increments
of 7/20, the last value being 27. The second statement creates a vector of 41
values, equal to the sines of the 41 values in U. The last statement creates a
plot of the curve whose abscissae (the x-axis values) are given by the values
of the elements of U and whose ordinates (the y-axis values) are given by
the elements of V. Note that the name pi in a Matlab statement denotes a
constant equal to 7.

Type in these three statements. Observe that when values are assigned
to a vector, those values are printed out across the screen. Extra lines are
used if needed, and the columns are numbered.

08) Notice that a new window is generated by the first plotting command.
0.6 , This window will remain until you exit (with the quit command) your Mat-
lab session. Any additional plotting commands will reuse this plot window.
On most windowing systems, it can be closed, reopened, moved, or resized,
0.2} 1 as any other window.

If you are using an X terminal, the mesh grid outlining the Matlab plot

04 .

or 1 . . .
window may appear first, allowing you to place it anywhere on the screen.
0.2 1 Use the mouse to drag it to your preferred location and then click the lefthand
mi) button of the mouse.
0.6 7

o8]] 4 Short Outline of the Language

’10 1 2 3 4 5 6 7 This section provides information about the basic syntax and semantics for
Matlab commands.

Figure 3: Plot of sine function on [0, 27]. 4.1 Types

Fundamentally there is one type, a rectangular array of numbers. There are
no type declarations. The dimensions of an array are determined by the
context.

Nevertheless, it is convenient to think of three types in the language:
scalar, actually an array consisting of one row and one column; vector, ac-
tually an array consisting of one row and ¢ columns, or an array consisting
of r rows and one column; and matrix, an array consisting of r rows and ¢
columns.

CUBoulder : HPSC Course Notes CUBoulder : HPSC Course Notes

Matlab 9

4.2 Names

Names consist of a letter followed by zero or more letters, digits, and under-
score characters. Only the first 19 characters are significant. Uppercase and
lowercase letters are distinguished; thus, A1 and a1 denote different variables.

4.3 Scalar Constants

These values are written with an optional decimal point and an optional
power of 10. A minus sign is placed at the front of negative values. No
blanks are permitted within a value. Examples of legal values are:

99 39.24 -0.0075 1.35e-24 0.2E-5 12.0e44

4.4 Display Format

Matlab has the ability to display the values of variables in four different
ways: short, long, short e, and long e. The default format is called a
short format which shows the number to 4 decimal places. For instance, if
you type

x = 32.75
Matlab will respond with

x =

32.7500

Should you specify that you wish to use the short display format at this
format, Matlab will display x in the same manner.

format short
b4

x=
32.7500

The long format has fourteen decimal places.

CUBoulder : HPSC Course Notes

10 Matlab

format long
X

X =
32.75000000000000

The remaining two formats give values in scientific form (i.e., floating point),
both long and short:

format short e

format long e
X

3.275000000000000e+01

It is important to know that all values are stored as double-precision numbers
regardless of the format chosen for output.

4.5 Vector Constants

A vector constant may be expressed explicitly as in
[99 39.24 -0.0075]

which is a vector (1 row, 3 columns) of three elements, or it may be expressed
implicitly as in

[1:0.5:3]
which is equivalent to the expression

[T 1.5 2 2.5 3]

CUBoulder : HPSC Course Notes

Matlab 11
The expression 1:0.5:3.0 is a constructor. The semantics of this con-
structor are given by:
inttial value : step: final value
The parameter step may be negative, as in
[3:-0.5:1]

The elements of a vector may be separated by one or more blanks, as above,
or by commas.
Type the statement

V = [6:-0.3:3]

and observe the resultant vector.

4.6 Matrix Constants

A matrix constant may be expressed by explicitly listing the elements, with
rows separated by a semicolon, as in

[T 2 3 4,1 4 9 16; 0.5 1.0 4.5 -8]

which is a matrix consisting of 3 rows and 4 columns. The rows of a matrix
may be written on separate lines of the input, omitting the semicolon, as in

(1234
140916
0.5 1.0 4.5 -8]

A row can be specified with a vector constructor as in

[1:1:4;1 4 9 16; 0.5 1.0 4.5 -8]
Type the statement
M= [1:1:4;1 4 9 16; 0.5 1.0 4.5 -8]

and observe the resultant matrix.

CUBoulder : HPSC Course Notes

12 Matlab

4.7 Arithmetic Operators
The arithmetic operators are
+ -k / O\ 7

standing for add, subtract, multiply, right divide, left divide, and exponen-
tiation. The precedence of these operators is as expected; namely, ~ is done
first, *, /, and \ next, and then + and -. Of course, parentheses may be used
to alter this operation order.

