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Abstract. The total variation based image denoising model of Rudin, Osher, and Fatemi has been generalized
and modified in many ways in the literature; one of these modifications is to use the L1 norm as the fidelity term. We
study the interesting consequences of this modification, especially from the point of view of geometric properties of
its solutions. It turns out to have interesting new implications for data driven scale selection and multiscale image
decomposition.
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1. Introduction. Variational models for image reconstruction have had great success.
One of the best known and influential examples is the total variation based model of Rudin,
Osher, and Fatemi (ROF)[21]. This model and its variants have been a very active research
topic. The idea behind the model is to exhibit the reconstructed image as the minimizer of
the following energy:

∫
D

|∇u| + λ

∫
D

(f − u)2 dx (1.1)

The functional is to be minimized over all u ∈ L2(D). Here D is a domain in RN , N ≥ 2,
with Lipschitz boundary; it represents, for example, the computer screen. In this paper, we
will work with D = RN for convenience. The function f(x) represents the observed and
possibly degraded image, and is taken to be in L2(D). The second integral in the functional
is the fidelity term; it encourages the solution u(x) that is being sought to approximate the
observed image f(x). The first integral in the functional is the regularization term; it is
the essential novelty of the ROF model, as it allows for the reconstruction of images with
discontinuities across hypersurfaces. Nevertheless, it disfavors oscillations and is responsible
for the elimination of noise in applications to noisy images.

The standard ROF model (1.1) is well known to have certain limitations. One important
issue is the loss of contrast in solutions even for noise free observed images. For example,
Strong and Chan studied in [22] the case when the observed image f(x) is a disk, and showed
that the solution to (1.1, for any given λ, is of the form cf(x), where c ∈ [0, 1) is a constant.
We never get c = 1, no matter how large the constant λ is chosen. More generally, given
any observed image f(x) and λ > (2‖f‖∗)−1, it can be shown [14] for the corresponding
solution u(x) that ‖f − u‖∗ = 1

2λ . Here, ‖ · ‖∗ denotes the dual norm of total variation.
(See [14] for definition of the dual norm, and proofs of the statements just mentioned). It
is in general desirable for image denoising algorithms to have a large class of “noise free”
images that they leave invariant. For the standard ROF model, as these results show, that class
consists of only the trivial image f(x) := 0.

Recently, work of Y. Meyer inspired research into understanding the role of the fidelity
term better. It highlighted the fact that the choice of a suitable fidelity term can have far
reaching consequences. For example, following up on Meyer’s ideas Vese and Osher [24],
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and then Osher, Sole, and Vese [20] came up with variants of the original model that replace
the fidelity term with weaker norms. It is shown in these works that this modification allows
for much better separation of the high frequency component of images, such as noise and
texture, from the piecewise smooth, or “cartoon”, part.

In this paper, we ask related but rather different questions. We study a version of the ROF
model that uses the L1-norm as a measure of fidelity between the observed and denoised
images. Given an observed image f(x) ∈ L1(RN ), this model is based on the following
variational problem

inf
u(x)∈BV (RN )

∫
RN

|∇u| + λ

∫
RN

|u(x) − f(x)| dx (1.2)

Our goal in this paper is to explore the consequences of this modest modification on the
standard ROF model. In particular, we shall obtain some results that allow us to contrast the
modified model (1.2) with the standard one (1.1). Also, the new understanding we develop
about the nature of the scale space, lack of uniqueness of solutions, and lack of continuous
dependence on data, will suggest applications beyond mere removal of noise for the modified
model: We will argue that some of these ordinarily undesirable characteristics can be real
assets. Indeed, it turns out that the L1 fidelity based model has many desirable, and some
unexpected, consequences in applications such as multiscale image decomposition, and data
driven parameter selection.

Some distinctions of the modified model (1.2) from the standard ROF model (1.1) are
immediate:

• The way the fidelity and regularization terms scale with respect to each other in the
modified and standard models is different. In particular, unlike the standard model,
the modified model is contrast invariant in the following sense: If u(x) is a solution
of the modified model for the observed image f(x), then cu(x) is a solution of the
modified model for the observed image cf(x).

• The original model is strictly convex, and therefore its solution (the minimizer of
the functional) is unique. The modified model is not strictly convex, leading to non-
uniqueness of minimizers. This makes the scale space generated by the modified
model qualitatively very different – and, as explained in Sections 6 and 7, for certain
purposes more suitable – than that of the standard ROF model.

We concentrate especially on the scale space and geometric features of the decomposition
technique derived from this model. The analytical and numerical results presented in this
paper suggest the following major advantages of the L 1 fidelity based model over the standard
one:

• The regularization imposed on solutions by the L1 model is more geometric. By
“more geometric” we mean that the regularization process has less dependence on
the contrast of image features than on their shapes. Indeed, as some of our analytical
results show, the L1 model almost decouples the level sets of the given image from
each other and treats them independently of their associated level (grayscale value).

• As distinct from the standard model, small features in the image maintain their con-
trast even as the fidelity parameter λ is lowered, maintaining good contrast until they
suddenly disappear.

• An unexpected consequence of the modification is that it suggests a data driven
scale selection technique: it seems possible to identify certain critical values of the
parameter λ at which features at the corresponding scale go through a discontinuous
change.

The ROF model with L1 fidelity was introduced and studied in the context of image denoising
and deblurring by previous authors Alliney and Nikolova in [1, 3, 4, 15, 16, 17]. Alliney’s
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previous work involves the variational model (1.2) in only one space dimension; moreover
his results are restricted to the discrete versions of the energy. Nevertheless, many of his ob-
servations are directly relevant to our results (see, for instance, Proposition 4.2 that we quote
from his work), and some of our results (for instance part of Theorem 5.2) can be thought of
as continuum analogues of his results in arbitrary dimensions. In [15] Nikolova shows that
for certain types of noise the total variation regularization with L 1 fidelity outperforms the
standard model. And [16] contains many impressive numerical results that clearly demon-
strate the advantages of using the L1 norm for fidelity term in some applications. In fact,
the analysis presented in [15] applies more generally to fidelity terms that are, like the L 1

fidelity term and unlike the L2 fidelity term, non-differentiable at the origin. The techniques
of Nikolova also allow her to study certain typical properties of minimizers to the ROF model
and its variants with different types of fidelity terms. For example, among the results is a
characterization of the staircasing effect. Moreover, she calls attention to the fact that with
L1 type fidelity terms, the solution reconstructs the given image exactly at some pixels; this
relates to the contrast preserving property we touched on above. However, unlike the focus
of this paper, results in [15, 16] mostly concern discrete versions of the denoising energies
and depend on the discretization size; continuum analogues are not treated. Our focus in this
paper is squarely on the continuum energies so that we can study geometric properties of their
minimizers independently of the discretization.

