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Abstract

A Unified Coordinate approach in describing the fluid motion for compu-

tational fluid dynamics has been introduced by Hui et. al. (W.H. Hui, P.Y. Li

and Z.W. Li, A Unified Coordinate System for Solving the Two-Dimensional Euler

Equations, J. Comp. Phys. 153 (1999), 596-637). This coordinate system moves

with velocity hq where h is arbitrary and q is the velocity of the fluid particle.

Hence, it includes the Eulerian Coordinates and the Lagrangian Coordinates as two

particular cases where h ≡ 0 and h ≡ 1 respectively. h is suggested to be chosen

so that the grid angle is preserved. One of the purposes of this thesis is to explore

the possibilities on choosing this free function h. Improvements on the accuracy

and the efficiency of the h-equation solver will be given. We will also discuss the

way to improve the efficiency of the computations using the Unified Coordinates,

including the replacement of the Exact Riemann Solver and the introduction of the

Composite Operator approach.
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Chapter 1

Introduction

For over two hundred years, two different coordinate systems for describing fluid mo-

tion have existed: the Eulerian one describes fluid motion at fixed locations, whereas

the Lagrangian one does so following fluid particles. Accordingly, the Eulerian de-

scription considers velocities and other properties of fluid particles to be functions

of time and of fixed space coordinates. By contrast, the Lagrangian description

considers the positions of fluid particles and their other properties to be functions

of time and of their permanent identifications, such as their initial positions or any

set of material functions of fluid particles.

Computationally, in using the Eulerian Coordinates, the computational cells

are fixed in space. Therefore, due to the averaging in the cell, sliplines are usually

smeared badly and shocks are also smeared, but somewhat better than sliplines.

This fortunate latter situation is just a consequence of the convergence of the char-

acteristics in this genuinely nonlinear wave.

Computational cells in the Lagrangian Coordinates, on the other hand, are

literally fluid particles. However, the very fact that computational cells exactly

follow fluid particles can result in severe grid deformation, causing inaccuracy and

even break down of the computation.
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As proposed by Hui, Li and Li [2], we may use a Unified Coordinates approach

to do the computations. Instead of really following the fluid particles as in the

Lagrangian Coordinates, we may follow pseudo-particles which move with velocity

hq,q being velocity of fluid particles and h being an arbitrary function which can be

determined by suitable choices. This turns out to be a unified description, ranging

from the Eulerian when h ≡ 0 to the Lagrangian when h ≡ 1, and the freedom

in choosing h makes it possible to avoid the disadvantages of excessive numerical

diffusion across slip lines in the Eulerian description and of severe grid deformation

in the Lagrangian description. Extensions from the two dimensional flows [2] to one

dimensional Euler equations [3] and three dimensional Euler equations [4] have been

carried out successfully. The method has also been generalized and applied to the

Shallow water equations in [5].

As suggested in the above articles, h can be chosen so that the grid angle is

preserved. The most important consequence is that if the initial grid is orthogonal,

the grid will remain orthogonal and hence will be highly regular everywhere in the

flow field. One of the purposes of this thesis is to explore other possibilities on

choosing the free function h so that it may be easier to be computed, or may give

a better resolution of the solutions on the flow variables. Another thing motivates

this research is the efficiency of the h-equation solver. From past experience, large

proportion of computational time is used to solve the h-equation. In this thesis,

we will explain why this happened and try to introduce another way to obtain

an accurate solution. Two other ways will also be explained and implemented to

improve the efficiency of the computations in using the Unified Coordinates: The

first way is to replace the Exact Riemann solver by other type of non-iterative

schemes. The other way is to consider a Composite Operator approach in using

both the Unified Coordinates and the Eulerian Coordinates.

This thesis is organized as follow. The formulation of the Euler equations

written in the Unified Coordinates will first be stated in Chapter 2. Original nu-
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merical procedures and the Riemann solutions, which are used in constructing the

numerical fluxes at the cell interfaces, are given in Chapter 3. Chapter 4 proposes

several improvements in the efficiency and the robustness of the numerical schemes.

Newly developed theory [6] applied to the calculations in the Unified Coordinates

will be explained in Chapter 5. Lastly, Chapter 6 includes several test cases showing

how the suggested methods improve the efficiency of the Unified Coordinates system

approach on solving the two-dimensional unsteady Euler equations when the flow is

steady.

3



Chapter 2

Euler Equations Written in the

Unified Coordinates

In this chapter, we will first state the Unified Coordinates and then apply them to

the two dimensional unsteady Euler equations. Some properties of the transform

and the equations will also be given.

2.1 The Unified Coordinates

Starting from Cartesian Coordinates (x, y) and time t in Eulerian description, we

make a transformation to coordinates (λ, ξ, η) by

dt = dλ (2.1)

dx = hudλ + Adξ + Ldη (2.2)

dy = hvdλ + Bdξ + Mdη (2.3)

where u and v are the x and y components of fluid velocity q, respectively. Let

Dh

Dt
≡ ∂

∂t
+ hu

∂

∂x
+ hv

∂

∂y
(2.4)

4



denote the material derivative following the pseudo-particle, whose velocity is hq.

Then it is easy to show that

Dhξ

Dt
= 0 and

Dhη

Dt
= 0 ; (2.5)

that is, the coordinates (ξ, η) are material functions of the pseudo-particles, and

hence are their permanent identifications. Accordingly, computation cells move and

deform with pseudo-particles, rather than with fluid particles as in the Lagrangian

Coordinates.

The transformation (2.1-2.3) has the following properties:

1. Unlike transformations used in grid generation, which are flow-independent,

the unique feature of transformation (2.1-2.3) is it depends on the fluid velocity.

2. In (2.2-2.3), h is an arbitrary function of coordinates (λ, ξ, η). On the other

hand, (A,L, B, M) are determined by the compatibility conditions. For exam-

ple, for dx to be a total differential,

∂A

∂λ
=

∂(hu)

∂ξ
and

∂L

∂λ
=

∂(hu)

∂η
. (2.6)

3. In the special case when h ≡ 0, (A,L, B,M) are independent of λ. Then the

coordinates (ξ, η) are independent of time λ and are hence fixed in space. This

coordinates system is thus Eulerian. Transform (2.1-2.3) is then flow indepen-

dent and is just like any other transformation from Cartesian Coordinates

(x, y) to Curvilinear Coordinates (ξ, η) used in grid generation. In particular,

if A ≡ M ≡ 1 and B ≡ L ≡ 0, (ξ, η) are identical with Cartesian Coordinates

(x, y).

4. In the special case when h ≡ 1, on the other hand, the pseudo-particles coin-

cide with fluid particles and (ξ, η) are the material functions of fluid particles,

and hence are the Lagrangian Coordinates. The conventional choice of the La-

grangian Coordinates, i.e. (ξ, η) = (x, y)|t=0, is just a special choice of material

5



functions, corresponding to choosing A ≡ M ≡ 1 and B ≡ L ≡ 0. It does not

offer any particular advantage in numerical computation. In particular, the

computational domain in (ξ, η) space can always be easily made regular, rec-

tangular for example, even if it is irregular in the physical space. This cannot

be done with the conventional choice of the Lagrangian Coordinates.

5. In the general case, h is arbitrary. It thus provides a new degree of freedom

which may be used to advantage: to avoid excessive numerical diffusion in the

Eulerian Coordinates, or to avoid severe grid deformation in the Lagrangian

Coordinates. The ways of choosing h will be given in Chapter 4.1 where the

effect of this parameter on the resolution of the flow discontinuities and the

regularity of the grid will be presented in details.

2.2 Euler Equations in the Unified Coordinates

The Euler equations in Cartesian Coordinates for inviscid flow of an ideal gas obeying

the γ-law are

∂

∂t




ρ

ρu

ρv

ρe




+
∂

∂x




ρu

ρu2 + p

ρuv

ρu
(
e + p

ρ

)




+
∂

∂y




ρv

ρuv

ρv2 + p

ρv
(
e + p

ρ

)




= 0 (2.7)

where ρ, p, and e are the density, pressure, and specific total energy of the gas

respectively, with

e =
1

2
(u2 + v2) +

1

γ − 1

p

ρ
.

6



Using the relation (2.1-2.3) in differential form, we can obtain the corresponding

expressions for the partial derivatives as

∂

∂t
=

∂

∂λ

(AM −BL)
∂

∂x
= −hI

∂

∂λ
+ M

∂

∂ξ
− L

∂

∂η

(AM −BL)
∂

∂y
= −hJ

∂

∂λ
−B

∂

∂ξ
+ A

∂

∂η
.

Therefore, the Euler equations for two-dimensional unsteady flow become

∂E

∂λ
+

∂F

∂ξ
+

∂G

∂η
= 0 , (2.8)

where

E =




ρ4
ρ4u

ρ4v

ρ4e

A

B

L

M




,F =




ρ(1− h)I

ρ(1− h)Iu + pM

ρ(1− h)Iv − pL

ρ(1− h)Ie + pI

−hu

−hv

0

0




,G =




ρ(1− h)J

ρ(1− h)Ju− pB

ρ(1− h)Jv + pA

ρ(1− h)Je + pJ

0

0

−hu

−hv




, (2.9)

with

∆ = det


 A L

B M


 , I = uM − vL and J = Av −Bu . (2.10)

We note that:

1. the system of equations (2.9) is in conservation form, consequently it can be

solved numerically using any well-established shock-capturing schemes. We

will discuss more on this later in Chapter 4.3.

2. the last 4 equations of (2.9) arise from the compatibility requirements of trans-

formation (2.1-2.3). They are called geometric conservation laws, in contrast

to the physical conservation laws in the first 4 equations.

7



As remarked earlier, the Unified Coordinates system is Lagrangian when

h ≡ 1. In this case, system (2.9) is the equations of motion in the Lagrangian

Coordinates which are now written in conservation form. In this regard, it should

be pointed out that it is difficult to write the conventional Lagrangian equations in

conservation form except, of course, in the special case of 1-D unsteady flow.

8



Chapter 3

Numerical Method

Following [2], the numerical procedures on how to solve the system (2.8) is given in

this chapter. Using Godunov scheme, we have to use the solution from the Riemann

problem which will also be included in this chapter.

3.1 Numerical Procedures

The numerical procedure of the Godunov/MUSCL scheme can now be summarized

as follows:

1. Initialization. Assume the initial conditions of a flow problem are given at t =

0(λ = 0) in the x− y plane. Then an appropriate ξ− η Coordinate grid is laid

on the x−y plane (for instance, we take ξ and η equal to the arc length of their

corresponding Coordinate line on x−y plane), with ξ = ξ0, ξ1, ξ2, · · · , ξm, η =

η0, η1, η2, · · · , ηn, and the curve ξ = ξ0 (or η = η0) coinciding with the solid

surface if there is one. Hence K0
i,j = (A0, B0, L0,M0)T

i,j as well as the flow

variable Q0
i,j = (ρ0, p0, u0, v0)T

i,j are obtained by averaging the given flow over

the computational cell (i, j). They are used together with h0
i,j = 0 as initial

9



conditions. Consequently, E0
i,j, i = 1, 2, · · · ,m, j = 1, 2, · · · , n, are available.

For example, if we choose ξ, η to be the respective arc lengths of x- and y-

coordinate lines then, form (2.1-2.3), K0
i,j = (1, 0, 0, 1)T and E0

i,j follow from

its expressions in (2.9).

2. The operation Lξ
∆λ for marching from λk to λk+1 = λk + ∆λ, k = 0, 1, 2, · · · .

For every pair of adjacent cells (i, j) and (i + 1, j),

(a) Do a MUSCL type data reconstruction in a component by component

manner. For example, in the ξ direction, let f be any of the above

physical variables ρ, p, u, v, then, instead of assuming a uniform state

in the cells (i, j) and (i + 1, j), we assume linearly distributed states

and use linear extrapolation to determine cell interface flow variables:

fr = fi+1,j−0.5(fi+2,j−fi+1,j)φ(r+) with r+ = (fi+1,j−fi,j)/(fi+2,j−fi+1,j)

and f` = fi,j +0.5(fi,j−fi−1,j)φ(r−) with r− = (fi+1,j−fi,j)/(fi,j−fi−1,j),

where φ(r) = max(0, min(1, r)) is the minmod flux limiter and subscripts

r and ` of f correspond to right and left states, respectively.