Add, subtract, multiply, and exponentiation have their usual meanings
when applied to matrices, vectors, and scalars. The left divide operator and
the right divide operator act as ordinary division when applied to scalars.
Their meaning in matrix operations is defined as follows: A \ B is equiv-
alent to the mathematical expression A~! x B; A / B is equivalent to the
mathematical expression A x B!,

When a period character, “
it means the operation should be performed element-by-element. For opera-
tions with scalars and for adding and subtracting vectors or matrices, there
will be no change in the operation. However, consider the following example
in which we assume A and B to be the 2 x 2 matrices defined earlier:

.7, appears in front of an arithmetic operator,

C=A .%xB
D=4 ./B

The matrices computed here are:

410 0.2500 04000
€= (18 35) b= (0.5000 0.7143)

The Matlab manual [MW9 90] refers to these as array operations.
Using matrices defined earlier in this tutorial, try some of these operations
to verify your understanding of them.

4.8 Expressions and Statements

Expressions are formed in the usual way with parentheses used to denote
grouping. Matlab does a lot of checking; e.g., if you try to do something
stupid like multiply a 3 x 3 matrix by a 4 x 4 matrix, then Matlab will
squawk at you.

CUBoulder : HPSC Course Notes

Matlab 13

Normally, each line you write is an assignment statement as in the exam-
ples above. However there are exceptions, as in the call to the plot subroutine
which appeared above, and control statements which we describe briefly be-
low.

When you have completed typing in an assignment statement, you will
get an echo on the screen which shows the value of the expression on the right
of the assignment, as we have observed earlier. You can suppress the echo
by putting a semicolon at the end of the line. If you type a line containing
only an expression, as in

A+ B

then the value is assigned to a default variable ans.
A long line of input can be continued on the next line by using an ellipsis
as in

4.9 Compatibility

Operations on arrays and vectors must be compatible in the usual sense of
matrix algebra. In the expression

A x B

the number of rows of B must equal the number of columns of A. In the
expression

A .x B

the number of rows of A must equal the number of rows of B and likewise,
for the columns.
If x is a scalar, and A is a matrix, then the expressions

CUBoulder : HPSC Course Notes

14 Matlab

/

i
MoM M M

are all meaningful: they mean that the indicated operation is to be performed
element-by-element with the scalar, yielding an array of the same dimension
as A. The expression

A" x

implies that the matrix A is to be multiplied by itself x-1 times.

4.10 Array References

The usual subscript notation can be used to reference the elements of an
array. Thus A(2,3) is the element of A in the second row and third column.

You also can refer to rows of an array, columns of an array, and blocks
of rows and columns. Thus A(:,2) refers to the second column of A. In
particular, if A is the matrix defined earlier, then the statement

X = A(:,2)
gives us the vector
. 2

Similarly, A(2, :) refers to the second row of A, i.e., (35)
Now, suppose that M is a 12 x 12 matrix. The expression M(3:5,5:10)

refers to a block, or submatrix of M, that consists of the elements in rows 3
through 5 that are also in columns 5 through 10. It is as if you cut out a
3 x 6 piece of M, as illustrated in Fig. 4.

4.11 Relational and Logical Operators

Relational expressions can be used in Matlab as in other programming lan-
guages, such as Fortran or C.

CUBoulder : HPSC Course Notes

ot

Matlab 1

M (3:5, 5:10)

Figure 4: Submatrix of 12 x 12 matrix M.

4.11.1 Relational operators
The relational operators are
, <=, >, >=, ==, and "=

These can be used with scalar operands or with matrix operands. A one or
a zero is returned as the result, depending on whether or not the relation
proves to be true or false. When matrix operands are used, a matrix of zeros
and ones is returned, formed by componentwise comparison of the matrix
elements.

4.11.2 Logical operators

Relational expressions can be combined using the Matlab Togical operators:
&, |, and ~

which mean AND, OR, and NOT, respectively.

These operators are applied
element-by-element.

CUBoulder : HPSC Course Notes

16 Matlab

As in other programming languages, logical operations have lower prece-
dence than relational operations which, in turn, are lower in precedence than
arithmetic operations.

4.12 Control Statements

Matlab contains for, while, and if statements. The syntax of each is illus-
trated in the examples below. These statements may be used interactively,
but are more commonly included with Matlab scripts, which are programs
made up of Matlab commands.