We conclude the introduction with an outline of the remaining sections. Section 2 in-
troduces the notation that is used throughout the paper. Section 3 works out the solution to
minimization problems (1.1) and (1.2) in the simple case when the observed image f(x) is
the characteristic function of a disk in two dimensions. This illustrates some of the results
obtained in subsequent sections for more general types of images. Section 4 consists of a
collection of simple but useful facts that follow immediately from the definitions of Section
2; these get used in the following sections of the paper. Section 5 deals with properties of
minimizers of energy (1.2). In particular, it considers the case where the observed image is
the characteristic function of a bounded set. It recalls the known results for standard ROF
model in this case, and uses them for comparison. Section 6 elaborates on the differences
between the scale spaces generated by the two models given by (1.1) and (1.2); it shows that
the model based on L1 fidelity makes it possible to determine special values of the parameter
λ completely from the given observed image. Finally, Section 7 presents numerical experi-
ments and gives some implementation details. The numerical results corroborate the overall
picture suggested by the analytical results of the previous sections.

2. Notation. In this section we introduce notation that will be used throughout the paper
to compare the original ROF model 1.1 with the modified one 1.2 that uses L 1-fidelity term.
First, we recall the standard definitions of total variation of a function and the perimeter of a
set [10, 11]. The total variation of a function u(x) ∈ L1

loc(R
N ) is defined to be

∫
RN

|∇u(x)| := sup
φ∈C1

c (RN ;RN )

|φ(x)|≤1∀x∈RN

−
∫
RN

u(x) div φ(x) dx.

The perimeter of a set Σ ⊂ RN is defined in terms of the above definition to be

Per(Σ) :=
∫
RN

|∇1Σ(x)|.
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For a given possibly noisy image f(x) ∈ L1(RN ), we will denote the energy of the total
variation model with L1 fidelity E1(u, λ):

E1(u, λ) :=
∫
RN

|∇u| + λ

∫
RN

|f − u| dx

It will be compared, for f ∈ L1(RN )∩L2(RN ), with the energy of the standard ROF model,
which we denote E2(u, λ):

E2(u, λ) :=
∫
RN

|∇u| + λ

∫
RN

(f − u)2 dx

Of particular interest are the minimum values of these energies as a function of the parameter
λ:

E1(λ) := min
u∈L1(RN )

E1(u, λ),

E2(λ) := min
u∈L2(RN )

E2(u, λ).

Minimizers of the standard ROF energy E2(·, λ) for a fixed λ are unique; this is a conse-
quence of its strict convexity. Minimizers of the modified energy E 1(·, λ) need not be unique
in general. We therefore introduce the following notation to denote the set of minimizers of
E1(·, λ) at a given λ ≥ 0:

M(λ) :=
{
u ∈ L1(RN ) : E1(u, λ) = E1(λ)

}
.

For any given f(x) ∈ L1(RN) and λ ≥ 0, the set M(λ) is non-empty: a standard argument
shows the existence of minimizers. Because of non-uniqueness, M(λ) can have several el-
ements. Different elements of M(λ) can stand at different distances to the observed image
f(x). This motivates the following notation:

µ+(λ) := sup
{
‖f − u‖L1(RN ) : u ∈ M(λ)

}
,

µ−(λ) := inf
{
‖f − u‖L1(RN ) : u ∈ M(λ)

}
.

The values of the parameter λ at which M(λ) contains elements whose distances to the given
image f(x) are different turn out to be special. We therefore adopt the following notation to
denote this set of special λ values:

S(f) :=
{
λ ∈ R+ : µ−(λ) �= µ+(λ)

}
.

To emphasize the dependence of Ei(·, λ), Ei(λ),M(λ), and µ±(λ) on the observed image
f(x) in addition to λ, we will write Ei(·, λ, f), Ei(λ, f), M(λ, f), and µ±(λ, f) whenever
necessary.

3. An example. In this section we consider a very simple but illustrative example.
Namely, we work out explicitly the solution to the problem of minimizing the two dimen-
sional version of E1(·, λ) in case when the observed image f(x) is given by the characteristic
function 1Br(0)(x) of a disk Br(0) that is centered at the origin and with radius r. It is im-
portant to compare the result with the one for the standard ROF model, which – as we noted
in the introduction – was calculated in [22].
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FIG. 3.1. Left: Plot of ‖uλ(x) − f(x)‖2
L2 vs λ−1 for the example of Section 3, where uλ(x) denotes the

unique minimizer of E2(·, λ). Right: Plot of µ+(λ) vs. λ−1 for the ROF model with L1 fidelity, using the example
of Section 3.

We start by recalling the calculation of [22]. For λ ≥ 0 and the observed image given by
f(x) = 1Br(0)(x), the unique minimizer uλ(x) of E2(·, λ) is given by:

uλ(x) ≡




0 if 0 ≤ λ ≤ 1
r

,(
1 − 1

λr

)
1Br(0)(x) if λ >

1
r

.

Turning now to the case of E1(·, λ), one can reason (for example with the help of some of
the results presented in Sections 5 and 6 of this paper) that for each λ ≥ 0, every minimizer
has to be of the form c1Br(0)(x) for some constant c ∈ [0, 1]. We therefore need to minimize
the function

E1(c1Br(0)(x), λ) = 2πrc + λπr2|1 − c|
over c ∈ [0, 1]. We get

M(λ) =




{0} if 0 ≤ λ <
2
r

,{
c1Br(0)(x) : c ∈ [0, 1]

}
if λ =

2
r

,{
1Br(0)(x)

}
if λ ≥ 2

r
.

Thus, we see that the solution is unique for all except one special value of the parameter λ.
The special value is related to radius of the disk; for more general images we would expect
such special values of the parameter λ to be related to the geometric scale of distinct objects
contained in the scene.

The difference between scale spaces generated by the standard ROF model and the one
with L1 fidelity is made abundantly clear by this simple example. When L 1 fidelity is used,
unlike in the standard ROF model, the scale space is mostly constant; it only makes a sudden
transition at a special value of the scale parameter. This difference can also be manifested by
plotting the “fidelity of minimizer” as a function of the parameter λ for each model and com-
paring the qualitative properties. Figure 3.1 shows the plots obtained based on the minimizers
calculated above.

This example brings out another elementary aspect of using an L 1 fidelity term with to-
tal variation regularization. Fix a λ > 0. Then, the unique minimizer of E 1(·, λ) with the
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observed image f(x) = 1Br(0)(x) is identically 0 if r < 2
λ , but 1Br(0)(x) if r > 2

λ . Thus
the dependence of the solution to the L1 model on the observed image is not continuous with
respect to, say, the L1 norm. This is clearly related to the lack of uniqueness in solutions
to the model, and is a price to pay for having solutions in which features of interest main-
tain good contrast until they are completely eliminated. However, Sections 6 and 7 explain
some applications for which such a discontinuity can be actually desirable, and Proposition
6.4 shows that certain important features of the scale space are continuous as a function of
observed signal.