(b) Define the normal direction of the cell interface ξi+ 1
2
,j between the two

adjacent cells (i, j) and (i + 1, j) as

n =
(∇ξ)i,j + (∇ξ)i+1,j

|(∇ξ)i,j + (∇ξ)i+1,j| (3.1)

i.e., the average of (∇ξ)i,j and (∇ξ)i+1,j. Project the velocity vector

q = (u, v) into the normal and the tangential components (ω and τ).

(c) Solve the Riemann problem to get the interfacial flow variables (ρ, p, ω, τ)T

and hence (ρ, p, u, v)T at ξ = ξi+ 1
2
,j. These are constants and will be de-

noted by (· )i+ 1
2
,j. The idea will be further explained later in Chapter 3.2

and Chapter 4.3.

10



(d) Update Kk
i,j to Kk+1

i,j as follows


 Ak+1

i,j

Bk+1
i,j


 =


 Ak

i,j

Bk
i,j


 +

∆λk

∆ξi

hk
i,j


 ui+ 1

2
,j − ui− 1

2
,j

vi+ 1
2
,j − vi− 1

2
,j


 (3.2)


 Lk+1

i,j

Mk+1
i,j


 =


 Lk

i,j

Mk
i,j


 (3.3)

(e) Calculate the first four components of the cell interface flux. For instance,

the 2nd component of the interface flux F
k+ 1

2

i+ 1
2
,j

is evaluated as

ρi+ 1
2
,j(1− hk

i,j)(ui+ 1
2
,jM

k+1
i,j − vi+ 1

2
,jL

k+1
i,j ) + pi+ 1

2
,jM

k+1
i,j (3.4)

3. The operation Lη
∆λ for marching from λk to λk+1 = λk + ∆λ, k = 0, 1, 2, · · · .

For every pair of adjacent cells (i, j) and (i, j +1), repeat a similar procedures

as step 2(a-e).

4. Update

(a) Update the conserved variables Ep in the physical conservation laws (2.9)

using

Ek+1
pi,j

= Ek
pi,j
− ∆λk

∆ξi

(F
k+ 1

2

i+ 1
2
,j
− F

k+ 1
2

i− 1
2
,j
)− ∆λk

∆ηi

(G
k+ 1

2

i,j+ 1
2

−G
k+ 1

2

i,j− 1
2

) (3.5)

(b) Decode Ek+1
pi,j

to get Qk+1
i,j , using ∆ = Ak+1

i,j Mk+1
i,j −Bk+1

i,j Lk+1
i,j

(c) (Note: this step is, of course, to be by-passed if h ≡ const is assumed in

the computation) Update hk
i,j to hk+1

i,j . We will explain more on this later

in Chapter 4.1-4.2.

(d) Calculate the grid in the x− y plane at λk+1:





xk+1
i,j = xk

i,j +4λhk+1
i,j uk+1

i,j

yk+1
i,j = yk

i,j +4λhk+1
i,j vk+1

i,j

(3.6)

By a grid we mean the lines joining the cell centers, not the cell interface

lines. We remark that the grid in the physical plane is not used in the

11



subsequent computation (only the values of K are used) as the whole

computation is carried out in the transformed plane (the ξ − η plane).

So, this step 4(d) is optional. However, the grid information is useful

in computing steady flow as asymptotic state of unsteady flow for large

λ. In this case to check if a steady state is reached, which means the

flow at every fixed location in the x − y plane does not change with

increasing time, we should compare the flow variables Q at the same

fixed point (x, y) in the physical plane and not at the same points (ξ, η)

in the transformed plane; the latter are simply the pseudo-particles whose

positions in the x − y plane in general move with λ and never reach an

asymptotic state.

After this, we repeat steps 2-4 to advance the solution further to λk+2, and so

on.

3.2 The ξ-Split Riemann Problem

Based on the solution strategies explained in the last section, the key step is the

solution to the 1-D Riemann problem over the time step Ωk(λ) : λk < λ ≤ λk+1

resulting from dimensional splitting.

In this section, we will explain how to derive the 1-D Riemann solution in the

λ − ξ plane, in particular the flow variable Q at the interface ξ = 0 for λ ∈ Ωk(λ).

The 1-D Riemann problem in the λ− η plane can be obtained similarly.

From (2.9), at time step λk (to be taken as 0 for simplicity) the 1-D physical

conservation law equations in the λ − ξ plane resulting from dimensional splitting

are

∂Ep

∂λ
+

∂Fp

∂ξ
= 0, λ ∈ Ω(λ) : 0 < λ ≤ 4λ (3.7a)

12



where

Ep =




ρ4
ρ4u

ρ4v

ρ4e

A

B




, Fp =




ρ(1− h)I

ρ(1− h)Iu + pM

ρ(1− h)Iv − pL

ρ(1− h)Ie + pI

−hu

−hv




(3.7b)

with

∆ = AM −BL , I = uM − vL , e =
1

2
(u2 + v2) +

1

γ − 1

p

ρ
. (3.8)

The last two equations in (2.9) are dropped here due to the fact that L and M will

be kept constant in this ξ-splitting. Similarly, equations for A and B are dropped

in η-splitting Riemann Problem.

In applying the Godunov scheme to advance the solution from λ = 0 to

λ = ∆λ, the initial data for the adjacent cells (i, j) and (i + 1, j) are the following

Riemann (constant) data (for simplicity we take the cell interface between these two

cells to be located at ξ = 0)

Ep

∣∣∣∣
λ=0

=





E`(= Eλ=0
i,j ), ξ < 0

Er(= Eλ=0
i+1,j), ξ > 0 .

(3.9)

To put the Riemann problem in the λ − ξ plane more explicitly in one-

dimensional form, we note that the normal direction of the plane ξ = constant

is

n =
∇ξ

|∇ξ| =
(M,−L)

S
(3.10)

and project the flow velocity q into the normal direction n and the tangential di-

rection t to get 



ω = q·n = (uM − vL)/S

τ = q· t = (uL + vM)/S .
(3.11)
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We also replace (L,M) by S and ψ as follows




S =
√

L2 + M2

tan ψ = M/L .
(3.12)

The ξ-split Riemann problem then becomes




∂E′

∂λ
+

∂F′

∂ξ
= 0 , λ ∈ Ω(λ) , −∞ < ξ < ∞

E′(0, ξ) =





E′
l , ξ < 0

E′
r , ξ > 0

(3.13)

where

E′ =




ρ∆

ρ∆ω

ρ∆τ

ρ∆e

A

B




, F′ = S




ρ(1− h)ω

ρ(1− h)ω2 + p

ρ(1− h)ωτ

ρ(1− h)ωe + ωp

−hu/S

−hv/S




.

(3.14)

Our purpose is to find the flux F′ on ξ = 0 to be used in the Godunov scheme

to update the conserved quantities E′. h in (3.14) is taken to be equal to h0
i = hl

for ξ < 0 and h0
i+1 = hr for ξ > 0. That is to say, they are assumed constant for

0 ≤ λ < ∆λ. This is actually consistent with the h-equation proposed in Chapter

4.1 where λ appears as a parameter only.

Now we first find all possible solutions to the above system for ξ > 0 and

ξ < 0 separately, and then use them to construct solution to the Riemann problem

for −∞ < ξ < ∞.

Case (1) : ξ > 0

The Riemann Problem is



∂E′

∂λ
+

∂F′

∂ξ
= 0 , λ ∈ Ω(λ) , 0 < ξ < ∞

E′(0, ξ) = E′
r

(3.15)
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(a) The Eigenfields

For smooth solution, we first find the eigenvalues and the corresponding

right eigenvectors of the system which can be written as

G
∂U

∂λ
+ H

∂U

∂ξ
= 0 , (3.16)

where U = (ρ, p, ω, τ, A, B)T and G =
dE′

dU
, H =

dF′

dU
. In order to obtain

the eigenvalues σ we find the determinant of the matrix (σG−H), which

is given by




m 0 Y 0 σρM −σρL

mω −S ρm + Y ω 0 σρMω −σρLω

mτ 0 Y τ ρm σρMτ −σρLτ

m|q|2
2

m

γ − 1
− Sω ρωm + Y e +

Y p

(1− h)ρ
ρmτ σρMe −σρLe

0 0
hM

S

hL

S
σ 0

0 0 −hL

S

hM

S
0 σ




where m = σ∆− S(1− h)ω and Y = −S(1− h)ρ.

Direct computation gives

|σG−H| = m2ρ2σ2(m2ρ− γpS2)

γ − 1
. (3.17)

Therefore, the eigenvalues of equation (3.16) are

σ1,2 = 0 (multiplicity of 2)

σ3,4 =
(1− h)Sω

∆
(multiplicity of 2)

σ± =
S

∆
[(1− h)ω ± a] (3.18)

Their corresponding right eigenvectors are

r1 = (0, 0, 0, 0, 1, 0)T

r2 = (0, 0, 0, 0, 0, 1)T (3.19)
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for σ1,2,

r3 = (1, 0, 0, 0, 0, 0)T

r4 = (0, 0, 0, 1,
−hL

Sσ3,4

,
−hM

Sσ3,4

)T (3.20)

for σ3,4 and

r± =

(
1

a2
, 1,± 1

aρ
, 0,

∓hM

Sσ±ρa
,
±hL

Sσ±ρa

)T

(3.21)

for σ±. It can be proven that

∇σ1,2 · r1,2 = 0

∇σ3,4 · r3,4 = 0

which implies that the eigenfield σ1,2,3,4 are linearly degenerated. On the

other hand,

∇σ± · r± = ±S(1 + γ)

2∆ρa
6= 0 .

Therefore, the eigenfield σ± are genuinely non-linear.

(b) Smooth Solutions

The smooth solution for the eigenfields σ± are determined from





dρ

dp
=

1

a2

dω

dp
= ± 1

aρ
dτ

dp
= 0

dA

dp
=
∓hM

Sσ±ρa
dB

dp
=

±hL

Sσ±ρa
.

(3.22)

The solution for ρ, ω, and τ relates the flow state Q = (ρ, p, ω, τ)T in the

expansion fan to the initial state Q0 = (ρ0, p0, ω0, τ0)
T upstream of the

fan. This solution can be easily found and is most conveniently given in
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terms of the pressure ratio α = p/p0 as follows




ρ = ρ0α
1
γ

ω = ω0 ± 2a0

γ−1

(
α

γ−1
2γ − 1

)

τ = τ0

(3.23)

where a0 =
√

γp0/ρ0. Note that τ does not change across an expansion

fan and that equations (3.23) are identical to those of the purely 1-D

unsteady flow; in particular, they are independent of Kr and hr.

Let (λ, ξ) be a general point inside the expansion fan. The slope of the

characteristic is given by

dξ

dλ
=

ξ

λ
= σ± =

S

∆
[(1− h)ω ± a] . (3.24)

The solution for flow inside the fan is



p = p0

{
2(1−h)
γ−2h+1

± γ−1
(γ−2h+1)a0

(
(1− h)ω0 − ∆

S
ξ
λ

)} 2γ
γ−1

ρ = ρ0α
1
γ

ω = ω0 ± 2a0

γ−1

(
α

γ−1
2γ − 1

)

τ = τ0 .

(3.25)

If we put h = 0 in (3.25), we recover the solution as obtained in the

Eulerian Coordinates, as it should. The variation of A and B across an

expansion fan can also be obtained from (3.22), but they are not needed

in calculating the flux F′ and are thus not given here.

For discontinuous solutions, we start from the Rankine-Hugoniot condi-

tions for (3.15),




c[ρ∆] = [S(1− h)ρω]

c[ρ∆ω] = [S(1− h)ρω2 + Sp]

c[ρ∆τ ] = [S(1− h)ρωτ ]

c[ρ∆e] = [S(1− h)ρωe + Sωp]

c[A] = −[hu]

c[B] = −[hv]

(3.26)
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where [·] denotes the jump across the discontinuity whose speed is denoted

by c = dξ/dλ.

