
University of California

Los Angeles

Applications of the Level Set Method to

Geometrical Optics, Transmission Tomography,

Image Processing and Crystal Growth Modeling

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Mathematics

by

Shing-Yu Leung

2006

c© Copyright by

Shing-Yu Leung

2006

The dissertation of Shing-Yu Leung is approved.

Jiun-Shyan Chen

Russel Caflisch

Andrea Bertozzi

Stanley Osher, Committee Chair

University of California, Los Angeles

2006

ii

To my parents.

iii

Table of Contents

1 Introduction . 1

2 A Level Set Based Eulerian Method for Paraxial Multivalued

Traveltimes . 3

2.1 Introduction . 3

2.2 Ray Tracing Formulation . 6

2.2.1 Isotropic Paraxial Eikonal Equation 6

2.2.2 Anisotropic Paraxial Eikonal Equation 9

2.3 Level Set Formulation . 11

2.3.1 Wavefronts . 11

2.3.2 Traveltime . 12

2.3.3 Amplitude . 14

2.3.4 Caustics . 15

2.4 Implementation . 15

2.4.1 Boundary Conditions and an Algorithm 16

2.4.2 Regularization . 18

2.4.3 Amplitude . 21

2.4.4 Detecting Caustics . 23

2.5 Numerical Experiments . 24

2.5.1 Constant Model . 24

2.5.2 Waveguide Model . 28

iv

2.5.3 Synthetic Marmousi Model 28

2.5.4 An anisotropic model . 34

3 A Local Level Set Method for Paraxial Geometrical Optics . . 38

3.1 Introduction . 38

3.2 Local Level Set Method . 38

3.2.1 Implementation . 39

3.2.2 Algorithm . 40

3.3 Numerical Examples . 42

3.3.1 Waveguide Model . 43

3.3.2 Sinusoidal Model . 46

3.3.3 Synthetic Marmousi Model 46

4 A Level Set Method for Three-dimensional Paraxial Geometrical

Optics with Multiple Point Sources 50

4.1 Introduction . 50

4.2 3D Paraxial Formulation for Eikonal Equation 51

4.3 Level Set Formulation . 54

4.3.1 Representation of a Point Source 54

4.3.2 Traveltime . 55

4.3.3 Representation of Multiple Sources 56

4.3.4 Amplitude . 57

4.4 Numerical Method . 58

4.4.1 Level Set Equations . 58

v

4.4.2 Traveltime Equation . 60

4.4.3 Multivalued Traveltimes 61

4.4.4 Reinitialization and Intersection 62

4.4.5 Amplitude . 63

4.5 Numerical Examples . 65

4.5.1 Waveguide Model . 65

4.5.2 Vinje’s Gaussian Model 69

5 Transmission Traveltime Tomography Using First Arrivals . . 76

5.1 Introduction . 76

5.2 Governing Equations . 78

5.3 Algorithm and Numerical Implementations 83

5.3.1 Tomography Algorithm . 83

5.3.2 Fast Sweeping Method for Equation (5.1) 84

5.3.3 Fast Sweeping Method for Equation (5.7) 86

5.3.4 L-BFGS Method . 88

5.4 Two-Dimensional Numerical Examples 89

5.4.1 Constant Model . 90

5.4.2 Waveguide Model . 90

5.4.3 Gaussian Model . 92

5.5 Three-Dimensional Numerical Examples 93

5.5.1 Constant Model . 96

5.5.2 Gaussian Model . 96

vi

5.6 Synthetic Marmousi Model . 97

6 Transmission Traveltime Tomography Using Multiple Arrivals 102

6.1 Introduction . 102

6.2 Tomography Based on Paraxial Liouville Equations 104

6.3 An Algorithm and Some Implementation Details 113

6.4 Practical Details . 114

6.5 Examples . 119

6.5.1 Constant Model . 120

6.5.2 Waveguide Model . 123

6.5.3 Gaussian Model . 130

7 Global Minimization of the Active Contour Model with TV-

Inpainting and Two-Phase Denoising 137

7.1 Introduction . 137

7.2 Two Recent Developments . 139

7.2.1 A Two-Phase Method to Remove Impulse-Type Noise . . . 139

7.2.2 Global Minimizer of the Active Contour Model 141

7.3 The New Energy . 143

7.3.1 The Energy . 143

7.3.2 The Link Between Active Contour for Segmentation, De-

noising and TV-Inpainting 146

7.4 Numerical Method . 148

7.5 Examples . 149

vii

7.5.1 Example 1 . 149

7.5.2 Example 2 . 151

7.5.3 Example 3 . 157

8 An Adaptive Level Set Method for Stefan Problems 158

8.1 Introduction . 158

8.2 The Quasi-steady Stefan Problem 159

8.3 Numerical Method . 161

8.3.1 Grid Adaptation . 161

8.3.2 Coordinate Transformation 163

8.3.3 Temperature Extension . 164

8.3.4 Updating the Level Set Function 167

8.3.5 Reinitialization . 167

8.3.6 A Predictor-Corrector Approach 168

8.4 Numerical Examples . 170

8.4.1 Example 1 . 170

8.4.2 Example 2 . 170

8.4.3 Example 3 . 178

References . 179

viii