4. Basic facts. In this section, we collect a number of elementary facts that follow im-
mediately from the definitions introduced in the previous section. These results will be useful
in the subsequent sections.

The following claim shows that the minimum energies E i(λ) are well-behaved functions
of the parameter λ:

CLAIM 1. For any given observed image f(x) ∈ L1(RN ) the function E1(λ), and for
any given observed image f(x) ∈ L2(RN ) the function E2(λ) satisfy the following proper-
ties:

1. Ei(λ) for i = 1, 2 are increasing and concave.
2. Ei(0) = 0 for i = 1, 2.
3. 0 ≤ E1(λ) ≤ ‖f‖L1λ and 0 ≤ E2(λ) ≤ ‖f‖2

L2λ for all λ ∈ [0,∞).
4. Ei(λ) are Lipschitz continuous for i = 1, 2.

Proof: Ei(λ) are defined as pointwise infema of a collection of linear functions that are
increasing in λ; this makes them increasing and concave. Statements 2 and 3 follow from the
trivial fact that Ei(λ) ≤ Ei(0, λ) for i = 1, 2. Statement 4 now follows from the first three.
�

CLAIM 2. The set M(λ) is closed and convex.

Proof: This follows from convexity of the energy E1. �

The following claim, which must be a well-known fact, shows that the fidelity of the
minimizer to the original ROF model varies continuously as a function of λ. This should be
contrasted with the results for the L1 model that are obtained in the subsequent sections. We
include its proof for completeness.

CLAIM 3. Given f(x) ∈ L2(RN ), for each λ ≥ 0 let uλ(x) denote the unique minimizer
of E2(·, λ). Then the function λ → ‖f − uλ‖L2 is continuous.

Proof: Fix λ∗ ≥ 0 and let uλ∗(x) be the unique minimizer of E2(·, λ∗). Let {λj}∞j ⊂ R+

converge to λ∗. Consider the sequence of corresponding minimizers: {uλj}. The obvi-
ous relation E2(uλj , λj) ≤ E2(0, λj) = λj‖f‖2

L2 implies that the sequence has uniformly
bounded total variation and L2-norm. It also implies that ‖uλ − f‖L2 ≤ ‖f‖L2 for every
λ ≥ 0. Applying the standard compactness property (for functions with uniformly bounded
total variation) on compact sets, we can find a subsequence, also denoted {u λj} such that
uλj (x) → v(x) ∈ L1

loc(R
N ) in L1 on any bounded set. We may then pass to another subse-

quence to make sure that uλj (x) → v(x) pointwise a.e. as well. Fatou’s Lemma then shows
that ‖v − f‖L2 ≤ lim infj→∞ ‖uλj − f‖L2 , so that in fact v ∈ L2(RN ). Also, the standard
lower semi-continuity result for total variation implies that

∫ |∇v| ≤ lim infj→∞
∫ |∇uλj |.

Hence we get that E2(v, λ∗) ≤ lim infj→∞ E2(uλj , λj).
On the other hand, E2(uλ∗ , λ∗) ≥ lim supj→∞ E2(uλj , λj). To see this, suppose not.

Then there is ε > 0 and arbitrarily large j such that E2(uλ∗ , λ∗) ≤ E2(uλj , λj) − ε. But
also, limj→∞ E2(uλ∗ , λj) = E2(uλ∗ , λ∗). These two statements mean E2(uλ∗ , λj) <
E2(uλj , λj) for some large j, which is a contradiction since uλj are supposed to be mini-
mizers of E2(·, λj). This, along with the remarks of the previous paragraph, adds up to the
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following conclusion:

lim sup
j→∞

E2(uλj , λj) ≤ E2(uλ∗ , λ∗) ≤ E2(v, λ∗) ≤ lim inf
j→∞

E2(uλj , λj).

We thus see that v is a minimizer of E2(·, λ∗); by uniqueness of minimizers of E2(·, λ∗), we
get that v = uλ∗ .

If λ∗ = 0, then uλ∗ = 0 and so ‖uλ∗ − f‖L2 = ‖f‖L2. Recalling from above that
‖uλ − f‖L2 ≤ ‖f‖L2 for all λ, we see that in this case

lim sup
j→∞

‖uλj − f‖L2 ≤ ‖uλ∗ − f‖L2 ≤ lim inf
j→∞

‖uλj − f‖L2

which establishes continuity of the map in question at λ = 0.
If λ∗ > 0, we reason as follows: We must once again have lim supj→∞ ‖uλj − f‖L2 ≤

‖uλ∗−f‖L2, which immediately leads to the conclusion of the claim. To see this, we suppose
it’s false and proceed as we did in the previous paragraphs. There is then arbitrarily large j
and an ε > 0 such that ‖uλ∗ − f‖L2 ≤ ‖uλj − f‖L2 − ε. But then

E2(uλ∗ , λ∗) ≤ lim inf
j→∞

E2(uλj , λj) − ελj .

Also, E2(uλ∗ , λj) → E2(uλ∗ , λ∗) as j → ∞. These last two statements lead as before to the
contradictory statement that E2(uλ∗ , λj) < E2(uλj , λj). �

We will see whether the analogue of Claim 3 holds for E1. In that regard, we first make
the following basic observation:

CLAIM 4. Let λ2 > λ1 ≥ 0, and assume that uλ1 and uλ2 are any two minimizers of
E1(·, λ1) and E1(·, λ2) respectively. Then:

‖uλ1 − f‖L1(RN ) ≥ ‖uλ2 − f‖L1(RN ).

Proof: Suppose ‖uλ2 − f‖L1 > ‖uλ1 − f‖L1 . Then, since uλ1 ∈ M(λ1), we have
E1(uλ1 , λ1) ≤ E1(uλ2 , λ1). We then have

E1(uλ1 , λ2) = E1(uλ1 , λ1) + (λ2 − λ1)‖uλ1 − f‖L1

≤ E1(uλ2 , λ1) + (λ2 − λ1)‖uλ1 − f‖L1

< E1(uλ2 , λ1) + (λ2 − λ1)‖uλ2 − f‖L1

= E1(uλ2 , λ2).

which is a contradiction, since uλ2 ∈ M(λ2) by hypothesis. �

COROLLARY 4.1. The functions µ±(λ) are decreasing. In fact,

µ−(λ1) ≤ µ+(λ1) ≤ µ−(λ2) ≤ µ+(λ2)

whenever λ1 > λ2 ≥ 0.