(c) Shock Waves

We denote the pre-shock (upstream) flow state by Q0 = (ρ0, p0, ω0, τ0)
T

and the post-shock (downstream) flow state by Q = (ρ, p, ω, τ)T , re-

spectively. Then the shock jump relations can be expressed in terms of

α = p/p0 as follows:





ρ = ρ0
α(γ+1)+γ−1
α(γ−1)+γ+1

ω = ω0 ± a0(α−1)√
1
2
γ(α(γ+1)+γ−1)

τ = τ0 .

(3.27)

Again, we see that τ does not jump across a shock and that equations

(3.27) are identical to those of the purely 1-D unsteady flow; in particular

they are independent of Kr and hr. We note that the jumps of A and B

across a shock may also be obtained from (3.26), but they are not used

in calculating the flux F′ and are thus not given here.

(d) Slip Lines

In this case, we get 



p = p0

ω = ω0

(3.28)

but the density ρ, tangential velocity τ , A and B may jump arbitrarily.

Once again, we note that (3.28) are identical to the purely 1-D flow; and

in particular they are independent of Kr and hr.

Case (2): ξ < 0

The solution for ξ < 0 can be obtained similarly.

Now after obtaining all possible solutions for ξ > 0 and ξ < 0 separately, the

question is how to construct the solution to the Riemann problem for λ > 0,−∞ <
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ξ < ∞. We find that at ξ = 0 the coefficients in E′ and F′ jumps discontinuously.

This is the difficulty one would face with in the Eulerian system using curvilinear

coordinates rather than Cartesian Coordinates.

The Riemann solution in the neighborhood of ξ = 0 is given by the σ1,2 field

whose speed is c = 0. The flow states on the two sides of cell interface ξ = 0 are

related by equations (3.26) with c = 0. These are six equations relating four jumps

of p, ρ, ω and τ and therefore, in general have no solution, except when hl = hr,

Ll = Lr and Ml = Mr; in the latter case the flow is continuous across ξ = 0.

To avoid the difficulty of non-existence of solution to the Rankine-Hugoniot

relations (3.26), we replace both hl and hr by their average, i.e. hl = hr = h̄, and

similarly replace Ll and Lr, Ml and Mr by L̄ and M̄ respectively. Consequently,

the Rankine-Hugoniot relations are satisfied and and the flow is continuous across

ξ/λ = 0. We note from previous discussions that these replacements do not alter

the relations of the flow variables (p, ρ, ω, τ) across the elementary waves as they

do not depend on (K, h). It should be pointed out that the replacements of the

geometric variables (L,M) by their averages is a fictitious one - they are invoked

only to ensure the existence of the solution to (3.26) - but these average values are

never used in the computation. On the other hand, the replacement of hl and hr by

h̄ is a necessary one: it is used in equation (3.25) when the line ξ/λ = 0 is inside

the expansion fan.

The Riemann solution for −∞ < ξ < ∞ can now be constructed in the usual

way as if the slipline corresponding to c = σ1,2 = 0 did not exist.

In summary, we note that for the flow variables Q = (ρ, p, ω, τ)T their rela-

tions across a shock (3.27), across a slip line (3.28) and across an expansion wave

(3.23) hold separately in their regions ξ < 0 or ξ > 0 and are all independent of the

values of the geometric variables K = (A,B,L, M)T and h, provided the expansion

wave lies entirely in the region ξ < 0 or entirely in ξ > 0. On the other hand, shock
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speed, slip line speed and the structure of the flow inside the expansion fan (3.25),

e.g. fan width and location, are dependent on the values of K and h. Such depen-

dence would be needed to construct the complete Riemann solution for λ ∈ Ω(λ)

and for all ξ values. But, in using the Godunov scheme to advance the solution from

λ = 0 to λ = 4λ, we need only the flow variables Q at the cell interface ξ = 0 (to

compute the flux F
k+ 1

2

i+ 1
2
,j
) which are entirely independent of the values of K and h

and are continuous across the interface, provided the expansion wave lies entirely in

either ξ < 0 or ξ > 0.
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Chapter 4

Modifications on the Numerical

Method

In this chapter, we will concentrate on different ways to improve the efficiency of the

numerical procedures by (Chapter 4.1) giving several ways on determining h and

(Chapter 4.2) the ways to solve the constrain equation, (Chapter 4.3) replacing the

exact Riemann solver by other type of schemes and (Chapter 4.4) considering the

situations when we use the Unified Coordinates instead of the Eulerian Coordinates.

4.1 Determination of h

As mentioned earlier, the chief advantage of the Unified Coordinates is the new

degree of freedom in choosing h. Many choices are possible and the simplest one

is to choose a constant value for it. Numerical experiments for constant h will be

presented in Chapter 6 to show its effects on grid deformation and on resolution

of flow discontinuities. In general, it is necessary to restrict h to within the range

0 ≤ h ≤ 1. For h > 1, the eigenvalue σ3,4 in equation (3.18) has an opposite

sign to that for h < 1, indicating signals propagate in the wrong direction. Our
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computations for h > 1 break down immediately. On the other hand, for h < 0,

which means the pseudo-particles are moving in the opposite direction to the fluid

particles, computation can be carried out initially but after some finite time it breaks

down also. In this section, we will discuss some other possible choices of h.

4.1.1 Angle Preserving

One of a good choice for h is to preserve the grid angles in the solution process

which marches in λ, i.e.
∂

∂λ

[ ∇ξ

|∇ξ| ·
∇η

|∇η|
]

= 0 . (4.1)

Since

∇ξ = (M,−L)/4 and ∇η = (−B, A)/4 , (4.2)

condition (4.1) becomes

∂

∂λ

[
AL + BM√

A2 + B2
√

L2 + M2

]
= 0 . (4.3)

By making use of the last four equations of (2.9), it is easy to show that (4.3) is

equivalent to

S2J
∂h

∂ξ
+ T 2I

∂h

∂η
=

[
S2

(
B

∂u

∂ξ
− A

∂v

∂ξ

)
− T 2

(
M

∂u

∂η
− L

∂v

∂η

)]
h (4.4)

where

S2 = L2 + M2 , T 2 = A2 + B2 , I = uM − vL and J = Av −Bu . (4.5)

A consequence of determining h from (4.4) is that if the grid is orthogonal at λ = 0

it will remain so for subsequent λ. Orthogonal grid is known to possess many

desirable properties over non-orthogonal grids, e.g. attaining higher accuracy than

non-orthogonal grids. Computationally, (4.4) is to be solved at every time step after

the flow variables Q = (ρ, p, u, v)T and the geometric variable K = (A,B,L, M)T are

found. Therefore, it is a first order linear partial differential equations for h(ξ, η; λ)

with λ appearing as a parameter.
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To find solution h in the range

0 ≤ h ≤ 1 , (4.6)

we note that (4.4) is linear and homogeneous, therefore it possesses two properties:

(a) positive solution h > 0 always exists, and (b) if h is a solution to (4.4) so is h/C,

C being any constant. Making use of property (a), we let g = ln(hq) to get

S2(A sin θ −B cos θ)
∂g

∂ξ
+ T 2(M cos θ − L sin θ)

∂g

∂η

= S2

(
B

∂ cos θ

∂ξ
− A

∂ sin θ

∂ξ

)
− T 2

(
M

∂ cos θ

∂η
− L

∂ sin θ

∂η

)
(4.7)

where q =
√

u2 + v2 and θ is the flow angle with u = q cos θ and v = q sin θ. Or, we

write it as

a∠
∂g

∂ξ
+ b∠

∂g

∂η
+ c∠ = 0 . (4.8)

Now, if g1 is any solution to (4.8) then h = eg1/qC is a solution to (4.4) satisfying

condition (4.1), provided we choose C equal to the maximum of eg1/q over the whole

flow field being computed. The reason to work with ln(hq) instead of ln h is that

from the experience with steady flow [1], hq is continuous across slip lines, hence

working with hq can minimize the numerical errors.

4.1.2 Orthogonality Preserving

When orthogonal grid is what we want to get finally, condition (4.1) is not the only

way what we can choose. If the initial grid is orthogonal, the quantity ∇ξ · ∇η is

zero already, no matter what |∇ξ| and |∇η| are. Therefore, we may use

∂

∂λ
[∇ξ · ∇η] = 0 , (4.9)

giving
∂

∂λ

[
AL + BM

(AM −BL)2

]
= 0 . (4.10)

23



By replacing the λ-derivative by ξ- and η- derivatives, we have

[∆(uL + vM)− 2(AL + BM)I]
∂h

∂ξ
+

[∆(uA + vB)− 2(AL + BM)J ]
∂h

∂η
+

[
∆

(
L

∂u

∂ξ
+ M

∂v

∂ξ
+ A

∂u

∂η
+ B

∂v

∂η

)
+

2(AL + BM)

(
B

∂u

∂η
+ L

∂v

∂ξ
− A

∂u

∂η
−M

∂v

∂ξ

)]
h = 0 . (4.11)

Transforming with g = ln(hq), the above condition becomes

[∆(L cos θ + M sin θ)− 2(AL + BM)I]
∂g

∂ξ
+

[∆(A cos θ + B sin θ)− 2(AL + BM)J ]
∂g

∂η
+

[
∆

(
L

∂ cos θ

∂ξ
+ M

∂ sin θ

∂ξ
+ A

∂ cos θ

∂η
+ B

∂ sin θ

∂η

)
+

2(AL + BM)

(
B

∂ cos θ

∂η
+ L

∂ sin θ

∂ξ
− A

∂ cos θ

∂η
−M

∂ sin θ

∂ξ

)]
= 0 , (4.12)

or, denoted by

aO1

∂g

∂ξ
+ bO1

∂g

∂η
+ cO1 = 0 . (4.13)

On the other hand, we note that the denominator in equation (4.10), (AM −
BL) represents the Jacobian of our transformation (2.1-2.3) or the area of the grid,

which will never be zero. Therefore, we may also set the constrain to be

∂

∂λ
[∆2(∇ξ · ∇η)] = 0 (4.14)

in order to have the orthogonal grid. Simplifying the above condition, we have

∂

∂λ
(AL + BM) = 0 (4.15)

which gives

(uL + vM)
∂h

∂ξ
+ (uA + vB)

∂h

∂η
+

[
L

∂u

∂ξ
+ M

∂v

∂ξ
+ A

∂u

∂η
+ B

∂v

∂η

]
h = 0 . (4.16)
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Having the new variable, we get

(L cos θ + M sin θ)
∂g

∂ξ
+ (A cos θ + B sin θ)

∂g

∂η
+

[
L

∂ cos θ

∂ξ
+ M

∂ sin θ

∂ξ
+ A

∂ cos θ

∂η
+ B

∂ sin θ

∂η

]
= 0 , (4.17)

or, denoted by

aO2

∂g

∂ξ
+ bO2

∂g

∂η
+ cO2 = 0 . (4.18)

We note that the coefficients of this equation is the simplest one with com-

paring with (4.7) and (4.12). In the case where the flow is steady and the initial

grid is orthogonal, all three conditions will generate the same final grid where the

grid angles are all orthogonal everywhere. Therefore, the flow quantities given by

∠-grid, O1-grid and O2-grid should be basically the same.

Although orthogonal grid may attain a higher accuracy solution, in some

cases, it may be very difficult for the grid to satisfy the above condition, like the

double-blocking test in Chapter 6.4 where the problem is singular in geometry. Or, in

some other cases, the grid will be highly compressed. When the numerical scheme

is not accurate enough, the grid may squeeze together and which may blow up

the computation (like figure 6.27(b)). Therefore, we now propose another idea on

choosing h.