List of Figures

2.1 (Constant Model) Evolution of the zero level set in the phase space

at different z=0.0, 0.2, 0.4, 0.6, 0.8 and 1.0. 25

2.2 (Waveguide Model) Multivalued traveltimes by the level set method

for z=0.8, 1.2 (upper row), 1.6 and 2.0 in the wave guide model. . 29

2.3 (Waveguide Model) The zero level set overlaid on contours of time

field T in the wave guide model at different z=0.0, 0.4, 0.8, 1.2,

1.6 and 2.0. 30

2.4 (Marmousi Model) (Left) traveltime at z=0.0 by the level-set method

for Marmousi model on 100×200 grid and (right) Eulerian travel-

times (solid line) vs. ray-tracing traveltimes (*) 32

2.5 (Marmousi Model) The zero level set for Marmousi model on 100×200

grid; the zero level set overlaying contours of T at z=0.0. 33

2.6 (Marmousi Model) (Left) traveltime at z=0.0 by the level-set method

for Marmousi model on 400×200 grid and (right) Eulerian travel-

times (solid line) vs. ray-tracing traveltimes (star). 33

2.7 (Marmousi Model) The zero level set for Marmousi model on 400×200

grid; the zero level set overlaying contours of T at z=0.0. 34

2.8 (Anisotropic Model) Anisotropic paraxial multivalued traveltimes

by the level set method. qP wave traveltime: the upper-left one;

qSV traveltime: the upper-right one; qSH traveltime: the lower-

left one; qP-qSV-qSH: the lower-right one. 37

3.1 (Waveguide Model) Traveltime, amplitude, ∆ and φθ at z = 1.6km

using a 240-by-240 grid. 44

ix

3.2 (Waveguide Model) Location of caustics and some rays from a ray

tracing method. Caustics are determined by the local level set

method with a 360-by-360 grid in the x-θ space. 45

3.3 (Sinusoidal Model) Traveltime, amplitude, ∆ and φθ at z = 2.0km

using a 240-by-240 grid. 47

3.4 (Sinusoidal Model) Location of caustics and some rays from a ray

tracing method. Caustics are determined by the local level set

method with a 360-by-360 grid in the x-θ space. 48

3.5 (Marmousi Model) Contours of the traveltime and the zero level

set at z = 0.0km. 48

3.6 (Marmousi Model) (Left) Comparison between traveltimes using a

ray tracing method and the local level set method and (right) the

Zoom-in of the local level set solution at Receiver 310 at z=0.0km. 49

4.1 The spherical coordinates and the rotated spherical coordinates . 52

4.2 Semi-Lagrangian method to solve the advection equations. 59

4.3 Determining the intersection of level set functions. 61

4.4 (Waveguide Model) Traveltimes in the physical space. 66

4.5 (Waveguide Model) Traveltimes in the physical space using ray

tracing method. 66

4.6 (Waveguide Model) Traveltimes in the physical space on the cross

section y = 0. Solution using ray tracing method is plotted using

solid line. 68

4.7 (Waveguide Model) Traveltimes in the physical space on different

cross sections. 68

x

4.8 (Waveguide Model) Amplitudes in the physical space. 69

4.9 (Waveguide Model) Amplitudes in the physical space on the cross

section y = 0. 70

4.10 (Waveguide Model) Amplitudes in the physical space on different

cross sections. 70

4.11 (Vinje’s Gaussian Model) Traveltimes in the physical space. . . . 71

4.12 (Vinje’s Gaussian Model) Traveltimes in the physical space using

ray tracing method. 72

4.13 (Vinje’s Gaussian Model) Traveltimes in the physical space. Solu-

tion using ray tracing method is plotted using solid line. 72

4.14 (Vinje’s Gaussian Model) Traveltimes in the physical space on dif-

ferent cross sections. 73

4.15 (Vinje’s Gaussian Model) Amplitudes in the physical space. . . . 74

4.16 (Vinje’s Gaussian Model) Amplitudes in the physical space on the

cross section y = 0. 74

4.17 (Vinje’s Gaussian Model) Amplitudes in the physical space on dif-

ferent cross sections. 75

5.1 (Constant Model. Ten Sources.) BFGS. (a): the initial guess; (b):

final approximated c; (c): the relative error in the solution; (d):

the convergence history of energy. 91

5.2 (Waveguide Model. Ten Sources.) (a): the relative error in the

solution and (b): the convergence history of energy. 92

5.3 (Waveguide Model. Ten Sources.) Cross-sections of the solutions.