The functions µ±(λ) are the analogue for E1 of ‖uλ−f‖L2 in Claim 3. These functions
in general can be discontinuous; in fact their set of discontinuity is precisely S(f) according
to our notation. The Corollary above allows us to make the following simple statement about
the discontinuities of these functions:

CLAIM 5. For any given f ∈ L1(RN ), the set S(f) is at most countable.
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Proof: If λ ∈ S(f), then µ−(λ) < µ+(λ). By the corollary above, at such a λ both µ− and
µ+ have a jump discontinuity. The set of discontinuities of a monotone function are at most
countable. �

Finally, for completeness let us state the following rather obvious fact about the asymp-
totic value of the functions µ±(λ) as λ → ∞:

CLAIM 6. Given f(x) ∈ L1(RN), we have limλ→∞ µ±(λ) = 0.

Proof: Given ε > 0 we can find fε(x) ∈ BV (RN ) such that ‖fε − f‖L1 ≤ ε
2 . If uλ(x) ∈

M(λ) with µ+(λ) = ‖uλ − f‖L1 , then

µ−(λ) ≤ µ+(λ) ≤ 1
λ

E1(uλ, λ) ≤ 1
λ

E1(fε, λ) ≤ 1
λ

∫
|∇fε| + ε

2
.

Hence, for all large enough λ we have µ±(λ) ≤ ε. �

The following fact is taken directly from [3]. It says that any image u ∗(x) which arises
as the solution to model (1.2) for some observed image f(x) is in fact also the solution to
model (1.2) with observed image f(x) taken to be u∗(x) itself provided that the parameter
λ is taken large enough. We include it as a good way to emphasize the difference of model
(1.2) from (1.1) in regard to the loss of contrast in solutions.

PROPOSITION 4.2. Let λ∗ ≥ 0, f(x) ∈ L1(RN ), and u∗(x) ∈ M(λ∗, f). Then for
every λ ≥ λ∗ we have u∗(x) ∈ M(λ, u∗).

Proof: See [3].

5. Minimizers of E1. In this section, we study the behavior of the ROF model with L1

fidelity on simple images. Our motivation is twofold. First, studying the behavior of image
denoising models on simple images is a first step towards understanding the type of images
they can successfully process. Second, this type of question allows us to compare different
models. And in fact, we will stress the difference of these results from the analogous ones ob-
tained for the standard ROF model by previous authors. In particular, our results will bolster
the intuitive observation that the L1 fidelity term leads to more geometric regularizations.

The following proposition constitutes our starting point. It shows that the ROF model
with L1 fidelity term almost decouples the level sets of the given image from each other; it
almost becomes a geometry problem for each level set, independent of the level.

PROPOSITION 5.1. The energy E1(u, λ) can be rewritten as follows:

E1(u, λ) =
∫ ∞

−∞
Per

({x : u(x) > γ})

+ λ
∣∣∣{x : u(x) > γ} � {x : f(x) > γ}

∣∣∣ dγ (5.1)

Proof: Recall the coarea formula for functions of bounded variation (see [11] or [10]):

∫
RN

|∇u| =
∫ ∞

−∞
Per

({x : u(x) > γ}) dγ (5.2)
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Also, there is the following “layer cake” formula:∫
RN

|u − f | dx =
∫
{u>f}

|u − f | dx +
∫
{f>u}

|u − f | dx

=
∫
{u>f}

∫ u(x)

f(x)

dγ dx +
∫
{f>u}

∫ f(x)

u(x)

dγ dx

=
∫
RN

∫
R

1{u>f}(x)1[f(x),u(x))(γ) + 1{f>u}(x)1[u(x),f(x))(γ) dγ dx

=
∫
R

∫
RN

1{u>f}(x)1[f(x),u(x))(γ) + 1{f>u}(x)1[u(x),f(x))(γ) dx dγ

where we simply changed the order of integration in the last step. But now we have:

1{u>f}(x)1[f(x),u(x))(γ) = 1 iff x ∈ {u > f} ∩ {u > γ} ∩ {f > γ}c

and 0 otherwise, and

1{f>u}(x)1[u(x),f(x))(γ) = 1 iff x ∈ {f > u} ∩ {u > γ}c ∩ {f > γ}
and 0 otherwise. That means

1{u>f}(x)1[f(x),u(x))(γ) + 1{f>u}(x)1[u(x),f(x))(γ) = 1{u>γ}�{f>γ}(x)

Therefore ∫
RN

|u − f | dx =
∫ ∞

−∞
|{x : u(x) > γ} � {x : f(x) > γ}| dγ

Putting these formulas together gives the one in the statement of the claim. �

We now explore some consequences of Proposition 5.1. First, we consider what happens
when the observed image is binary. In other words, we assume that f(x) is the character-
istic function of a domain. We assume that the domain is bounded, but for now make no
assumptions about the boundary of the domain.

THEOREM 5.2. If the observed image f(x) is the characteristic function of a bounded
domain Ω ⊂ RN , then for any λ ≥ 0 there is a minimizer of E1(·, λ) that is also the
characteristic function of a (possibly different) domain. In other words, when the observed
image is binary, then for each λ ≥ 0 there is at least one u(x) ∈ M(λ) which is also binary.

In fact, if uλ(x) ∈ M(λ) is any minimizer of E1(·, λ), then for almost every γ ∈ [0, 1]
we have that the binary function

1{x:uλ>γ}(x)

is also a minimizer of E1(·, λ).
Proof: Let f(x) := 1Ω(x), where Ω is a bounded domain in RN . It can be easily seen
that any minimizer u(x) of E1 satisfies u(x) ∈ [0, 1] for a.e. x ∈ RN . Formula (5.1) of
Proposition 5.1 above becomes in this case:

E1(u, λ) =
∫ 1

0

Per
({x : u(x) > γ}) + λ

∣∣ {x : u(x) > γ} � Ω
∣∣ dγ

This suggests we consider for each level set of u(x) the following geometry problem:

min
Σ⊂RN

(
Per(Σ) + λ

∣∣Σ � Ω
∣∣). (5.3)
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Standard compactness and lower semi-continuity facts show the existence of minimizers; let
Σ∗ ⊂ RN be one of them. Let uλ(x) be any minimizer of E1(·, λ), i.e. uλ(x) ∈ M(λ). Set

Σ(γ) :=
{
x : uλ(x) > γ

}
.