4.1.3 Area Preserving

The cell-area, or the Jacobian of our transformation is denoted by ∆. By choosing

h where the cell-area is preserved in the solution processes which marches in λ, we

have
∂∆

∂λ
=

∂

∂λ
[AM −BL] = 0 . (4.19)

25



Therefore, using the last four equations of (2.9), it can be shown that condition

(4.19) is transformed to

I
∂h

∂ξ
+ J

∂h

∂η
=

(
B

∂u

∂η
+ L

∂v

∂ξ
− A

∂v

∂η
−M

∂u

∂ξ

)
h . (4.20)

Defining the same variable as in previous sections, i.e. g = ln(hq), we have

(M cos θ − L sin θ)
∂g

∂ξ
+ (A sin θ −B cos θ)

∂g

∂η

+

(
M

∂ cos θ

∂ξ
− L

∂ sin θ

∂ξ
+ A

∂ sin θ

∂η
−B

∂ cos θ

∂η

)
= 0 , (4.21)

where q =
√

u2 + v2 and θ is the flow angle. Or, simply written in the form of

aA
∂g

∂ξ
+ bA

∂g

∂η
+ cA = 0 . (4.22)

In the stage of grid evolution, although the grid angle may change a lot,

the area of the grid will still be the same. This allows the continuation of the

computation in some cases. However, since the grid is not orthogonal, and therefore

not optimal [1], the error in some computations may be large in some cases.

Another advantage is that, the idea can be applied to three dimensional flow

calculations easily. Except the skewness-preserving condition proposed in [4], we

may also use the condition

∂∆

∂λ
=

∂

∂λ
[AMR + LQC + PBN − PMC − AQN − LBR] = 0 .

4.1.4 Weighted Preserving

As we have discussed above, orthogonality preserving grid may attain a higher accu-

racy in general, while area preserving grid may attain a higher robustness. Therefore,

it is natural hoping to have both advantages by combining the solution of h from

previous section. Now, we define (ωO, ωA, ωL) to be real numbers so that

ωO + ωA + ωL = 1 , (4.23)
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denoting the contributions from orthogonality-preserving scheme, area-preserving

scheme and from using the Lagrangian Coordinates (h ≡ 1) respectively. Having

the equations (4.4), (4.11), (4.16) and/or (4.20), we consider

a∗
∂h∗

∂ξ
+ b∗

∂h∗

∂η
+ c∗h∗ = 0 , (4.24)

with a∗ = ωOaO + ωAaA, b∗ = ωObO + ωAbA and c∗ = ωOcO + ωAcA. This equation

thus includes orthogonality-preserving scheme when ωA = ωL = 0, area-preserving

scheme when ωO = ωL = 0 and the Lagrangian Coordinates when ωO = ωA = 0.

By introducing a new variable g = ln(h∗q), we have

a
∂g

∂ξ
+ b

∂g

∂η
+ c = 0 . (4.25)

After gi,j is obtained, we transform it back to the original variable h∗ by

using h∗ = egi,j/qi,j. By choosing h ∈ [0, 1] and considering the contribution from

the Lagrangian Coordinates, ωL, we finally get

hi,j = (ωO + ωA)
h∗i,j

maxi,j h∗i,j
+ ωL . (4.26)

Although this gives us 2 more degree of freedoms (3 parameters ωO, ωA and

ωL with one constrain ωO + ωA + ωL = 1), we will only concentrate ourselves on the

following combinations:

(ωO, ωA, ωL) Interpretation

(1, 0, 0) orthogonal grid (Chapter 4.1.1 and 4.1.2)

(0, 1, 0) area preserving grid (Chapter 4.1.3)

(0, 0, 1) Lagrangian grid

(1/2, 1/2, 0) AO grid

(0, 1/2, 1/2) AL grid

(1/2, 0, 1/2) OL grid

(1/3, 1/3, 1/3) AOL grid
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It should be noticed that the idea of the weighted preserving scheme is to

combine the advantages from orthogonality preserving and area preserving condi-

tions. The contribution from the Lagrangian Coordinates is not necessary. From the

numerical experiments, the grid generated by the Lagrangian Coordinates is highly

distorted. Therefore, the last three weighted preserving schemes AL, OL and AOL

in the chart should not be good combinations in general. The distortion property

in the grid from the Lagrangian Coordinates passes to these weighted preserving

schemes, which may be problematic in some cases.

4.2 The h-Equation Solver and the Improvements

in its Efficiency

Given the weights (ωO, ωA, ωL), we can obtain the h-equation written in the form

a
∂g

∂ξ
+ b

∂g

∂η
+ c = 0 , (4.27)

where a = ωOaO + ωAaA, b = ωObO + ωAbA and c = ωOcO + ωAcA.

We now discuss 3 approaches to solve this equation.

4.2.1 Method of Characteristics

Because the equation for g is a linear and homogeneous partial differential equation,

it can be solved by method of characteristics. However, the main difficulty is that

we do not know in advance the slopes of the characteristics lines- they are different

in each time step due to their dependence on the flow. Although in simple geometry

and simple flow situation, we can apply this method to solve for g, and therefore h,

when the flow situation become complicated, we have to find other way to determine

the value of the function h.
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4.2.2 Unsteady Approach

A better method is to obtain the steady state solution of the unsteady 2-dimensional

hyperbolic equation by adding one more pseudo-time dependent term to the equa-

tion, giving
∂g

∂T
+ a

∂g

∂ξ
+ b

∂g

∂η
+ c = 0 (4.28)

for some pseudo-time T . We then discretize the equation using finite difference

according to the characteristics and solve the equation using iteration until

max
i,j

||g(n+1)
i,j − g

(n)
i,j || < ε (4.29)

for some torlerence ε > 0. For example, we can obtain the following explicit iterative

scheme

g
(n+1)
i,j − g

(n)
i,j

∆T
+

a+

∆ξ
(g

(n)
i,j − g

(n)
i−1,j) +

a−
∆ξ

(g
(n)
i+1,j − g

(n)
i,j )

+
b+

∆η
(g

(n)
i,j − g

(n)
i,j−1) +

b−
∆η

(g
(n)
i,j+1 − g

(n)
i,j ) + ci,j = 0 , (4.30)

with

a+ =
ai,j + |ai,j|

2
, a− =

ai,j − |ai,j|
2

, b+ =
bi,j + |bi,j|

2
and b− =

bi,j − |bi,j|
2

. (4.31)

Or, the following point-implicit iterative scheme

g
(n+1)
i,j − g

(n)
i,j

∆T
+

1

2∆ξ
[ai,j(g

(n)
i+1,j − g

(n)
i−1,j)− |ai,j|(g(n)

i+1,j − g
(n)
i−1,j) + 2|ai,j|g(n+1)

i,j ]

+
1

2∆η
[bi,j(g

(n)
i,j+1 − g

(n)
i,j−1)− |bi,j|(g(n)

i,j+1 − g
(n)
i,j−1) + 2|bi,j|g(n+1)

i,j ]

+ ci,j = 0 . (4.32)

The initial value g(0) at λ = λ(k+1) is chosen to be the solution obtained at

the previous time step, λ = λ(k). This may reduce the number of iteration steps,

(n), needed for convergence.
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Boundary Condition

The boundary values for this discretized equation can always be fixed to be a con-

stant. The reason why we can fix the value on the boundary can be explained by

considering the following easier 1-D version of the problem

∂g

∂T
+ a

∂g

∂ξ
+ c = 0

or written in the discretized form

g
(n+1)
i − g

(n)
i

∆T
+

a+

∆ξ
(g

(n)
i − g

(n)
i−1) +

a−
∆ξ

(g
(n)
i+1 − g

(n)
i ) + ci = 0 .

Assume the required solutions are gi for i = 1, 2, · · · ,m. Now, we add two more

cells g0 and gm+1 act as the boundary cells and fixed the values to be a constant.

When a1 is positive, a+ would be equal to a1 and a− would reduce to be zero.

We have the equation for i = 1:

g
(n+1)
1 − g

(n)
1

∆T
+

a1

∆ξ
(g

(n)
1 − g

(n)
0 ) + c1 = 0 ,

where g
(n)
1 and g

(n)
0 = g0 are given and g

(n+1)
1 is the only unknown in the equation.

When a1 is negative on the other hand, a+ would be equal to zero and a−

would be set to a1. We have the equation for i = 1:

g
(n+1)
1 − g

(n)
1

∆T
+

a1

∆ξ
(g

(n)
2 − g

(n)
1 ) + c1 = 0 .

Even if we fixed the value of g0, it would not affect the value of the interior cell.

Similar argument can be applied to the cell i = m and can be generalized to

the above g-equation. Therefore, for simplicity in computation, we simply fix the

values on the boundary to be a constant no matter the characteristic are in-coming

from or out-going to the boundary.
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Disadvantage

However, the problem of the unsteady approach is that we need to choose ∆T small

enough so that the CFL condition is satisfied. When the flow is complicated, it

takes much time for the method to converge. The second motivation of the search

for another h-equation solver is that what we need is the steady state solution only.

Once we get it, we do not care how the solution of gi,j evolves in T towards the

steady state. Here, we proposed another solver.

4.2.3 Direct Solver

Instead of adding the pseudo-time depending term, we can directly solve the equation

given by the same distretization as in (4.30)

a+

∆ξ
(gi,j − gi−1,j) +

a−
∆ξ

(gi+1,j − gi,j) +
b+

∆η
(gi,j − gi,j−1) +

b−
∆η

(gi,j+1− gi,j) + ci,j = 0 ,

or, re-written it in the form of








0
b−
∆η

0

−a+

∆ξ

(
a+

∆ξ
− a−

∆ξ
+

b+

∆η
− b−

∆η

)
a−
∆ξ

0
−b+

∆η
0








gi,j + ci,j = 0 , (4.33)

or simply

Mg = c ,

where M is a sparse matrix, g is an unknown vector and c is a vector determined by

ci,j and the boundary values. Therefore, it becomes a problem of solving a system

of linear equations, which can be solved by using Jacobi iteration, Gauss-Seidel

iteration, SOR, GMRES or any other iterative methods.

The convergence of the iteration using Jacobi iteration is proven here. In

order to prevent division-by-zero, the diagonal of the matrix M is replaced by adding
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a very small number ε > 0

Mi,i =
a+

∆ξ
− a−

∆ξ
+

b+

∆η
− b−

∆η
+ ε =

|a|
∆ξ

+
|b|
∆η

+ ε = |Mi,i| ,

while

n∑

j=1,i6=j

|Mi,j| =
∣∣∣∣
a+

∆ξ

∣∣∣∣ +

∣∣∣∣
a−
∆ξ

∣∣∣∣ +

∣∣∣∣
b+

∆η

∣∣∣∣ +

∣∣∣∣
b−
∆η

∣∣∣∣ =
|a|
∆ξ

+
|b|
∆η

< |Mi,i| .

Hence, the matrix M is diagonally dominant, and this guarantees the convergence

of using Jacobi iterations.

4.3 Riemann Problem Solver and the Improve-

ments in its Efficiency

As described in section 3.2, the flow variables (ρ, p, u, v) at the interface are deter-

mined by doing iterations. This type of Exact Riemann solver is long regarded to be

expansive. Especially when the flow and the geometry are simple, exact solver may

be replaced by other type of schemes which are easy to use, and more importantly,

take less time to solve the problem. From Chapter 3.2, we note that the Riemann so-

lution in the Unified Coordinates is the same as the one in the Eulerian Coordinates,

except that the expansion fan solution in the former one considered the movement

of the grid. Therefore, replacement of this Riemann solver becomes possible. By

substituting Step 2(c) in the algorithm given in Chapter 3 by the following schemes,

we try to see whether the efficiency of the Unified Code can be improved, while still

attaining a more accurate solution than that from the same scheme in the Eulerian

Coordinates.
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4.3.1 Collisional BGK Method

Other than the Exact Riemann Solver, one of the possibilities of splitting the com-

putation of the flux F
k+ 1

2

i+ 1
2
,j

is as follow:

1. Determination of Q∗ at ξ = 0 using Ql and Qr as if the grids are fixed;

2. Determination of Q at ξ = 0 using Q∗ by considering the contributions from

the movement of the grid.

