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1. [20] True or false. Just write the word TRUE/T or FALSE/F. No explanation is
necessary.

(a) Let x1 = (1, 0, 1)T , x2 = (1, 1, 3)T and x3 = (2, 1, 4)T . The set {x1,x2,x3} spans
R3.

(b) Let A,B ∈ Rn×n such that AB = 0. Then rank(A)+rank(B)≤ n.

(c) Let f1(x) = eax and f2(x) = ebx. f1 and f2 are linearly independent if a 6= b.

(d) If the set of vectors {u1, · · · ,un} is a basis for a vector space V , then u1, · · · ,un,un+1

are linearly dependent.

(e) If dim(V ) = n, then there exists a set of n + 1 vectors in V that spans V .

(f) Let A ∈ Rm×n. If dim(N(A)) = 0, the column vectors of A are linearly indepen-
dent.

(g) The set of all vectors of the form (a, a + b, a + b + c + 3) is a subspace of R3.

(h) If dim(V ) = n, then any set of n− 1 vectors in V must be linearly independent.

(i) If A ∈ Rm×n, rank(A)≤ min(m,n).

(j) If a set S of vectors in V contains the zero vector, then S is linearly dependent.

2. [15] What are the maximum and minimum possible ranks of a 5× 3 matrix. Give one
example of a matrix of each type. For each of your examples write down its nullity.
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3. [20] Let x1, · · · ,xn ∈ Rn are linearly independent and let A ∈ Rn×n such that Rank(A) =
n. Prove that if

yi = Axi

for i = 1, · · · , n, then y1, · · · ,yn are linearly independent.
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4. [15] Show that the union of the x-axis and the z-axis in R3, i.e. the set S = {(x, y, z)T ∈
R3|x = 0 or z = 0}, is not a subspace of R3.

5. [15] Let

A =




1 1 0 2 0
4 4 1 12 3
−6 −6 −2 −20 −5
2 2 1 8 4
−6 −6 −2 −20 −6




.

By row operations A can be transformed into matrix B given by

B =




1 1 0 2 0
0 0 1 4 3
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0




.

(a) What is the rank of A?

(b) Find a basis for the column space of A.

(c) Find a basis for the null space of A.
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6. [15] Consider the vector space R2×2 and the following sets of ordered basis

E =

{(
1 1
0 1

)
,

(
1 0
0 1

)
,

(
0 1
0 1

)
,

(
1 1
1 0

)}

F =

{(
1 1
0 0

)
,

(
0 0
1 1

)
,

(
0 1
0 0

)
,

(
0 0
0 1

)}
.

(a) Write down the coordinate vector for each element in E with respect to the basis
F .

(b) Find the transition matrix U from the basis E to the basis F .
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