Then,

Per
(
Σ(γ)

)
+ λ

∣∣Σ(γ) � Ω
∣∣ ≥ Per(Σ∗) + λ

∣∣Σ∗ � Ω
∣∣ (5.4)

for a.e. γ ∈ [0,∞). This now immediately implies that

E1(uλ(x), λ) ≥ E1(1Σ∗(x), λ)

which means that 1Σ∗(x) is also a minimizer of E(·, λ).
Furthermore, since uλ(x) is a minimizer, the inequality of (5.4) is in fact an equality for

a.e. γ ∈ [0, 1]. Thus, Σ(γ) is a minimizer of the geometry problem (5.3) and 1 Σ(γ)(x) is a
minimizer of E1(·, λ) for a.e. γ. �

Remark: A version of the first statement of Theorem 5.2 was obtained for the discrete ana-
logue of model (1.2) in one space dimension by Alliney in [4]. �
Remark: The claim leaves open the possibility that for a given λ ≥ 0 there might be u ∈
M(λ) that takes more than two values. �

Remark: The conclusion of Theorem 5.2 is interesting because it establishes the equivalence
of a non-convex problem (the geometry problem of minimizing over only binary images,
which is encountered in many applications such as improving the appearance of fax docu-
ments) to a convex problem (minimizing over all images). Indeed, it follows form the corol-
lary that to obtain a solution to (5.3), one can first minimize E 1(·, λ) taking f(x) = 1Ω(x) as
the observed image, and then look at a level set of the solution obtained. Whether this obser-
vation can be turned into a useful computational tool needs to be explored, but this question
will not be pursued any further here. �

The previous two claims highlight an important qualitative difference of the L 1 model
from the standard ROF model. In contrast to the content of these claims, it is easy to show that
for certain types of binary images (even with smooth edge sets) the minimizer of the standard
ROF model takes more than two values for every large enough choice of the parameter λ.

We do not know if the following comparison principle holds for the geometry problem
(5.3): If Ω1 ⊂ Ω2 and Σ1, Σ2 are minimizers of (5.3) with Ω = Ω1 and Ω = Ω2 respectively,
then do we necessarily have Σ1 ⊂ Σ2? If true, this would imply, in particular, uniqueness for
solutions of (5.3). In any case, we can make the following statement:

COROLLARY 5.3. If the observed image f(x) is the characteristic function of a bounded,
convex domain Ω ⊂ RN , then for almost every λ ≥ 0 the minimizer of E1(·, λ) is unique
and is the characteristic function of a set contained in Ω.

Proof: Let λ ∈ [0,∞) \ S(f). And let uλ(x) ∈ M(λ). We recall from the remark that
follows Theorem 5.2 that, using the same notation as in that remark, the set Σ(γ) minimizes
the geometry problem (5.3) for almost every γ ∈ [0, 1]. Let 1 ≥ γ 1 > γ2 ≥ 0, and assume
that Σ(γ1) �= Σ(γ2) both minimize the geometry problem. By definition, we have Σ(γ 1) ⊂
Σ(γ2). Furthermore, convexity of Ω implies that

Per(Σ(γi) ∩ Ω) ≤ Per(Σ(γi)) for i = 1, 2.

Since 1Σ(γ1)(x) and 1Σ(γ2)(x) are minimizers, it follows that Σ(γ1) ⊂ Σ(γ2) ⊆ Ω. Hence,
|Σ(γ1) � Ω| �= |Σ(γ2) � Ω|. But then λ ∈ S(f), which is a contradiction. We thus reached
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the conclusion that if λ ∈ [0,∞) \S(f), then any minimizer of E1(·, λ) is necessarily binary
(i.e. the characteristic function of a set). Now suppose that u1(x) and u2(x) are two binary
minimizers of E1(·, λ). By convexity of E1(·, λ), we then have that 1

2 (u1(x)+u2(x)) is also
a minimizer, and thus binary. But the average of two binary functions is binary only if the
two functions are identical.

Thus, whenever λ ∈ [0,∞) \ S(f), the minimizer of E1(·, λ) is unique, and is binary: it
is of the form 1Σ(x) for some set Σ. The argument above shows that Σ ⊆ Ω. And Claim 5
says that S(f) is at most countable, and thus negligible. That proves the claim. �

As an aside, we note the following result about problem (5.3) that follows immediately
from the previous corollary (perhaps it can be obtained also in a less roundabout way):

COROLLARY 5.4. Let Ω be a bounded, convex domain in RN . Then, for almost every
λ ≥ 0 the solution of problem (5.3) is unique.

Proof: If Σ1 and Σ2 are solutions to (5.3), then 1Σ1(x) and 1Σ2(x) are minimizers of E1(·, λ)
with the observed image given by f(x) = 1Ω(x). Conditions on Ω imply that Corollary 5.3
applies so that Σ1 = Σ2. That proves the claim. �

We will next consider some simple images f(x) for which the minimizer of E1(·, λ)
turns out to be precisely the image f(x) itself for every large enough λ. In Section 1, we
recalled a result from Meyer’s lecture notes [14] which says that for the standard ROF model
given by E2(·, λ) the only such image is f(x) := 0. For E1, however, there are many such
images, as shown by Proposition 4.2 that we quoted in Section 2 from [4]. The following
Lemma will be instrumental in establishing whether certain simple observed images f(x)
have this property.

LEMMA 5.5. Given an observed image f(x) ∈ BV (RN), assume that there is a vector
field φ(x) with the following properties:

1. φ(x) ∈ C1
c (RN ;RN ),

2. |φ(x)| ≤ 1 for all x ∈ RN ,

3.
∫
RN

f(x) div φ(x) dx =
∫
RN

|∇f |.
Then there exists a threshold λ∗ ≥ 0 such that M(λ) = {f(x)} for all λ > λ∗. In other
words, the unique minimizer of E1(·, λ) is given by the observed image f(x).
Proof: Set λ∗ := maxx∈RN | div φ(x)|. Take any λ > λ∗. Then, given any u(x) ∈
BV (RN ) we have:

E1(u, λ) =
∫

|∇u| + λ

∫
|u − f | dx

≥
∫

u div φdx + λ

∫
|u − f | dx

=
∫

f div φdx + λ

∫
|u − f | dx +

∫
(u − f) div φdx

≥ E1(f, λ) +
(
λ − max

x∈RN
| div φ(x)|

) ∫
|u − f | dx.

Since λ > λ∗ := max | div φ(x)|, the last inequality shows that E1(u, λ) > E1(f, λ) unless
u ≡ f . Since u is a minimizer, it must in fact be the case that u ≡ f . �

Lemma 5.5 can now be applied, for example, to binary images to obtain an important
class of exact solutions. This requires making some smoothness assumption about the inter-
face between then two values of the binary function:

THEOREM 5.6. Let Ω ⊂ RN be a bounded domain with C 2 boundary. Let the observed
image f(x) be given by f(x) = 1Ω(x). Then there exists a threshold λ∗ ≥ 0 such that
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whenever λ > λ∗ the unique minimizer of E1(·, λ) is the observed image f(x) = 1Ω(x)
itself.