(a): z = 1 and (b): x = 0. 93

xi

5.4 (Gaussian Model. Ten Sources.) BFGS. (a): the final approxi-

mated c and (b): the convergence history of energy. 94

5.5 (Gaussian Model. Ten Sources.) BFGS. Cross-sections of the so-

lutions. (a): z = 1 and (b): x = 0. 94

5.6 (Gaussian Model with added noise. Ten Sources.) BFGS. (a): the

final approximated c; (b): the convergence history of energy. . . . 95

5.7 (Gaussian Model with added noise. Ten Sources.) BFGS. Cross-

sections of the solutions: (a): z = 1 and (b): x = 0. 95

5.8 (Constant Model. 98 Sources.) 3-D case. (a): the relative error in

the solution on the cross-section z = 1 and (b): the convergence

history of energy. 96

5.9 (Gaussian Model. 98 Sources.) 3-D case. (a): the relative er-

ror in the solution on the cross-section z = 1 and (b): the final

approximated c. 97

5.10 (Marmousi model) (a): the true velocity distribution and (b): the

initial profile c0. 98

5.11 (Marmousi model) Converged solutions. (a): ν = 104 and ∆x =

24; (b): ν = 102 and ∆x = 24; (c): ν = 106 and ∆x = 24; (d):

ν = 104 and ∆x = 12. 99

5.12 (Marmousi model) The change in (I): the energy and (II): the

residual. Legend: (a): ν = 104 and ∆x = 24; (b): ν = 102 and

∆x = 24; (c): ν = 106 and ∆x = 24; (d): ν = 104 and ∆x = 12. . 100

6.1 (Constant Model) The initial guess and final approximated c, the

error in the solution and the convergence history of energy in semi-

log scale. 121

xii

6.2 (Constant Model) Cross-sections of the velocity cexact, c0 and c∞

along x = 0 and z = 1. 122

6.3 (Constant Model) The contour plot of φ(z = 2, x, θ) using c0 and

the exact c, respectively. 122

6.4 (Constant Model) First-arrival based traveltime tomography with

a single source and multiple receivers: the final approximated c

and the convergence history of energy in semi-log scale. 124

6.5 (Constant Model) First-arrival based traveltime tomography with

a single source and multiple receivers: Cross-sections of the veloc-

ity cexact, c0 and c∞ along x = 0 and z = 1. 124

6.6 (Constant Model) Practical Algorithm. Inverted velocity and the

corresponding relative error in the solution. 125

6.7 (Waveguide Model) The initial guess and final approximated c, the

relative error in the solution and the convergence history of energy

in semi-log scale. 126

6.8 (Waveguide Model) Cross-sections of the velocity cexact, c0 and

c∞ along x = 0 and z = 1. 127

6.9 (Waveguide Model) The contour plot of φ(z = 2, x, θ) using c0 and

the exact c, respectively. 127

6.10 (Waveguide Model) Energy histories with different regularization

ν using the method of gradient descent with (a) ε = 0.01 and (b)