It is important to recognize that many of the operations that might re-

quire one of these statements in a language like C or Fortran do not require
them in Matlab; matrix multiplication is the most obvious example.

4.12.1 for statement

for i=1:n
S =8 + fun(i)
kend

The for statement may be nested and a constructor with an arbitrary step
can be used.

total = 0
for 1 = firsti : deltai : lasti
S(i) =0
for j = firstj : deltaj : lastj
S(i) = S(i) + fun(i,j)
end
total = total + S(31)
end

4.12.2 while statement

while err > maxerr

n=n+1

err = funapprox(n,x) - funexact(x)
end

CUBoulder : HPSC Course Notes

Matlab 17

A group of while statements can be nested and any relational expressions
may be used (see Section 4.11).

4.12.3 if statement

for i =1 : maxrow
for i =1 : maxrow
if abs(A(i,j)) < thresh
AGL,3) = 0
else
A(i,j) = sign(A(i,j))
end
end
end

4.12.4 Further help

The help command gives information on these control statements; e.g., type
help if

Then try

help break

4.13 Built-in Functions

There are many built-in functions and you can peruse the manuals to see
what is available. You can also type
help

in Matlab. This will give you a list of built-in functions. Then if you want
more information on a particular built-in function, like ones, just type

help ones

The usual math functions, like the trig functions, are built-in. Some
of the functions save a great deal of work. For instance, the eig function
provides the eigenvalues and eigenvectors of a matrix argument. There are
other built-in functions that are rather special. An example is the function,
ones, which can be used to create an array of ones; thus the expression

CUBoulder : HPSC Course Notes

18 Matlab

bnes(r,c)

creates an r X ¢ array with every element equal to 1. There is a corresponding
function zeros. Similarly, the expression

kye(r)

produces the r x r identity matrix.
It was noted earlier that Matlab is case-sensitive. All built-in functions
have lower case names.

5 Matlab Scripts and User-Defined Functions

As mentioned earlier, it is possible to write programs for Matlab. These are
called Matlab scripts or functions and should be stored as files with a .m ex-
tension, e.g., myscript.mor myfunction.m. Because of this extension, these
scripts are typically referred to as M-files. Any of the commands discussed
above can be used in a Matlab script or function.

When creating and testing new Matlab scripts and functions, you may
find it useful to have two command windows open: one from which you are
running Matlab and one from which you may be editing the new script.

5.1 A Sample Script
The following is a simple script which will plot a cosine curve in Matlab.

% This is a sample Matlab script

% that plots a cosine curve

U = 0:pi/20:2%pi

V = cos(U)

plot (U,V) % This statement does the plotting.

To use a script within Matlab, just type the script file name without the .m
extension, i.e., myscript; the script (myscript.m) will be executed. If this
example script has been stored in a file named plotcos.m in the directory
from which you are running Matlab, you need only type

plotcos

CUBoulder : HPSC Course Notes

Matlab 19

0.8+ 1

0.4+ 8

0.2+ i

Figure 5: Plot of cosine function on [0, 27].

to run the script, and the appropriate plot will appear in your plot window,
as shown in Fig. 5. Also the global values of U and V will be affected.

5.2 A Sample Function

Like a script, a function is a collection of Matlab commands stored in an M-
file. Unlike a script, a function itself can itself be evaluated. A function may
take on a scalar or an array value. A scalar function value can be viewed
by typing the file name without the extension, i.e., myfunction, or it can
be assigned directly to a variable, i.e., y = myfunction. The value of an
array-valued function must be assigned to an array variable. User-defined
functions may be used not only on the command line but also within scripts
or other functions.

Note: the name of the function must match the name of the M-file for it.
In other words, if you are creating a function named myftn, the file containing
the Matlab commands which define that function must be stored as myftn.m.

CUBoulder : HPSC Course Notes

20 Matlab

A function may require input arguments. In this case, after the arguments
have been defined, the function is evaluated by typing its file name (minus the
extension) followed by the argument list, e.g., y = myscript(argl, arg2,

., argn). For example, the following function evaluates a cubic polyno-
mial at the larger of the two input arguments.

% This is a sample Matlab function
% that evaluates a cubic polynomial
% at the larger of the two arguments x1 and x2.

function y = mycubic(x1,x2)

x = max(x1,x2);

y = x"3 + 2xx°2 + 1; % This statement determines
% the function value.