Proof: Since the boundary ∂Ω of the bounded domain Ω is assumed to be C 2, the outward
unit normal vector field n(x) : ∂Ω → SN−1 of ∂Ω can be extended in a C 1 manner to a
tubular neighborhood of ∂Ω, so that one gets a vector field φ(x) ∈ C 1

c (RN ;RN ) such that
φ(x)

∣∣
x∈∂Ω

= n(x), and |φ(x)| ≤ 1 for all x ∈ RN . But then

∫
RN

f div φdx =
∫

Ω

div φ(x) dx =
∫

∂Ω

φ(x) · n(x) dσ

= Per(∂Ω) =
∫
RN

|∇f | dx.

Hence, the vector field φ(x) satisfies all the requirements of Lemma 5.5, from which the
conclusion of the present claim follows. �

At this point it is worth recalling the behavior of the standard ROF model on binary
images of the form f(x) = 1Ω(x). As we noted above, simple considerations show that the
minimizer of the standard ROF model almost never turns out to be u(x) = f(x) = 1Ω(x). A
related question is whether the solution u(x) has at least the correct “set of edges”. In case Ω
is a ball, one can calculate the minimizer explicitly [22]; it turns out to be u(x) = c1Ω(x),
where c = 1 − Per(Ω)

2λ|Ω| . In particular, u(x) has the same set of edges as f(x). The results
of [5] generalize the results of [22], but also show that the class of binary images that have
this weaker property (i.e. images for which the solution to the standard ROF model turns out
to be a constant multiple of the observed image) is still rather limited; for example, there are
smooth but non-convex shapes that lack this property.

Remark: Theorem 5.6 can be easily extended to images of a more general form. Indeed,
if the level sets {x : f(x) = γ} of the given image f(x) are smooth and vary smoothly
with respect to γ, the same conclusion holds. We also see, among other things, that such an
image f(x) cannot have strict local extrema, for at a strict local extrema the level sets shrink
to a point. Moreover, there are also binary images that lack this property (i.e. which are not
exactly recovered for any λ ≥ 0, no matter how large). In fact, a repetition of some of the
arguments of Meyer given in his lecture notes [14] on the standard ROF model show that the
characteristic function of, say, a square cannot arise as the solution to the ROF model with
L1 fidelity, either, no matter what the observed image f(x) ∈ L1 is, and no matter how large
the parameter λ is chosen. �

Remark: A discrete version of Theorem 5.6 is proved in [16] for denoising models with
non-smooth (including L1) fidelity terms and smooth regularization terms. In those results,
unlike ours, the threshold value for the parameter λ necessarily involves the grid size.

The last few claims dealt with the behavior of the L1 fidelity based model for large
values of the parameter λ. Next, we consider what happens when λ ≥ 0 is small enough. The
following claim is a very simple application of the isoperimetric inequality:

PROPOSITION 5.7. Let R > 0. Then, there exists a threshold λ∗ = λ∗(R, N) such that
if f ∈ L1(RN ) with supp(f) ⊂ BR(0), then M(λ) = {0} for any λ < λ∗. In other words,
the unique minimizer of E1(·, λ) is given by u(x) ≡ 0.

Proof: Let C = C(N) be the isoperimetric constant:

∫
RN

|∇u| ≥ C(N)‖u‖
L

N
N−1 (RN )

for all u ∈ BV (RN ).
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Then we set

λ∗(R, N) :=
C(N)

Rω
1
N

N

where ωN is the volume of the unit ball in RN . Take a λ > λ∗ and let u(x) ∈ M(λ). Then
E1(u, λ) ≤ E1(0, λ). By the isoperimetric inequality, that means

C(N)‖u‖
L

N
N−1 (RN )

+ λ‖u − f‖L1(RN ) ≤ λ‖f‖L1(RN ) = λ‖f‖L1(BR(0)).

We apply Holder’s inequality to the first term on the left hand side after splitting it into
integrations over BR(0) and Bc

R(0). That gives

C(N)

Rω
1
N

N

‖u‖L1(BR(0)) + λ‖u − f‖L1(BR(0)) + C(N)‖u‖
L

N
N−1 (Bc

R(0))
≤ λ‖f‖L1(BR(0))

which shows that if λ < C(N)

Rω
1
N
N

= λ∗, then

‖u‖L1(BR(0)) = ‖u‖
L

N
N−1 (Bc

R(0))
= 0.

In other words, u ≡ 0. �

Remark: This behavior of the L1 model is to be expected, based on its contrast invariance,
as we have already noted in the introduction. It differs from the behavior at small λ values
of the standard ROF model which, according to [14], entails not just the support of a given
compactly supported image f(x) but its ‖ · ‖∗-norm. �

6. Scale space and the set S(f). The set S(f) of discontinuities of the functions µ±

play a distinguished role in the scale space generated by varying the parameter λ in the L 1

model. As the value of λ is gradually decreased, minimizers of the image models become
coarser as small scale objects in the image merge to form larger scale structures. Intuitively,
for the L1 model we can expect the values of λ ∈ S(f) to correspond to scales of distinct
objects that make up the image. These are the values of λ at which the scale space makes a
rapid and drastic transition.

We would first like to prove that the set S(f) is non-empty for the kind of images we
have been considering in the previous sections, namely images of the form f(x) = 1 Ω(x)
where Ω is a bounded domain. Our arguments are based on verifying this claim for the special
case where the given image is the characteristic function of a ball, and then generalizing the
result to f(x) = 1Ω(x) by comparing Ω with a ball that is contained in Ω.

LEMMA 6.1. Let Ω be a bounded domain in R2, and assume that BR(p) ⊂ Ω. Consider
the observed image given by f(x) = 1Ω(x). Then for any λ ≥ 0 and r ∈ (0, R) we have

E1(1Br(p)(x), λ) > min
{
E1(0, λ), E1(1BR(p)(x), λ)

}
.

Proof: Since Br(p) ⊂ BR(p) ⊂ Ω for each r ∈ (0, R), we have

‖1Ω(x) − 1Br(p)(x)‖L1(R2) = |Ω| − πr2.

That means

E1(1Br(p)(x), λ) = λ
(
|Ω| − πr2

)
+ 2πr.
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Considering E1(1Br(p)(x), λ) as a function of r, we see that it achieves its minimum on
[0, R] strictly at the end points of the interval. �

In order to show that µ±(λ) is a discontinuous function, we will show that its range omits
a full interval of values, but does include certain values on either side of that interval. The
next claim exhibits such an omitted interval:

LEMMA 6.2. Let Ω be a bounded domain in R2, and let BR(0) ⊂ Ω. Consider the
observed image given by f(x) = 1Ω(x). There is no λ ∈ R+ such that

|Ω| − πR2 < µ+(λ) < |Ω|.