Step 1 here can be done by using the Collisional BGK scheme [14]. Instead

of describing the flow motion based on macroscopic quantities, such as mass, mo-

mentum and energy, we now turn to another type of description which comes from

microscopic considerations, i.e. the gas kinetic theory. Therefore, the flow variables

at the interface are given by




ρ

ρU

ρe




j+ 1
2

= ρi




< u0 >>0

< u1 >>0

< u2 >>0


 + ρi+1




< u0 ><0

< u1 ><0

< u2 ><0


 (4.34)

with

< u0 >>0 =
1

2
erfc(−

√
λlul) (4.35)

< u0 ><0 =
1

2
erfc(

√
λrur) (4.36)

< u1 >>0 = ul < u0 >>0 +
1

2

exp(−λlu
2
l )√

πλl

(4.37)

< u1 ><0 = ur < u0 ><0 −1

2

exp(−λru
2
r)√

πλr

(4.38)

< u2 >>0 = ul < u1 >>0 +
< u0 >>0

2λl

(4.39)

< u2 ><0 = ur < u1 ><0 +
< u0 ><0

2λr

, (4.40)

and λ = ρ/(2p).
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Now, we have to encounter the motion of the interface due to the motion

of the grid. In the moving frame of reference, we define (ρ, ρU, ρe)∗j+ 1
2

to be the

density, momentum and energy respectively and wj+1/2 to be the velocity of the

grid movement. Because the particles must have a velocity larger than u+wj+1/2 in

order the pass through the interface moving from the cell xj to xj+1 and the particles

in the cell xj+1 must have a velocity greater than the same velocity as above, i.e.

u + wj+1/2, in order to stay in the cell. We have the following relations




ρ

ρU

ρe




j+1/2

=

∫∫

u∗>0




1

u

1
2
(u2 + ξ2)


 g∗j du∗dξ (4.41)

+

∫∫

u∗<0




1

u

1
2
(u2 + ξ2)


 g∗j+1du∗dξ , (4.42)

with u∗ = u− wj+1/2. Now, the above relation can be simplified to




ρ

ρU

ρe




j+ 1
2

=




ρ

ρu + wj+1/2ρ

ρe + wj+1/2ρu + 1
2
w2

j+1/2ρ




∗

j+1/2

. (4.43)

In summary, we first obtain (ρ, ρu, ρe)∗j+1/2 by using (4.34) with ul = uj − wj+1/2,

ur = uj+1 − wj+1/2 and

wj+1/2 =
hjuj + hj+1uj+1

2
, (4.44)

and then transform to (ρ, ρu, ρe)j+1/2 by using (4.43).

4.3.2 NT Scheme

The Lax-Friedrich scheme (LxF) [8] is a prototype of a central difference approxi-

mation, which offers a great simplicity over the upwind Godunov scheme, i.e. no
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Riemann Problems are solved. Based on the staggered form of the LxF scheme,

vj+1/2(t + ∆t) =
1

2
(vj + vj+1)− α[f(vj+1)− f(vj)], (4.45)

Nessyahu and Tadmor [9] proposed a family of schemes which takes an easily im-

plemented predictor-corrector form, welly known as NT schemes. As a natural

extension of this one-dimensional second-order central scheme, Jiang and Tadmor

[7] constructed a non-oscillatory high-resolution scheme for two-dimensional hyper-

bolic conservation laws. In this section, we will try to implement this scheme for

our hyperbolic system (2.9), given by

∂E

∂λ
+

∂F

∂ξ
+

∂G

∂η
= 0 . (4.46)

To approximate this equation, we begin with a piecewise constant solution

of the form
∑

En
pqψpq(ξ, η). Here En

pq is the approximate cell average at λ = λn,

associated with the cell Cpq = Ip × Jq centered around (ξp = p∆ξ, ηq = q∆η), i.e.

Cpq :=

{
(x, y) : |x− ξp| ≤ ∆ξ

2
, |y − ηq| ≤ ∆η

2

}
.

As a first step, we use Taylor expansion to express

E(ξj, ηk, λ
n+1/2) = En

jk +
∆λ

2
E(ξj, ηk, λ

n) + O(∆λ2) , (4.47)

or, we write

E(ξj, ηk, λ
n+1/2) = E(ξj, ηk, λ

n)− α

2
F(E)′jk −

µ

2
G(E)

8

jk , (4.48)

with

α =
∆λ

∆ξ
and µ =

∆λ

∆η
,

where (·)′ and (·)8
are discrete slopes in the ξ− and η− directions respectively, which

are reconstructed from the given cell averages. For example, we use the following

limiter,

(·)′j,k = MM

{
θ[(·)n

j+1,k − (·)n
j,k],

1

2
[(·)n

j+1,k − (·)n
j−1,k], θ[(·)n

j,k − (·)n
j−1,k]

}
,

(·)8
j,k = MM

{
θ[(·)n

j,k+1 − (·)n
j,k],

1

2
[(·)n

j,k+1 − (·)n
j,k−1], θ[(·)n

j,k − (·)n
j,k−1]

}
,

(4.49)
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where

MM{v1, v2, · · · } =





minp{vp} if vp > 0∀p
maxp{vp} if vp < 0∀p

0 otherwise

Here, the choice θ = 1 coincides with the classical MinMod limiter. The larger

the value of θ, the more numerical viscosity is reduced [7]. Therefore, having the

mid-values, we conclude with new staggered averages at λ = λn+1, given by

En+1
j+1/2,k+1/2 =

1

2
(Ej,k + Ej+1,k + Ej,k+1 + Ej+1,k+1)

+
1

16

(
E′

j,k − E′
j+1,k

)− α

2

[
F(E

n+1/2
j+1,k )− F(E

n+1/2
j,k )

]

+
1

16

(
E′

j,k+1 − E′
j+1,k+1

)− α

2

[
F(E

n+1/2
j+1,k+1)− F(E

n+1/2
j,k+1 )

]

+
1

16

(
E

8

j,k − E
8

j,k+1

)
− µ

2

[
G(E

n+1/2
j,k+1 )−G(E

n+1/2
j,k )

]

+
1

16

(
E

8

j+1,k − E
8

j+1,k+1

)
− µ

2

[
G(E

n+1/2
j+1,k+1)−G(E

n+1/2
j+1,k )

]
.

(4.50)

In summary, this scheme composes of a simple two-step predictor-corrector

scheme (4.47) and (4.50). Starting with the cell averages, En
j,k, we first use the first

order predictor (4.47) for the evaluation of the midpoint values, E
n+1/2
j,k , which is

followed by the second-order corrector (4.50) for the computation of the new cell

average, En+1
j,k . This results in a second-order accurate non-oscillatory scheme. As

in the one-dimensional case, [9], no Riemann solvers are involved. This may speed

up the computation time needed, but the slipline may be smeared badly.

4.3.3 Hybrid Riemann Solver

Based on the property of the Riemann solution from Chapter 3.2, we can split the

computation of the flux F
k+ 1

2

i+ 1
2
,j

into 2 steps:

1. Determination of p∗ using Ql and Qr;
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2. Determination of Q at ξ = 0 using K and h, if necessary.

Therefore, step 1 here can be done by using any type of Riemann solvers, like

the Exact Riemann solver proposed in Chapter 3 or some other linearized Riemann

solvers. Proposed by Toro [10, 11, 12], we may use linearized Riemann Solvers to

obtain the ∗-state solution. According to the idea, we use all together the Primitive

Variable Riemann Solver (PVRS), the Two-Rarefraction Riemann Solver (TRRS)

and the Two-Shock Riemann Solver (TSRS) in determining the ∗-state pressure.

The PVRS is a very simple linearized solution to the Riemann problem in

the primitive variables p, ρ and u, i.e.

Wλ + A(W)Wξ = 0 . (4.51)

The difficulty in solving this equation is due to the fact that the matrix A(W)

depends on the solution vector W. Therefore, we approximate the solution by using

the average W of WL and WR and obtain

Wλ + ĀWξ = 0 , (4.52)

where Ā = A(W̄) becomes a matrix with constant coefficients. This equation can

be solved exactly and the pressure in the *-state is given by

p∗ =
1

2
(pl + pr) +

1

8
(uL − uR)(pL + pR)(aL + aR) , (4.53)

where a[·] =
√

γp[·]/ρ[·].

The TRRS and the TSRS are based, on the other hand, on the approxima-

tions based on the Exact Riemann solver. If we assume the solution of the Riemann

problem contains two rarefaction waves, the pressure in the *-state can be calculated

to be

p∗ =




aL + aR − γ − 1

2
(uR − uL)

aL

pz
L

+
aR

pz
R




1
z

, (4.54)
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where z = (γ − 1)/(2γ).

If both non-linear waves from the Riemann problem are assumed to be shock

wave, the pressure in the *-state can be approximated by

p∗ =

[
AL

pPV RS + BL

]1/2

pL +

[
AR

pPV RS + BR

]1/2

pR − (uR − uL)

[
AL

pPV RS + BL

]1/2

+

[
AR

pPV RS + BR

]1/2
, (4.55)

with

A[·] =
2

(γ + 1)ρ[·]
and B[·] =

(
γ − 1

γ + 1

)
p[·] .

The determination of the *-state solution of pressure, and therefore the ve-

locity u∗, relay on the following conditions: The PVRS is used when the following

two conditions are met:

Q =
pmax

pmin

< Qmax and pmin < pPV RS < pmax , (4.56)

where pmax = max(pL, pR) and pmin = min(pL, pR). As proposed by Toro, Qmax = 2

seems to be a good choice and is recommended. The first condition here ensures

that the pressures in the two sides are not widely different. Otherwise, we will use

the TRRS or TSRS instead. The other condition is a condition on the difference

in the velocities uL and uR and excludes the two-rarefaction and the two-shock

cases, where the solution from the PVRS is unreliable. To use the TRRS or the

TSRS, we check whether pPV RS > pmin or not. If so, we expect strong shocks will

probably happen and therefore, we choose the TSRS. Otherwise, we use the TRRS

to approximate the *-state pressure.

This adaptive Riemann solver has an advantage that all the components

involve non-iterative scheme. We do not need to do any iteration procedure like

what we did in the Exact Riemann solver. However, this hybrid scheme depends on

the user’s choice of the constant Qmax appearing in equation (4.56). However, this

switching parameter may seriously affect the solution in the cases where the flow is

complicated.
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4.4 Composite Operator Approach

Comparing with the Eulerian computation, i.e. h ≡ 0, the extra time we need to

spend on using the Unified Coordinates is the computations of solving the h-equation

(4.27). Several more iterations are needed to obtain the value of h, in order to have

the velocities of the moving of grid points so that one of the conditions is satisfied

on section 4.1. In this section, we try to think of a strategy so that we can reduce

the total time needed to obtain the steady state solution in the Unified Coordinates,

thus, increasing the efficiency of the Unified Code.

From our computational experiences in steady flow, we found that the grid

will first move in the wrong direction due to the fact that the initial flow condition

is different from the steady flow solution. But the movement of the grids corrects

the flow gradually. As a result, instead of using the Unified Code starting the

computation from the very first beginning, we can use a better initial flow condition

to start our computation in the Unified Coordinates.

Defining Eλ0 to be the operator of using the Eulerian Coordinates from λ = 0

to λ = λ0, Uλ0 to be the operator of using the Unified Coordinates for λ0. This

operator U will be written as O if the function h is determined using orthogonality

preserving condition, written as A if we choose area preserving h and written as

(AO) if we use the weighted preserving h as discussed in Chapter 4.1.4. As a result,

we use the composite operations Uλ1Eλ0 to do our computations. This means we

first use the Eulerian Coordinates to do our computation for λ0, then follow by the

Unified Coordinates for λ1 more time.

Before the switching of the coordinates, the flow is approximately steady

and this can be interpreted as an initial condition which is closer to the exact

solution of the flow. The importance of this idea is this: All the steady state

solutions, regardless on the computation schemes, from the Eulerian Coordinates

can be regarded as an initial condition of the flow, and can be improved by our
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Unified Coordinates system.

Most of our computational experiments in steady flow given here are carrying

out first by Eλ0 for some time λ0 so that the solution converges in the Eulerian

Coordinates, and then by Uλ1 in order to obtain a better resolution of the solutions.

Another way to reduce the computation time needed by using the same idea

is to try the combination Eλ1Uλ0 . We first use the Unified Coordinates for λ0,

followed by λ1 of the Eulerian Coordinates. We noted that the grid will not change

much after some time of computation in the Unified Coordinates. Therefore, we try

to see whether the computational time on solving the h-equation can be saved or

not when the structure of the grid is formed, we switch the computation back to the

Eulerian Coordinates, i.e. h ≡ 0, which avoids the iterations required for obtaining

the values of h at different grid points. By doing this, the Unified Coordinates can

be regarded as a grid-generator, depending on both the flow and the geometry of

the problem, instead of the geometry alone, as with most grid generations.

