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1. [16] True or false. In the case of a true statement, just write down TRUE/T. In the
case of a false statement, write down FALSE/F AND also disprove the statement or
give an example to show that it is not always true.

(a) If dim(V ) = n, then any set of n− 1 vectors in V must be linearly independent.

(b) If S, T, and U are subspaces of an inner product space and S ⊥ T , T = U⊥, then
S = U .

(c) If a set S of vectors in V contains the zero vector, then S is linearly dependent.

(d) If dim(V ) = n, then there exists a set of n + 1 vectors in V that spans V .

(e) If S, T, and U are subspaces of a vector space and S ⊥ T , T ⊥ U , then S = U .
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2. [15] Let
F = {1, 1− x, 1 + x2} . (1)

(a) Show that F forms a basis for P3.

(b) Find the transition matrix B representing the change of coordinates on P3 from
F to the ordered basis {1, x, x2}.

(c) Using (b), or otherwise, find the coordinates of p(x) = a0+a1x+a2x
2 with respect

to the the basis F .
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3. [8] Let A ∈ R319×2008 with rank equal to 200. Write down the dimensions of the
fundamental subspaces R(A), R(AT ), N(A) and N(AT ).

4. [9] Let L : V → V is a linear transformation and x ∈ ker(L). Show that L(v−2008x) =
L(v) for all v ∈ V .

5. [9] Let S be a subspace of an inner product space spanned by u1, · · · ,u319. Show that
v ∈ S⊥ implies < v,uk >= 0 for k = 1, · · · , 319.
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6. [15] Consider C[−π, π] with the inner product

< f, g >=
1

π

∫ π

−π

f(x)g(x)dx , (2)

and the norm ||f ||2 =< f, f >.

(a) Show that the set

F =

{
1√
2
, cos x, sin 2008x

}
(3)

is an orthonormal set of vectors.

(b) Determine the value of

∥∥∥∥
1√
2

+ cos x + sin 2008x

∥∥∥∥ . (4)

(c) Determine the projection of h(x) = sin x onto the subspace of C[−π, π] spanned
by F .
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7. [13] Let

A =




1 4
2 2
3 0
0 1


 . (5)

(a) Use the Gram-Schmidt process to obtain an orthonormal basis for R(A) with
respect to the usual scalar product defined in R4.

(b) Determine an orthogonal matrix Q and an upper triangular matrix R such that
A = QR.



page 7

8. [15] Let L : Span(1, sin x, cos x) → P3 defined by

L(f(x)) = f(0) + f ′(0)x +
f ′′(0)

2
x2 . (6)

For example,

L(cos x) = cos(0)− sin(0)x− cos(0)

2
x2 = 1− 1

2
x2 ∈ P3 . (7)

(a) Show that L is a linear operator.

(b) Find the matrix representation of L with respect to the ordered bases E =
{1, sin x, cos x} and F = {1, 1 + x, 1 + x− x2}.

(c) Determine the kernel and the range of L.
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