Proof: Suppose there is a λ ≥ 0 such that |Ω|−πR2 < µ+(λ) < |Ω|. There exists u(x) such
that u(x) ∈ M(λ) and ‖u − f‖L1(RN ) = µ+(λ). As before, let Σ(γ) := {x : u(x) > γ}.
By Proposition 5.1, we have 1Σ(γ)(x) ∈ M(λ) for a.e. γ ∈ (0, 1). Therefore, for a.e. γ we
have

‖1Σ(γ)(x) − f‖L1(R2) < |Ω|
(otherwise µ+(λ) ≥ |Ω|). It also cannot be the case that |Σ(γ) � Ω| ≤ |Ω| − πR2 for a.e.
γ ∈ (0, 1) since we know that

∫ 1

0

|Σ(γ) � Ω| dγ = ‖u − f‖L1(R2) = µ+(λ) > |Ω| − πR2.

Thus, there exists γ∗ ∈ (0, 1) such that

1Σ(γ∗)(x) ∈ M(λ) and |Ω| − πR2 < ‖1Σ(γ∗)(x) − f(x)‖L1(R2) < |Ω|.
Case 1: |Σ(γ∗)| ≥ πR2. But then Per(BR(0)) ≤ Per(Σ(γ∗)), and

|Ω � BR(0)| = |Ω| − πR2 < ‖1Σ(γ∗)(x) − f(x)‖L1 .

Hence, E1(1BR(0)(x), λ) < E1(1Σ(γ∗)(x), λ). This is a contradiction, since 1Σ(γ)(x) was
supposed to be a minimizer.

Case 2: |Σ(γ∗)| < πR2. In this case, take r = 1√
π
|Σ(γ∗)| 12 . Since r ∈ (0, R), we have that

Br(0) ⊂ Ω. This implies

‖1Br(0)(x) − f(x)‖L1(R2) ≤ ‖1Σ(γ∗)(x) − f(x)‖L1(R2).

Moreover, as before, Per(BR(0)) ≤ Per(Σ(γ∗)). Therefore,

E1(1Br(0)(x), λ) ≤ E1(1Σ(γ∗)(x), λ) = E1(u(x), λ).

On the other hand, by Lemma 6.1 we have

E1(1Br(0)(x), λ) > min
{
E1(0, λ), E1(1BR(0)(x), λ)

}
.

This is a contradiction, since u(x) ∈ M(λ). �
THEOREM 6.3. Let Ω be a non-empty, bounded domain in R 2. Consider the observed

image given by f(x) = 1Ω(x). Then the functions µ±(λ) are discontinuous.

Proof: By Proposition 5.7, we have that µ+(λ) = ‖f‖L1 = |Ω| for all small enough λ. On
the other hand, by Claim 6 we have that µ±(λ) → 0 as λ → ∞. Yet by Lemma 6.2, there is a
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range of values near |Ω| that the function µ+ cannot take. It therefore has to be discontinuous.
Discontinuity of µ− follows form that of µ+ via Claim 4. �

Remark: This should be contrasted with the situation for the standard total variation model
(with L2 fidelity), which is explained in Claim 3. �

We thus see that the scale spaces generated by the two models, the standard ROF model
and the one with L1 fidelity, are very different. With the standard ROF model, pronounced
objects of distinct scale with sharp edges in the image gradually lose their contrast and merge
with their neighbors as the parameter λ is lowered. With the L1 model, such objects maintain
their contrast with respect to their neighbors – however their boundaries might be gradually
smoothed out. This goes on until a critical value of λ is reached – one that belongs to the set
S(f), at which point the object suddenly merges with a neighboring one.

At this point, it is also worth comparing the scale space generated by the L 1 model
with that generated by anisotropic diffusion via motion by mean curvature of level sets. The
two are drastically different. This can be seen most easily in the case when f(x) is the
characteristic function of a disk. The scale space generated by motion by curvature consists
of a family of concentric disks shrinking gradually to a point. Hence the same feature, i.e.
the original disk, appears at many intermediate scales, albeit in different sizes. On the other
hand, the scale space generated by the total variation model with L 1 fidelity term consists of
either the original disk or the constant background at any given scale.

Finally, we return to the topic of continuous dependence on the observed signal for the
L1 model. Despite our remarks in Section 3, we show in the next claim that the fidelity of
minimizer versus λ graph depends on the observed image continuously.

PROPOSITION 6.4. Let {fj(x)}∞j=1 be a sequence in L1(RN ) that converges to f(x) in
L1-norm. Then, for almost all λ ≥ 0, µ±(λ, fj) converges to µ±(λ, f) as j → ∞.

Proof: Let S := S(f) ∪ (∪∞
j=1S(fj)

)
. According to Claim 5, S(f) and each S(fj) are

countable. Therefore, S is countable and thus negligible. Fix λ ∈ [0,∞)\S. For each j, take
uj ∈ M(λ, fj). The sequence {uj}∞j=1 is bounded in BV-norm, and hence is precompact in
L1. Passing to a subsequence if necessary, we may assume that uj → u∞ in L1 as j → ∞.

We must have u∞ ∈ M(λ, f). To see this, assume otherwise. M(λ, f) is non-empty, so
take a u ∈ M(λ, f). By lower semi-continuity we have

E1(u, λ, f) < E1(u∞, λ, f) ≤ lim inf
j→∞

E1(uj , λ, fj).

But, E1(u, λ, fj) → E1(u, λ, f) as j → ∞. Therefore, for large enough j, we get E1(u, λ, fj) <
E1(uj, λ, fj). This gives a contradiction since uj ∈ M(λ, fj).

Now that we know u∞ ∈ M(λ, f), recall next that λ �∈ S. Therefore,

µ±(λ, f) = ‖u∞ − f‖L1 = lim
j→∞

‖uj − fj‖L1 = lim
j→∞

µ±(λ, fj).

That proves the claim. �

7. Computation. In this section, we show numerical examples that bring out unique
features of the total variation based denoising model with L 1 fidelity term. We also give
some details on the numerical schemes used to obtain these results.

Our computations are based on gradient descent schemes for decreasing the energies
involved. The non-differentiability of the terms involved in the energies call for some sort
of regularization. The regularized versions of energies E 1(·, λ) and E2(·, λ) used in our
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numerical experiments are the following:

Eε,δ
1 (u, λ) :=

∫
RN

√
|∇u|2 + ε + λ

∫
RN

√
(f − u)2 + δ dx,

Eε
2(u, λ) :=

∫
RN

√
|∇u|2 + ε + λ

∫
RN

(f − u)2 dx.