In summary, in this section, we have introduced two ideas on how to use, and

when to use the Unified Coordinates for steady flow computations. The computa-

tions involve two composite steps, Uλ1Eλ0 (Eulerian followed by Unified) or Eλ1Uλ0

(Unified followed by Eulerian). The idea of Uλ1Eλ0 is to give a better initial condi-

tion for Unified Coordinates, while that of Eλ1Uλ0 is to stop solving the h-equation,

hence saving time, when the structure of the grids becomes steady.
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Chapter 5

The Use of the Entropy Equation

Sudden compression of gas flow due to shock reflection from a solid wall or sudden

expansion due to an abrupt withdrawal of a piston from the gas are often associated

with a phenomenon known generically as wall heating. As explained by Hui and

Kudriakov in [6] recently, these problems are singular in that the contact line (or

the wall) changes its direction abruptedly at some point at the boundary or in the

interior of the flow field, resulting in a geometric singular point there. As a result, the

Riemann solution is multi-valued at that point and varies rapidly around that point.

This causes difficulties in any shock-capturing scheme. As proposed by [6], in order

to eliminate the contact overheating, we must avoid the entropy error generated due

to cell-averaging, especially near the singular point.

When the flow is smooth, we can replace the energy conservation equation,

the fourth equation in (2.7), by the entropy conservation equation in the Eulerian

Coordinates
∂(ρS)

∂t
+

∂(ρuS)

∂x
+

∂(ρvS)

∂y
= 0 , (5.1)

or in the Unified Coordinates

∂(ρ∆S)

∂λ
+

∂[ρ(1− h)IS]

∂ξ
+

∂[ρ(1− h)JS]

∂η
= 0 , (5.2)

with S = p/ργ. Physically, this means the entropy is constant following a fluid
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particle, i.e. S =constant along a pathline. When the flow is steady, the pathline

coincides with the streamline. Therefore, in the Unified Coordinates, we have

∂S

∂λ
= 0 (5.3)

when the flow is smooth. This implies S is constant in any grid points with time.

In the Godunov scheme, the update of flow variables from one time level to

the next consists of two steps: (i) solving Riemann problems for every pair of adja-

cent cells and (ii) cell-averaging of the conserved variables. The Riemann problem is

solved exactly and there is no spurious entropy generation in this step no matter we

use the energy equation or the entropy equation when the flow is smooth. However,

spurious entropy is generated due to cell-averaging of the conserved variables.

Therefore, to implement the replacement of the energy equation, with the

above assumptions that the flow is smooth and steady, we can keep all the numerical

procedures as discussed in section 3.1, except with a small modification in Step 4(b).

When we decode Ek+1
pi,j

to get Qk+1
i,j , the energy equation

∂(ρ∆e)

∂λ
+

∂[ρ(1− h)Ie + pI]

∂ξ
+

∂[ρ(1− h)Je + pJ ]

∂η
= 0

will be ignored and be replaced by the entropy condition. Therefore, the pressure

at the (k + 1)-step is determined by the density at that grid point using

p(k+1) = p(k)

(
ρ(k+1)

ρ(k)

)γ

. (5.4)

This means the solution is theoretically fitted there so that the entropy S is conserved

exactly, including the singular point region which is problematic if we use the energy

equation.
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Chapter 6

Test Examples

In this chapter, several test examples will be studied in details. The Unified Coor-

dinates will be applied to the flow problems to see whether the solution obtained is

better than that from the Eulerian Coordinates. The methods proposed in Chapter

4 and 5 will also be used to improve the efficiency and the robustness.

6.1 Two Dimensional Steady Riemann Problem

6.1.1 The Problem

In this section, we will consider a two dimensional steady Riemann problem gener-

ated by two uniform parallel flows as

(p, ρ,M, θ) =





(0.25, 0.5, 7, 0) , y > 0

(1, 1, 2.4, 0) , y < 0

where M is the Mach number and θ is the flow angle defined as tan−1(v/u). The

flow contains a shock wave, a slipline and an expansion wave, as shown in figure 6.1.

This problem is difficult in a way that the stationary slipline is sensitive to the

dissipative property of the numerical methods and the orientation of the grids. As
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Figure 6.1: Two dimensional steady Riemann Problem.

suggested in [14, 15], the density fluctuation around the slipline may be due to the

kinetic energy loss in the cell-averaging stage. This loss in kinetic energy has been

transferred into thermal energy and this increases the pressure which pushes the

gas away around the slip line. Therefore, a density sink is artificially formed. This

phenomenon can be removed only if we can find a way to improve the computational

grid in such a way that the slipline coincides with the cell interface. By doing this,

we can reduce the kinetic energy loss due to cell averaging. A similar analysis is

given here in Appendix A.

In the computations here in this section, the physical domain will change

with time according to the pseudo-particle’s velocity hq. Therefore, if we follow the

computational cells, they will move out of the initial physical domain, if h 6≡ 0, and

it would be difficult to have a steady state of flow in the original physical domain.

To avoid this, we have used a technique called the “motionless viewing window” as

in the classical Lagrangian method. Accordingly, the column of cells which have

moved out of the original physical domain to the opposite direction of the incoming

flow is deleted, while a new column of cells is added at the input flow boundary.
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6.1.2 Exact Riemann Solver

In this subsection, we will use the Exact Riemann Solver to do the computations

first. Figure 6.2 shows the density distributions obtained by different choices of

coordinates. The x-axis of each graph represents the ratio (y/x) in the two dimen-

sional space. Because the solution is self-similar under the transform (y/x), the

solution of this problem can be obtained exactly, which is drawn by the solid line.

The computed solution is plotted by circles. Figure 6.2(a) represents the solution

obtained by the Eulerian Coordinates, i.e. using fixed and Cartesian grid. As what

have explained, a density sink is formed near the slipline due to the averaging in

those cells containing the strong contact wave. Figure 6.2(b) is obtained by using

orthogonality preserving grid in the Unified Coordinates. As we can see, the sink

is now removed and the slipline is resolved within two to three cells. Although the

expansion fan is smeared a little bit, the solution is now improved quite a lot. The

main reason why the extra-dissipation near the slipline can be removed is due to

the fact that the slipline coincides with a gridline, figure 6.3(a). So, the problem of

averaging is minimized.

As proposed in Section 4.1, other type of h-equation constrains are also pos-

sible. Figure 6.2(d) shows the solution when we use one of the weighted-preserving

h, the AO grid solver. The grid obtained is intermediate between the orthogonality

preserving and area preserving. We see that from figure 6.3(b), the gridline also co-

incides with the slipline, and therefore, the density sink can also be removed. With

comparing the solutions using the O-grid and Lagrangian grid (figure 6.2(e)), the

slipline in AO-grid can be resolved very sharply, like in the Lagrangian Coordinates.

But, the grid in the AO case shows a much better regularity than that in Lagrangian

case (figure 6.3(c)).
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Figure 6.2: Density distribution of the two dimensional steady Riemann Problem

using (a) the Eulerian Coordinates (h ≡ 0), the Unified Coordinates with (b) or-

thogonality preserving grid (O-grid), (c) area preserving grid (A-grid), (d) AO-grid

and (e) the Lagrangian Coordinates (h ≡ 1).

(a) (b)

(c) (d)

(e)
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Figure 6.3: Flow-generated grid of the two dimensional steady Riemann Problem

using the Unified Coordinates with (a) orthogonality preserving grid (O-grid), (b)

AO-grid and (c) the Lagrangian Coordinates (h ≡ 1).
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Figure 6.4: Density distribution of the two dimensional steady Riemann Problem

using first order Collisional BGK Scheme in (a) the Eulerian Coordinates (h ≡ 0)

and the Unified Coordinates with (b) orthogonality preserving grid (O-grid) and (c)

AO-grid.
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Figure 6.5: Flow-generated grid of the two dimensional steady Riemann Problem

using first-order Collisional BGK Scheme in the Unified Coordinates with (a) or-

thogonality preserving grid (O-grid) and (b) AO-grid.
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6.1.3 Collisional BGK Scheme

One way to improve the efficiency of the Riemann Problem solver, as discussed in

Section 4.3, is to replace the Exact Riemann Solver by other type of scheme, when

the flow situation is relatively simple. Introduced in Section 4.3.1, we have tried to

use the collisional BGK method for this test case. Figure 6.4(a) shows the solution

using first order collisional BGK scheme. From the graph, we see that the expansion

fan is much more smeared than the one we obtained using the Exact Riemann Solver

(figure 6.2(a)). The density sink is more serious here. The error near the slipline

is increased from around 10% (Exact Riemann Solver) to now around 30%. When

the orthogonality preserving grid, or the AO grid, is used, not only the density

sink can be removed, the constant state immediate after the shock and the constant

state immediate after the slipline are obtained qualitatively correctly, figure 6.4(c).

Of course, the resolution is not as good as in the previous cases (using the Exact

Riemann Solver) because we have used the MUSCL update, which is regarded as

second order, in the former cases but not here in the collisional BGK scheme.

6.1.4 Hybrid Riemann Solver

As suggested in Chapter 4.3.3, we now use the proposed hybrid Riemann solver to

see how this simple scheme can be improved by using the Unified Coordinates. The

solution from the Eulerian Coordinates is given in figure 6.6(a). With comparing to

the one obtained using the Exact Riemann Solver, both solutions are quantitatively

the same. With considering the reduction in the computation time needed using

this cheap solver, the solution is surprisingly good.

When the Unified Coordinates is used here, the grid generated and the flow

solution are basically the same as what we obtained using the Exact Riemann Solver.
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Figure 6.6: Density distribution of the two dimensional steady Riemann Problem

using Hybrid Riemann Solver proposed by Toro [12] in (a) the Eulerian Coordinates

(h ≡ 0) and the Unified Coordinates with (b) orthogonality preserving grid (O-grid)

and (c) AO-grid.
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Figure 6.7: Flow-generated grid of the two dimensional steady Riemann Problem

using Hybrid Riemann Solver proposed by Toro [12] in the Unified Coordinates with

(a) O-grid and (b) AO-grid.
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Figure 6.8: Density distribution of the two dimensional steady Riemann Problem

with My>0 = 5 using NT scheme proposed by [7] when θ = 1 in (a) the Eulerian

Coordinates and (b) the Lagrangian Coordinates.

(a) (b)

6.1.5 NT scheme

To implement the NT scheme proposed in Chapter 4.3.2, we first try a simpler

two-dimensional steady Riemann problem

(p, ρ,M, θ) =





(0.25, 0.5, 5, 0) , y > 0

(1, 1, 2.4, 0) , y < 0

by replacing the upper flow M by 5, instead of 7. By doing this, the kinetic energy

loss due to averaging is reduced. Numerical experiments using the Eulerian Coordi-

nates show that the solution is still too dissipative, one of the major property of the

central schemes. Because of this inaccuracy, we cannot continue our computations

when the Unified Coordinates are used. In some cases, the solution simply blows

up, due to the seriously wrong determination of the fluxes. In some other cases,

the h-solver cannot reach a converged solution, this also introduces errors in the

computations, which makes our solution highly unreliable, like in the case where the

Lagrangian Coordinates (h ≡ 1) is used as shown in figure 6.8(b) and figure 6.9(b).

Figure 6.9 shows the results using the Eulerian Coordinates and the Lagrangian
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Figure 6.9: Density distribution of the two dimensional steady Riemann Problem

with My>0 = 5 using NT scheme proposed by [7] when θ = 2 in (a) the Eulerian

Coordinates and (b) the Lagrangian Coordinates.
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Figure 6.10: Density distribution of the two dimensional steady Riemann Problem

with My>0 = 7 using NT scheme proposed by [7] when θ = 2 in the Eulerian

Coordinates.
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Schemes 6.1.2 6.1.3 6.1.4

t λ0 λ1 t λ0 λ1 t λ0 λ1

Eλ0 8 0.50 - 7 1.00 - 5 0.67 -

Oλ0 17 0.66 - 36 2.18 - 14 0.45 -

Oλ1Eλ0 14 0.50 0.39 29 1.00 1.32 12 0.50 0.20

(AO)λ0 20 1.10 - 40 2.55 - 17 1.10 -

(AO)λ1Eλ0 15 0.50 0.31 31 1.00 1.46 13 0.50 0.46

Table 6.1: Time consumption (to nearest minute) on solving the two-dimensional

steady Riemann Problem using the Exact Riemann Solver, the Collisional BGK

scheme and the Hybrid Riemann Solver with different Composite Operators.