If the function mycubic is stored in the M-file mycubic.m, we can evaluate
the function mycubic by typing a series of statements likez1 = 1; z2 = 2;
z = mycubic(z1, z2). This series of statements causes the value 17 to be
assigned to the variable z.

In the following example, the array-valued function trigfunction takes
an angle theta (in radians) as argument and returns both its sine and cosine.

% This is a sample Matlab function
% that evaluates the sine and cosine of the input angle.

function [costheta,sintheta] = trigfunction(theta)
costheta = cos(theta);
sintheta = sin(theta);

To evaluate this function, we must assign its value to an array: [c,s] =

trigfunction(0). After this call, we will see that ¢ = 1 and s = 0.
Function arguments may be manipulated within a function, but input

values are the same on exit as on entry.

5.3 Comments

The percent symbol, %, precedes a comment:

% This is a comment in Matlab.

CUBoulder : HPSC Course Notes

Matlab 21

The % may be in any position of the line; whatever follows the % is considered
to be part of that comment. A comment may even follow a Matlab command
on the same line.

plot(X,Y) % This is a plot command

It is useful to place explanatory comments at the beginning of your Matlab
script as documentation. Later, if you type the command

help myscript

Matlab responds by printing out the first few lines of comments in the script

named myscript.

5.4 White Space

Blank lines may be inserted in a Matlab script; this will provide white space
and promote the readability of the script.

5.5 Continued Lines

At times, it is desirable to break up a Matlab command line into two or more
separate lines. As discussed above, an ellipsis, .. ., at the end of any Matlab
command line indicates that that line is to be continued onto the next line.
This symbol may consist of three or more consecutive periods.

s=[1 ...
2; 3

4]
The definition of a matrix may require several lines since each line rep-

resents a row of the matrix. The line for each row may itself be a continued
line.

6 Input/Output

This section discusses methods for creating input data for Matlab as well as
ways to output the data.

CUBoulder : HPSC Course Notes

929 Matlab

6.1 UNIX Commands within Matlab

While in Matlab, it is sometimes useful to run normal UNIX commands.
This can be done with the escape command (!). For instance, to display the
contents of the current directory (when you can’t remember the name of your
M-file), just type

'1s

Fortran and C programs can be edited, compiled, and run in the same man-
ner.

'vi myprog.f
'£77 -0 -o myprog myprog.f
'myprog > myoutput

Then the output of these programs can be edited to form M-files to create

plots or other data in Matlab.

6.2 Session Log
The diary command make it possible to save a log of partial or entire Matlab
sessions. If you type

diary mylogfile

all the lines subsequently appearing in the Matlab window will be saved into
a file named mylogfile. If the filename is omitted, the name diary will be
used. This feature can be turned off by the command

diary off
or by exiting Matlab.

This not only provides a log of your session; it also suggests a method for
saving the results which can be later edited into another format.

CUBoulder : HPSC Course Notes

Matlab 23

6.3 Saving Data

An alternate method of storing results from your Matlab runs is using the
save command. For example, suppose you have created the following array

M= [1:1:3; 10:2:14; 31:3:37; 5:5:15]

1 2 3
10 12 14
31 34 37

5 10 15

and you wish to store this data for use elsewhere. Just type
save mydatafile M /ascii

where the /ascii option of the command assures the results will be in text
format. Then the file, mydatafile, will contain the following:

1.0000000e+00 2.0000000e+00 3.0000000e+00

1.0000000e+01 1.2000000e+01 1.4000000e+01

3.1000000e+01 3.4000000e+01 3.7000000e+01
e+ . e+ . e+

6.4 mat-Files

Matlab data may also be read or stored using mat-files with the load and
save commands. There are some special routines and examples (in both
Fortran and C) to assist the user. See the chapter on Disk Files in the
Tutorial section of the Matlab manual [MW9 90].

7 Graphics

The sample script given in Section 5.1 illustrated how to create a plot of the
cosine function, as shown in Fig. 5. This plot is only given in the Matlab
plot window, but there are times where you would like to save such plots for
use elsewhere.

CUBoulder : HPSC Course Notes

24 Matlab

7.1 Hardcopy Plots

When the plot statement in the script, plotcos.m, is executed, the plot of
the cosine function appears in the plot window. This is the graphics window
for all plots; so any later plots will erase the cosine plot. However, if you
type

print

on some systems, a hardcopy of the current plot in the graphics window will
be printed on your default printer.