This type of approximation to total variation based models is very standard. The discrete
versions of these energies lead to the following equally standard explicit gradient descent
schemes in two space dimensions:

un+1
i,j − un

i,j

δt
= D−

x


 D+

x un
i,j√

(D+
x un

i,j)2 + (D+
y un

i,j)2 + ε




+ D−
y


 D+

y un
i,j√

(D+
x un

i,j)2 + (D+
y un

i,j)2 + ε


 + λ

(f − un
i,j)(

(f − un
i,j)2 + δ

)α .

where α = 1
2 for Eε,δ

1 and α = 0 for Eε
2 . Here, D+ and D− denote forward and backward

difference quotients, respectively, in the direction of their subscript.
We note that efficient numerical minimization of energies considered in this work is a

topic onto itself; no doubt there are better ways to do it then the gradient descent approach
taken and the specific choice of scheme made above. In particular, it is better to use algorithms
that do not need to regularize the non-differentiable terms appearing in the energy. Such
an algorithm is presented by Alliney in [2] with applications to one dimensional signals in
the context of an objective functional with mixed l 1,l2 norms. Also, Chambolle recently
developed an efficient algorithm for minimizing the standard ROF model for images without
regularizing the total variation term [6]. Whether these algorithms can be adapted to our
setting is a very interesting question that will be explored elsewhere.

An important point we need to clarify is the following. Although as we already noted
several times the energy E1(·, λ) is not strictly convex and its minimizers in general lack
uniqueness, for any given δ > 0 the approximate energy E ε,δ

1 (·, λ) is strictly convex so that
its minimizers enjoy uniqueness. It is these minimizers that we have computed. Moreover, it
is a very routine matter to verify that a sequence of minimizers of E ε,δ

1 (·, λ) converges to the
set of minimizers M(λ) of E1(·, λ) as ε, δ → 0+. The analogous convergence statement is
of course true also for a sequence of minimizers of E ε

2(·, λ).
Figures 8.1 and 8.2 compare the scale spaces generated by the standard total variation

model and the one with L1 fidelity on a synthetic image. This experiment makes the more
geometric nature of the L1 model abundantly clear. The observed image consists of squares
of various sizes and gray levels. In the scale space generated by the standard total variation
model, the squares gradually lose their contrast (while at the same time their geometries
get regularized) and gradually disappear. Moreover, some large squares with low contrast
against the background – namely the square near the upper left corner – disappear before
some smaller squares that have higher contrast against the background – namely the two
intermediate sized squares along the diagonal. On the other hand, in the scale space generated
by the model with L1 fidelity, the squares get processed only in terms of their geometry:
they preserve their contrast very well until all of a sudden they disappear. (They should in
fact preserve their contrast perfectly, but because our numerical scheme regularizes the L 1

fidelity term to make it differentiable, in practice there is some loss of contrast). In principle,
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the contrast of the squares plays no role in determining the order in which they are removed;
that order is determined completely in terms of the geometry of the features.

Figure 8.3 shows the graph of the fidelity of the minimizer vs. λ for the standard total
variation model, and the model with L1 fidelity. An important ambiguity we need to resolve
is how nonuniqueness of minimizers of E1(·, λ) affects the fidelity vs. λ plot for E1(·, λ).
To answer this question, recall that the fidelity of various minimizers of E 1(·, λ) differ from
each other only at countably many values of λ. In particular, all ways of obtaining the second
graph in Figure 8.2 yield plots that are identical up to a set of measure 0. Hence, there is no
ambiguity in the results shown.

Discontinuities in the minimizer’s fidelity versus λ graph for the L1 model correspond to
distinguished values of the parameter λ. As can be seen from the results, these are the values
of λ at which a drastic change in the scale space takes place. Namely, at such values of λ one
of the “features” (squares in this example) gets eliminated. There is no such distinguished
value of λ in the plot for the standard ROF model at which the graph becomes discontinuous
(as shown both by our theoretical results and by the numerical example shown). However, the
graph in that case might have kinks, which are of course harder to detect than discontinuities.
Thus, unlike the standard total variation model, the model with L 1 fidelity thus suggests a
method for data driven parameter selection.

For those familiar with the notion of an L-curve [12, 13] (which is a technique for choos-
ing regularization parameters in ill-posed inverse problems), let us point out that from the
point of view of this paper there is no apparent useful connection between the fidelity vs. λ
graph and the L-curve. According to the L-curve method, to determine a distinguished value
of the regularization parameter λ one should find the corner (point of maximum curvature)
in the

∫ |∇uλ| vs. ‖uλ − f‖L1 graph. However, for instance in the case of the example
of Section 3 (i.e. with f(x) = 1Br(0)(x)) the curvature of this graph is easily seen to be
independent of the radius r; thus, the L-curve method does not yield any scale information.

The special values of parameter λ obtained from the fidelity of minimizer graph via L 1

model can be used in many ways. For example, denoising models are sometimes used for
generating multi-scale decomposition of images, for example as in [23]. In such applications,
it is necessary to select a schedule for the parameter λ a priori. In [23], this schedule is chosen
in the form λ = 2jλ0 with j = 1, 2, 3, . . ., and the initial value λ0 is arbitrarily chosen by the
user. The L1 scale space suggests a more natural, data driven way to select these parameters
using the discontinuities in the fidelity of minimizers graph. Moreover, even if one opts to
use a λ-schedule of the form used in [23], the theoretical results and preliminary numerical
examples of this paper suggest that one might obtain a much cleaner decomposition using the
ROF model with L1-fidelity in place of the standard ROF model. All these ideas pertaining
to multiscale decomposition of images using the L1 fidelity based model will be explored
elsewhere.

Finally, Figures 8.4 and 8.5 illustrate the differences between the standard ROF model
and the one with L1 fidelity on a real medical image. In this example also, one can see that
the small scale features in the observed image, such as the ones indicated by the arrow on the
lower left hand side image of Figure 8.5, maintain their contrast much better in the L 1 fidelity
model than in the standard ROF model, even as the parameter λ is gradually decreased to
very low values.

8. Conclusion. We considered the total variation based image denoising model of Rudin,
Osher, and Fatemi with the L1 norm as the fidelity term. Our results highlight that this modifi-
cation leads to many interesting qualitative differences in the behavior of the modified model
from the standard one. These differences have important consequences for image denois-
ing. They also suggest interesting new research directions into applications to data driven
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parameter selection, and multiscale image decomposition.
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FIG. 8.1. Example of scale space generated by the standard total variation model. Compare with the same
example for the model with L1 fidelity, shown in Figure 3.
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FIG. 8.2. Example of scale space generated by the total variation model with L1 fidelity. Compare with Figure 2.
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FIG. 8.3. Plot of fidelity of minimizer (i.e. ‖uλ(x) − f(x)‖2
L2 ) vs. λ−1 for the standard ROF model (top

graph) and the plot of fidelity of minimizer (i.e. ‖uλ(x) − f(x)‖L1 ) vs. λ−1 for the ROF model with L1 fidelity
(bottom graph).
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FIG. 8.4. Scale space generated by the standard ROF model.
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FIG. 8.5. Scale space generated by the ROF model with L1 fidelity term.
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