Coordinates when θ in equation (4.49) is chosen to be 1. With comparing to fig-

ure 6.9, where θ = 2, we see that the dissipation is much reduced in the Eulerian

Coordinates. However, the computations in the Lagrangian Coordinates are much

worse, in the sense that the grid is much distorted. Although the computation in

the Eulerian Coordinates is acceptable when My>0 = 5, the solution become highly

oscillatory near the slipline when My>0 = 7, as shown in figure 6.10, and which

cannot be improved using the Unified Coordinates approach.

Therefore, as a conclusion for the replacement by using NT schemes, we found

that such highly dissipative scheme is not suitable in solving the Riemann problem in

the Unified Coordinate systems. Although we can save a little bit of computational

time in using this non-iterative scheme, we cannot improve the solution much. Both

the shock and the slipline in the solution are still smeared.

6.1.6 On the Efficiency of the Composite Schemes

As proposed in Chapter 4.4, we now try to compare the total time needed to obtain

the steady state solutions from different Riemann solvers. Table 6.1 lists all the
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total time spent on the two-dimensional steady Riemann problem from the Exact

Riemann solver (6.1.2), the collisional BGK solver (6.1.3) and the hybrid Riemann

solver (6.1.4). The column “t” denotes the real time spent, rounded to nearest

minute. It should be remembered that, the numbers here are just an rough estimate

due to the fact that its difficult to really tell when the solution is absolutely converged

because the grids are always moving with velocity hq. We cannot simply compare

the flow quantities at the same point in the ξ − η space.

The values in the columns λ0 and λ1 denote the value in the λ-space needed

when the solution “converges”. When the Composite Operator approach, OE or

(AO)E, is used, λ0 (“time” spent on the Eulerian Coordinates) will generally equal

to the same value as used in E alone. For example, we use λ0 for 0.5 in the case

of Exact Riemann solver. And this value 0.5 is exactly the “time” needed for the

solution becomes steady when we use the Eulerian Coordinates alone. By doing this,

we can treat the extra time needed, by comparing the operator Eλ0 and Uλ1Eλ0 , is

the time needed to improve the solution.

When the Exact Riemann solver is used, we note that approximately 8

minutes are used to obtain the steady state solution when we use the Eulerian Coor-

dinates. 6 more minutes are needed to improve the solution by using orthogonality

preserving scheme, while 7 more minutes are needed when AO-preserving grid is

chosen. The extra time we spent, of course, due to the fact that we have to do more

iterations in obtaining the solution from the h-equation. But more importantly,

when the grids move, it takes extra time for the grid motion to be steady.

With comparing the Composite Operator approach, Uλ1Eλ0 , with the scheme

where we start the computations using the Unified Coordinates alone, Uλ0 , we see

that the former takes less time to have the steady state solution. The reason, as

explained in Chapter 4.4, is the better choice of initial flow conditions, as some

time steps are spent on the Eulerian Coordinates which provides an approximately

correct direction for the grid to move.
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For the other type of Composite Operator approach Eλ1Uλ0 , we found that

we cannot save much time actually. The reason is that once the structure of the

grid becomes steady, so does the flow solutions. Therefore, this type of approach

cannot help much on improving the efficiency of the computation using the Unified

Coordinates.

We have also suggested in Chapter 4.3 that we may try to replace the Exact

Riemann solver, which is long regarded as time-consuming and expansive, by other

Riemann solvers. In the Eulerian Coordinates, it’s true that less time is used.

When the Hybrid Riemann solver is chosen, only half the time is needed to obtain

the steady state solution. On the other hand, it seems that it takes more time by

using the collisional BGK scheme instead of the Exact Riemann solver. However,

it should be noticed that we are using first order scheme only. It is not fair to

make such conclusion. Of course, solution from first order scheme is worse than a

second order scheme in general, and this makes the grids more difficult to be steady.

Therefore, it takes more time for this less accurate scheme to obtained the steady

solution.

6.1.7 On the Constrain in h and Its Solver

When the Exact Riemann Solver is used, the solution of h by solving corresponding

h-equation is given in the figure 6.11. Figure 6.11(a) corresponds to the solution of

h obtained by using area-preserving scheme (A-grid), while the other graph shows

the distribution of h by using the orthogonality preserving scheme. Note that the

discontinuity in both of the solutions are captured sharply. The maximum of h in

the domain is unity, as it should due to the scaling.

Now, we are going to check whether the preserving quantity in different

preserving schemes is really preserved or not.
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Figure 6.11: Solution of h obtained by using (a) AO-grid and (b) orthogonality

preserving grid (O-grid).
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Figure 6.12: The conserved quantities when different preserving schemes are used.

(a) [(A+B)(M +L)/2−BL] for AO-grid and (b) (AL+BM) for the orthogonality

preserving (O-grid).
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When AO-grid is used, we are actually preserving the quantity

1

2
(AL + BM) +

1

2
(AM −BL)

which is a linear combination of the preserving quantity of A-grid and that of O-grid.

After rearrangement, the preserving quantity for this case is

(A + B)(M + L)

2
−BL , (6.1)

which is shown in figure 6.12(a). We note that the magnitude of the fluctuation is

in order of 10−3 which is still acceptable.

The situation is simpler in the case of orthogonality preserving. The quantity

we want to preserve is (AL + BM). Accepting the small perturbation of order of

10−4, the quantity is actually keeping as zero, indicating the grids are orthogonal to

each other.

In summary, different choices of the preserving quantities are preserved pretty

well.

To consider the efficiency of the h-equation solver, we found that the average

number of iterations required for the convergence for the solver varies according

to the type of preserving quantities we want. For example, it takes 2 iterations

only for solving h for area-preserving scheme. However, the number of iterations

increases to around 10 for the orthogonality preserving scheme. And, approximately

4 iterations are needed for the AO-scheme. As what we have discussed in Chapter

4.1, orthogonality preserving is a tougher condition than area preserving.

6.2 Two Dimensional Steady Double Riemann Prob-

lem

Different from the steady Riemann Problem described in Section 6.1, we will now

consider a two dimensional steady double Riemann Problem, generated by three
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uniform parallel flows as

(p, ρ, M, θ) =





(1, 1, 2.4, 0) , |y| > 0.15

(0.25, 0.5, 5, 0) , |y| < 0.15
.

The flow not only contains shock waves, sliplines and expansion waves, but also

shows interactions among these waves. As explained in the previous section, due

to the dissipative property of the numerical method, the sliplines will be smeared

badly in the Eulerian case. And, because the flow solution after the interactions in

this test case highly depends on the accuracy of these waves, it is very important to

calculate the waves correctly before the two shocks meet each other.
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Figure 6.13: (a) Pressure contours and (b) density contours of the two dimensional

steady double Riemann problem using the Eulerian Coordinates (h ≡ 0).

(a) (b)

y

x

Because the solution is not a self-similar one in this case, we cannot simply

plot with the transformation (y/x). Now, we plot the solution of the density distri-

bution at the position x = 1.3, where the shock waves have met and are reflected

due to the collision with the slipline, as shown in figure 6.14. The horizontal axis

of the plots in figure 6.14 corresponds to the line x = 1.3 parallel to the y-axis in

figure 6.13.
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Figure 6.14: Density distributions of the two dimensional steady double Riemann

problem using the Unified Coordinates using (a) orthogonality preserving (O-grid),

(b) area preserving (A-grid), (c) AO-grid, (d) AL-grid, (e) OL-grid and (f) AOL-

grid at the position x = 1.3. The solid line denotes the solution from the Eulerian

Coordinates and the circles represents the solution from the Unified Coordinates.

(a) (b)

(c) (d)

(e) (f)
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Figure 6.15: Flow-generated grid of the two dimensional steady double Riemann

problem using the Unified Coordinates using (a) orthogonality preserving (O-grid),

(b) area preserving (A-grid), (c) AO-grid, (d) AL-grid, (e) OL-grid and (f) AOL-

grid.
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Figure 6.16: (a) Density distribution and (b) the flow-generated grid of the two

dimensional steady using the Lagrangian Coordinates (h ≡ 1).

(a) (b)

The solid line in those graphs in figure 6.14 represents the solution by using

the Eulerian Coordinates with four times the number of grids than that from using

the Unified Coordinates.

Most solutions from the composite schemes give reasonably good results in

the sense that the sliplines are captured pretty sharply. However, the computations

from using A-grid, AL-grid and the Lagrangian Coordinates blow up, due to the

irregularity of the grids. Around the sliplines, the grids from the above three co-

ordinate systems are highly distorted, which makes the computations difficult to

continue. In summary, the solutions from the O-grid show the best resolution of the

slipline among other possible choices of h-equation solver.

6.3 Prandtl-Meyer Expansion Flow

Here, a supersonic stream is turned by an angle α (Figure 6.17), the instream con-

dition (p, ρ, M) is chosen to be (1,1,2).
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Figure 6.17: Prandtl-Meyer Expansion Flow.

As discussed in Chapter 5, the problem is singular at the corner where the

flow velocity is not unique. Therefore, special treatments are used here. In order

to have a regular problem, we have removed the sharp corner and replaced it by a

curve such that the slope changes smoothly. This modification is very mild. Only

one to two cells near the corner are affected in general. However, although tiny, it

shows great improvement in the easiness of computation. By doing this, the flow

velocity on the surface of the wall will not be multi-valued any more. The second

treatment we have implemented is to replace the energy equation by the entropy

equation, as discussed in Chapter 5. Because the solution contains an expansion

fan only, the solution is smooth in this case. More importantly, this is a constant

entropy flow or the so-called homentropic flow. Therefore we can simply obtain the

pressure using equation (5.4),

p(k+1) = p(k)

(
ρ(k+1)

ρ(k)

)γ

.

By doing this, the entropy of the flow is obtained exactly everywhere in the compu-

tational domain.

Figure 6.18 shows the solution obtained by using the Eulerian Coordinates,
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Figure 6.18: Prandtl-Meyer Expansion Flow using the Eulerian Coordinates (h ≡ 0)

when α = 45◦. The solid line represents the exact solution, while the circles denotes

the computed solution.
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Figure 6.19: Density distribution of the Prandtl-Meyer Expansion Flow using the

Eulerian Coordinates near the wall, showing about 15% of error.

65



i.e. h ≡ 0. The solid line denotes the exact solution, while the circles represents the

computed solution. When α = 45◦, we see that the density and the pressure seem

to be calculated correctly, but the Mach number is wrong near the solid wall. This

is one form of the wall-overheating problem discussed in Chapter 5. The spurious

generation of the entropy increases the density near the wall by approximately 15%

(figure 6.19) and this reduces the Mach number by about 30%.

The solution by the Lagrangian Coordinates is much improved. Instead of

having a sudden drop in the Mach number near the wall, we see that the Mach

number in the constant state near the wall is quite accurate, although it shows a

little bit of over-shooting on the other hand.

When the orthogonality preserving grid is used, the solution obtained (figure

6.21) is quite similar to that of the Lagrangian Coordinates (figure 6.20). But, one

of the very differences between these two methods is the regularity of their grids.

Figure 6.22 shows the flow-generated grid for the Prandtl-Meyer expansion

using the Lagrangian Coordinates (h ≡ 1) and the Unified Coordinates when the

orthogonality preserving grid is used. We see that the grid in the latter case is highly

regular and, therefore, avoids the crossing of any cell and minimizes the error due

to the irregularity in the grids.