You can also save a copy of the plot with the meta statement. For exam-
ple,

meta myplot

puts the current plot in a file named myplot.met. Repeating this command
after a second plot will concatenate the second plot to the first by appending
it to the met-file, myplot.met; it will not destroy the original copy.

It is possible to convert the plot into a PostScript © file or a pic file by
using the UNIX gpp (graphic post-processor) command. From the UNIX
shell, the command

gpp myplot -dps

transforms the file, myplot.met, into a PostScript file named myplot.ps.
This can be printed out from the shell with the command

Ipr myplot.ps

or can later be included in the text of a paper. The result of the command

gpp myplot -dpic

is a pic file named myplot.pic. As such, the graph can be included in the
text of a paper in troff format. Many other options are available for this
command. Refer to the section on UNIX in the Matlab manual [MW9 90]

for more information.

5PostScript is a trademark of Adobe Systems, Inc.

CUBoulder : HPSC Course Notes

Matlab 25

0.6F _

04t 1

Figure 6: Plot of sine and cosine.

7.2 Multiple Plots

Suppose you want two curves plotted on the same graph. The script below
will graph the sine and cosine curves together. This plot is shown in Fig. 6.

% Plots both sine and cosine curves together

U = 0:pi/20:2%pi
V = sin(U)

W = cos(U)
plot(U,V,U,W)

The pattern illustrated here holds true in general, and the vector of ab-
scissas (U in this example) need not be the same in each case. Thus

plot(X1,Y1,X2,Y2,X3,Y3)

will plot the three curves (f(X1,Y1), f(X2,Y2), f(X3,Y3)) in the same
plane.

CUBoulder : HPSC Course Notes

26 Matlab

0.8+ + + 4

0.6F + + 5

0.4 .

0.2+ i

Figure 7: Point plot of sine function.

An alternate method of putting one plot on top of another is to use
the hold command. This tells Matlab not to erase the contents of the plot
window until the
command

hold off

is entered. In this way, any number of plots can be placed within the same
plane with the axes remaining constant.

7.3 Types of X-Y Plots

There are two types of linear X-Y plots: line and point. Three-dimensional
grids and contour plots are also available; these will be discussed in a later
section. Polar, logarithmic, semi-log, and bar plots can be employed as well;
see the Matlab manual [MW9 90] or type

CUBoulder : HPSC Course Notes

Matlab

o
=1

help

for more information on these types of plots.

In the graphical examples discussed earlier in this document, the line type
of X-Y plot is used. The other type is point. With the line type, the gaps
between the points are filled in smoothly so that you get a continuous curve;
in the point type, no fill-in is done so only the points you specify are plotted.

An example of a statement that gives a point plot is

plot(U,V,’+’)

The sine curve will appear as 41 distinct points (marked “+7), as shown in
Fig. 7. The statement

plot (U,V,’+’,U,V)

gives a point plot for the first plot, and a line plot for the second. Since both
curves are the same, the effect is to highlight the points on the curve.

This last feature is convenient for showing a least squares fit to experi-
mental data. You can plot the distinct data points and the smooth curve
that fits the data in the same picture.

You can use any symbol in the set { . + * o x} for point plots. You
can use any symbol in the set {- -- : -.} for line plots. If nothing is
specified, as in most of the examples here, the default line plot (symbol
“=") is employed. You can also plot with different colors when using a color
monitor; look at

help plot

for that.

7.4 Labeling Plots

The picture can be labeled, the axes can be labeled, and you can display grid
lines in the coordinate system. The following script will do all of this for the
previous sine plot:

% This Matlab script plots a sine curve

U = 0:pi/20:2%pi

CUBoulder : HPSC Course Notes

28 Matlab
Sine Function
T =
0.8+ 1
0.6 R
04f §
0.2 §

2 of 1
02 |
04 i
0.6 .
0.8 |

1 i . H d ;

0 T b 3 7 5 6 7

i\nglc mn l'ﬂlei\nS
Figure 8: Labeled plot of sine function.

V = cos(U)

plot(U,V)

title(’Sine Function’) % places title at top
xlabel(’angle in radians’) % labels x-axis
ylabel(’sine’) % labels y-axis

grid % adds grid marking

Notice that the labeling commands are given after the plot has been created.
The result is shown in Fig. 8.
It is also possible to place text on the graph while it is in the plot window

by using the mouse. The command
gtext (’Your text’)

makes a crosshair appear on the window containing the plot, as in Fig. 9(a).
Just move the mouse to the desired location and click; the label containing

CUBoulder : HPSC Course Notes

Matlab 29

Sine Function

S =0

-1
0 1 4 3 4] [7
angle in radians
(a)
1 Sine Function
0.5
s
i
n
e
Your text
-0.5
-1
0 1 2 3 4 5 6 7

angle in radians

(b)

Figure 9: Sine function plot: (a) with gtext crosshair; and (b) with label
entered by gtext.