If the turning angle α is now increased from 45◦ to 55◦ (figure 6.23-6.24), the

computation becomes very difficult. One reason is that the pressure near the wall

very closes to zero. Unless special care is taken in the Newton’s iteration from the

Exact Riemann Solver, this may cause negative pressure easily. However, because

we have “fitted” the pressure using the entropy equation, the computation now

shows no difficulty. The solution we obtained are very accurate, except a little bit

of over-shooting in the Mach number near the wall.
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Figure 6.20: Prandtl-Meyer Expansion Flow using the Lagrangian Coordinates (h ≡
1) when α = 45◦.
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Figure 6.21: Prandtl-Meyer Expansion Flow using the Unified Coordinates (Orthog-

onality Preserving) when α = 45◦.
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Figure 6.22: Flow-generated grid for Prandtl-Meyer Expansion Flow using (a)

Lagrangian Coordinates (h ≡ 1) and (b) Unified Coordinates with O-grid when

α = 45◦.

−50 0 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pressure

α
−50 0 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Density

α
−50 0 50

2

2.5

3

3.5

4

4.5

5

5.5

Mach Number

α

Figure 6.23: Prandtl-Meyer Expansion Flow using the Lagrangian Coordinates (h ≡
1) when α = 55◦.
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Figure 6.24: The flow generated grid for Prandtl-Meyer Expansion Flow using the

Lagrangian Coordinates (h ≡ 1) when α = 55◦.
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Figure 6.25: Wedge Flow test.

6.4 Wedge Flow

The reason why we have to consider the unsteady flow equation, rather than the

steady one, is that when the flow is not supersonic everywhere, the problem become

an elliptic one. We now try to consider a test case where there exists a region the

flow is subsonic. Consider a wedge with an inclination angle of 20◦, as shown in

Figure 6.25.

The inflow Mach number is chosen to be 1.4, where the density and the

pressure are set to be 1. Because 20◦ is much larger than the critical angle θmax

for which the shock is attached (the expression of θmax can be found in most Fluid

Mechanics book, e.g. [13]), a normal shock is formed which extends around the

body as a curved oblique shock.

Pressure contours of the flow is given in Figure 6.26. It should be noticed

that there are fluctuations along the bowed shock when the Eulerian Coordinates

are used. This may be due to the averaging of the shock in a cell, or the fact that

the velocity of the shock is small when the flow becomes steady, which generates

spurious oscillation know as the problem of “Slowly Moving Shock”. When the

Unified Coordinates is used instead, we found that this problem is eliminated. The

oscillations are smoothened and the expansion fan can be clearly seen. Although the

constant state region after the expansion fan shows a little bit of oscillation when
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Figure 6.26: Pressure contours of the Wedge flow test case using (a) the Eulerian

Coordinates and the Unified Coordinates with (b) area-preserving grid (A-grid) and

(c) orthogonality-preserving grid (O-grid).

(a) (b) (c)

we are using the area-preserving grid, it is still acceptable.

The flow-generated grids from the two different h-equations are given in Fig-

ure 6.27. Note that from the orthogonality-preserving scheme, there is a region

in the domain where the computational grids are highly compressed and squeezed.

This might cause difficulty in computations if the flow situation is more compli-

cated, although it shows no problem in this test case. With comparing to the grid

generated by the area-preserving scheme, the grids in the latter case have similar

size, as it should.

The quantity (AL + BM) for orthogonality-preserving grid and (AM −BL)

for area-preserving grid are also given here in Figure 6.28.

For the area-preserving grid, max(AM − BL) is found to be 0.3809 while

min(AM −BL) is 0.1513. Although the fluctuation is large, the oscillation appears
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Figure 6.27: Flow-generated grid of the wedge flow test case using the Unified

Coordinates with (a) area-preserving grid and the (b) orthogonality-preserving grid.
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Figure 6.28: The preserving quantity in the h-solver of the Wedge flow test case

using the Unified Coordinates with (a) area-preserving grid and (b) orthogonality-

preserving grid.
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near the boundary only and the quantity is kept approximately constant throughout

the rest part of the domain.

The oscillation in the orthogonality-preserving grid is smaller. max(AL +

BM) is 0.0174 and min(AL + BM) is found to be -0.0209. In the case where the

grid is orthogonal, the quantity (AL+BM) is zero; when comparing to the numerical

values, the errors are still acceptable.

With the acceptance of the small error from the computations, both quanti-

ties are kept constant approximately, as what we intended to preserve originally.
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6.5 Double Blocking Test

In order to study how well the h-equations behaves, we now try a geometrically

complicated test problem.

As shown in figure 6.29, there are two triangular blocks in a channel. These

two triangular blocks will generate shocks and expansion waves. When the shocks

meet each other near the center of the channel, two strong contact waves, with

different strengths in general, are produced.

Figure 6.29: Double blocking test case showing notations. p and ρ are chosen to be

1, x1 = 0.5, x2 = 1.0, x3 = 2.5, δ1 = 0.134, δ2 = 0.067 and H = 1.0.

6.5.1 M = 1.7

When the inflow Mach number is taken to be 1.7, we found that there exists a

region where the Mach number reduces to be less than 1.0. Therefore, although the

inflow is supersonic, the flow become subsonic after the two generated shocks meet

each other. This makes the problem more complicated. The motion of the grid not
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only need to overcome the singularity problem due to the sharp corner, but also the

change in the fluid flow condition, i.e. from supersonic to subsonic.

Except the Eulerian grid, i.e. h ≡ 0, all the other combinations mentioned

in Section 4.3.1 are implemented. We found that, due to the challenges discussed

above, solutions will break down for some types of grid. For example, figure 6.30

shows the orthogonality preserving grid. We see that although the grids try to

remain orthogonal when it evolves, due to the fact that the volume of some cells

become smaller and smaller, the solution blows up after some time of computation.

Even though the cell volume remains the same when evolves as shown in figure 6.30,

the grids are highly distorted in the computational domain, the computations also

stop.

The weighted preserving schemes show a better robustness property here in

this test case. As shown in figure 6.30-6.31, AO-grid and AOL-grid show that the

grid is good to resolve the two strong sliplines. Note the difference in AOL-grid, due

to the contributions from the Lagrangian, the grid is a little bit stretched near the

contact waves. However, with the constrains from the area preserving and orthogo-

nality preserving, these distortions show no bad behavior in the computations, but

surprisingly is a good sign of an existence of sliplines.

6.5.2 M = 2

Now, if the inflow Mach number is increased from 1.7 to 2.0, we found that the

third normal shock disappears, indicating that the flow become supersonic every-

where. Although the problem of singularity in geometry still remains, the problem

is actually easier than the one we have just described.

Figure 6.32-6.33 shows the flow-generated grid using different types of weighted

preserving schemes. Most of them show satisfactory results. Especially the grid im-

mediate after the two shocks, due to the nature of the Unified Coordinates, the
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Figure 6.30: Flow-generated grid for the double blocking test (M = 1.7) using the

Unified Coordinates with (a) A-Grid, (b) O-Grid, (c) L-Grid and (d) AO-Grid.
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Figure 6.31: (a) Flow-generated grid, (b) pressure contours, (c) density contours

and (d) the Mach number contours for the double blocking test (M = 1.7) using the

Unified Coordinates with AOL-grid.
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Figure 6.32: Flow-generated grid for the double blocking test (M = 2) using the

Unified Coordinates with (a) A-grid, (b) O-grid, (c) L-grid and (d) AO-grid.
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Figure 6.33: Flow-generated grid for the double blocking test (M = 2) using the

Unified Coordinates with (a) AL-grid, (b) OL-grid and (c) AOL-grid.
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Figure 6.34: (a) Pressure contours, (b) density contours and (c) the Mach number

contours of the double blocking test (M = 2) using the Unified Coordinates with

AO-grid.
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pseudo-particles tend to crowd together when compressed which result in automatic

refinement of the grid in the compression region.

To consider the slipline resolution, instead of having two sliplines as in the

previous case where three shocks meet each other, we now have two shocks only,

resulting in only one slipline. This contact wave is a weak one unfortunately and

therefore can hardly be noticed in the plot of the density distribution. Actually, we

should be able to observe the existence of a slipline in a contour plot of entropy,

S, on the other hand. However, due to the singularity nature at the sharp corner,

spurious entropy will be generated which prevents us to make any conclusion of the

existence of a slipline in the flow field.
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Chapter 7

Conclusions

In this thesis, we have studied several conditions on determining the grid-controlling

function h in the Unified Coordinates approach. Orthogonality-preserving scheme,

Area-preserving scheme and the Weighted preserving schemes are introduced and

studied. This suggests that other choices on h are possible. But in some cases we

met in Chapter 6, the grid from these Weighted-preserving schemes may still squeeze

together, like the computation using Lagrangian Coordinates, which blows up the

solution.

Orthogonality preserving scheme gives regular grid which helps attending the

best accuracy. However, singularity problem in geometry, as in the test case 6.5.1,

will sometimes make the computations difficult to continue in the cases where the

grid can move, i.e. h 6≡ 0. In these complicated cases it does not work, AO grid can

be used instead.

A direct solver for the h-equation is introduced. With comparing to the

original Unsteady approach, the new method is easy to implement. Because we do

not need to restrict our iteration time step size to satisfy the CFL condition and

because iterative schemes for solving a matrix problem are well-developed, the new

solver developed in Chapter 4.2.3 can obtain the solution in a shorter period of time.
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We have also tried to replace the Exact Riemann solver by some other non-

iterative Riemann solvers. However, the time needed for solving the flow problem

is reduced a little bit only in general, while the solution obtained could be worsen

quite a lot.

A Composite Operator (UE) approach is also introduced in Chapter 4.4.

Efficiency of the Unified Coordinates can be improved. The reason is that a better

choice of initial flow condition is used to determine the direction of the grid moves.
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Appendix A

Kinetic Energy Loss Due to

Slipline Averaging in Eulerian

Computations

Now, we try to analysis the KE loss due to slipline averaging where a rectangular

computational cell in Eulerian coordinates contains a slipline, splitting the cell into

two parts, a triangular part and a trapezoidal part or two trapezoidal parts. With the

following flow conditions: (p, ρ, u, v)1 = (p, ρ, M1 cos θ, M1 sin θ) and (p, ρ, u, v)2 =

(p, ρ, M2 cos θ,M2 sin θ), we will consider the problem into four different cases as

shown in figure A.1, i.e.

Case (a): y0 ≥ 0 and y0 + x tan θ ≤ y;

Case (b): y0 ≥ 0 and y0 + x tan θ ≥ y;

Case (c): y0 ≤ 0 and y0 + x tan θ ≤ y;

Case (d): y0 ≤ 0 and y0 + x tan θ ≥ y,
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where x and y are the dimensions of the cell, θ ∈ [0, π/2] is the angle between the

horizontal axis and the slipline and y0 is the vertical-axis intercept.

Figure A.1: Four different cases of slipline splitting.

Now, we further define A to be the cell size, i.e. A = xy, and A2 to be the

area of the lower part of the cell, divided by the contact wave. With all of the above

cases and notations used, A2 is calculated to be

Case (a): A2 =
x

2
(2y0 + x tan θ);

Case (b): A2 = A− (y − y0)
2

2 tan θ
;

Case (c): A2 =
(x tan θ + y0)

2

2 tan θ
;
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Case (d): A2 = A +
y(2y0 − y)

2 tan θ
.

Therefore, with the relations

KEexact =
1

2
Aρ1M

2
1 −

1

2
A2(ρ1M

2
1 − ρ2M

2
2 )

and

KEaveraged =
[ρ1u1A + A2(ρ1u1 + ρ2u2)]

2 + [ρ1v1A + A2(ρ1v1 + ρ2v2)]
2

2 [ρ1A + (ρ2 − ρ1)A2]
,

we have

KEloss = KEexact −KEaveraged

=
(A− A2)A2(M1 −M2)

2ρ1ρ2

2[Aρ1 + A2(ρ2 − ρ1)]
. (A.1)

By fixing y0 but varying θ or fixing θ but varying y0, we can study the effect

of the KEloss due to the change in A2. Solving

d(KEloss)

dA2

= 0 ,

we get

A∗
2± =

A
√

ρ1√
ρ1 ±√ρ2

. (A.2)

With the conditions

d2(KEloss)

dA2
2

∣∣∣∣
A∗2±

= ∓(M1 −M2)
2√ρ1ρ2

A
,

we conclude that the loss in KE is maximized when A2 = A∗
2+

.
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