CUBoulder : HPSC Course Notes

30 Matlab

Your text will appear there, with the first letter placed in the inside corner
of the northeast quadrant of the crosshair. The final result is in Fig. 9(b).

7.5 Three-Dimensional Plotting

At times, three-dimensional grid plots or contour plots are desired. Matlab
provides some facility for these.

7.5.1 Three-dimensional grids

Mesh plots show a three-dimensional surface as a mesh. Here the and y
values merely provide the size of the grid; a rank(z) x rank(y) matrix gives
the values of the points of the surface — one value for each xy point. Thus,
the only needed argument to the mesh command is that matrix.

CUBoulder : HPSC Course Notes

Matlab

31

Mesh plot: sin(X) + sin(Y)

SRS OSINN

N\

.
0
i
OO
%

%

77/
7%
;a
Cx
53
<
<SS
<>

7z
i’:”
s
5
SIS
LSS

7
77
7
7~
7

77,
7
-
7

25,

Z
7,
=,

%
222
927
77
7
7

\
N\

77
7,

7

A
7
DN ’gf
=%
-
%

G

)
7275

\
O
o,

L)
%X

SO

%
s
0%
%
2

7
7

Figure 10: Mesh plot of sin X + sin Y.

The plot in Fig. 10 was created by the following script:

% This Matlab script plots a 3-D sine curve as mesh

U = 0:pi/20:2%pi;

X = ones(U’)*U;

Y = U’*ones(U);

V = sin(X) + sin(Y);
mesh (V)

title(’Mesh plot: sin(X) + sin(Y)’)

7.5.2 Contour plots

The command to create a contour plot of a surface works in much the same
way as the mesh command. The plot in Fig. 11 was created by the same script

CUBoulder : HPSC Course Notes

Matlab

Contour plot: sin(X) + sin(Y)
40l T T T T T T
~_

35+

30

Figure 11: Contour plot of sin X +sin Y.

as in Section 7.5.1, substituting the following lines for the original mesh and

title commands.

kontour (V)

title(’Contour plot: sin(X) + sin(Y)’)

7.6 Subplots
Occasionally, it is useful to have more than one plot shown separately in the
plot window. This can be done; an example is shown in Fig. 12. The two
plot statements which produced this example were preceded by the function
named subplot, as follows

subplot(211), mesh(Z2)

subplot(212), contour(Z2)

The numeric argument to subplot is made up of three digits. The first

number specifies the vertical number of plots desired in the plot window;

CUBoulder : HPSC Course Notes

Matlab

AN
RN

SR SN
SN A2
PSS NN 5555

st CSASSOTIINN
S SN
SN 58

50 T T T T

40 —

30

20

Figure 12: Subplots of mesh and contour plots.

the second specifies the horizontal number of plots. The last number tells
in which subplot region the plotting command (plot, mesh, contour) is to

plot.

Example 13 shows three of four plots in a single plot window. The Matlab
script that produced this example is below:

% This script produces some sine and cosine plots

U = 0:pi/20:2*pi
V = sin(U)
W = cos(U)

subplot (221), plot(U,V)
subplot(222), plot(U,W)
subplot (223), plot(V,W)

CUBoulder : HPSC Course Notes

34

05F : 0.5F
of : oF
05+ q -0.5F
o 2 4 6 8 o 2 4 6
1 .
0,5/ \
ol]
-o,sK /
o 05 0 05 1

Figure 13: Subplots of sine and cosine plots.

8 That’s it!

Matlab

Well, that is a brief overview of Matlab. Now go back over this material

while you are on the computer and do all of the examples given here. This

will get you started.

We have tried to make this short so that you would be able to quickly
get into using Matlab. On the other hand, this has forced us to leave out a

Tot of stuff that is potentially useful. Now it is up to you to learn more from

the manual.

CUBoulder : HPSC Course Notes

Matlab 35

References

[MW9 90] The MathWorks, Inc., South Natick, MA. [Feb 1990]. Matlab for
Unixz Computers.

[Sigmon 89] SIGMON, KERMIT. [1989]. MATLAB primer. Technical report,
University of Florida, Gainesville, FL.

CUBoulder : HPSC Course Notes