ε = 0.10, and (c) varying ν using the strategy proposed in Section

6.2 and (d) the relative error in the solution using this strategy. . 128

6.11 (Waveguide Model) Practical Algorithm. Inverted velocity and the

corresponding relative error in the solution. 130

xiii

6.12 (Gaussian Model) The initial guess and final approximated c, the

relative error in the solution and the convergence history of energy

in semi-log scale. 131

6.13 (Gaussian Model) Cross-sections of the velocity cexact, c0 and c∞

along x = 0 and z = 1. 132

6.14 (Gaussian Model) The contour plot of φ(z = 2, x, θ) using c0 and

the exact c, respectively. 132

6.15 (Gaussian Model) First-arrival based traveltime tomography with

a single source and multiple receivers: the final approximated c

and the convergence history of energy in semi-log scale. 134

6.16 (Gaussian Model) First-arrival based traveltime tomography with

a single source and multiple receivers: cross-sections of the velocity

cexact, c0 and c∞ along x = 0 and z = 1. 134

6.17 (Gaussian Model with Additive Gaussian Noise) The final approx-

imated c and the convergence history of energy in semi-log scale. . 135

6.18 (Gaussian Model with Additive Gaussian Noise) Errors and rela-

tive errors in c∞. 135

6.19 (Gaussian Model with Additive Gaussian Noise) Cross-sections of

the velocity cexact, c0 and c∞ along x = 0 and z = 1. 136

6.20 (Gaussian Model) Practical Algorithm. Inverted velocity and the

corresponding relative error in the solution. 136

7.1 Segmentation results using the active contour model. We show

different initial configurations of the snake on the first row. The

corresponding segmented results using these initial conditions are

shown on the second row. 141

xiv

7.2 Problem setting. Definition of the set Ω′ (domain for inpainting),

Ω̃′ (compliment of Ω′) and ΩC (domain bounded by the curve C). 143

7.3 The original true image and the user defined mask. 150

7.4 The original image with 75% salt-and-pepper noise, 50% random-

valued impulse noise and additive Gaussian noise (σ = 20) respec-

tively. 150

7.5 (Salt-and-Pepper) The minimizer for the energy (7.12) without an

extra mask. 151

7.6 (Salt-and-Pepper) The minimizer for the energy (7.12) with an

extra mask. 152

7.7 (Random-valued Impulse) The minimizer for the energy (7.12)

without an extra mask. 152

7.8 (Random-valued Impulse) The minimizer for the energy (7.12)

with an extra mask. 153

7.9 (Additive Gaussian) The minimizer for the energy (7.12) without

an extra mask. 153

7.10 (Additive Gaussian) The minimizer for the energy (7.12) with an

extra mask. 154

7.11 The original true image and the user defined mask. 154

7.12 The original image with 75% salt-and-pepper noise, 50% random-

valued impulse noise and additive Gaussian noise (σ = 20) respec-

tively. 155

7.13 (Salt-and-Pepper) The minimizer for the energy (7.12) without

(left) and with (right) an extra mask. 155

xv

7.14 (Random-valued impulse) The minimizer for the energy (7.12)

without (left) and with (right) an extra mask. 156

7.15 (Additive Gaussian) The minimizer for the energy (7.12) without

(left) and with (right) an extra mask. 156

7.16 Some noisy brain MRI images and their corresponding denoised

MRI images. 157

8.1 (Example 1) Evolution of the interface using 150-by-150, 200-by-

200 and 400-by-400 uniform rectangular grids with two different

orientations of the initial profile. 171

8.2 (Example 1) Evolution of the interface using 100-by-100 and 150-

by-150 adaptive grids. The second row shows the grid points at

the last time step. 172

8.3 (Example 1) Evolution of the interface using 100-by-100 and 150-

by-150 adaptive grids with another orientation for the initial seed.

The second row shows the grid points at the last time step. 173

8.4 (Example 2a) 50-by-50, 100-by-100 and 150-by-150 adaptive grids.

Second row shows the adaptive grids at the last time step. 175

8.5 (Example 2a) 100-by-100 and 200-by-200 uniform rectangular grids.175

8.6 (Example 2b) 50-by-50, 100-by-100 and 150-by-150 adaptive grids.

Second row shows the adaptive grids at the last time step. 176

8.7 (Example 2b) 100-by-100 and 200-by-200 uniform rectangular grids.176

8.8 (Example 2c) 50-by-50, 100-by-100 and 150-by-150 adaptive grids.

Second row shows the adaptive grids at the last time step. 177

xvi

8.9 (Example 2c) 100-by-100, 150-by-150 and 200-by-200 uniform rec-

tangular grids. 177

8.10 (Example 3) Four four-fold initial seeds with (left to right) σ =

0.0001, 0.00025 and 0.0005 in the Gibbs-Thomson condition. The

corresponding grid points at the last time step are shown on the

bottom. 178

xvii

List of Tables

2.1 Accuracy and convergence order of traveltimes without either reini-

tialization or orthogonalization 26

2.2 Accuracy and convergence order of traveltimes without orthogo-

nalization but 2 reinitialization pseudo steps at each z-step using

the approximation (2.52). 27

2.3 Accuracy and convergence order of traveltimes without reinitial-

ization but 2 orthogonalization pseudo steps at each z-step using

the approximation (2.52). 27

2.4 Accuracy and convergence order of traveltimes with 2 reinitializa-

tion pseudo steps and 2 orthogonalization pseudo steps at each

z-step using the approximation (2.52). 27

5.1 Iteration count for the fast sweeping methods. The numbers in the

brackets are the errors in the corresponding iteration, ||T n+1−T n||
or ||λn+1 − λn||. 101

xviii

Acknowledgments

I wish to express my deepest appreciation to my advisor, Professor Stanley Osher,

for his constant encouragements and supports throughout my years at UCLA. I

thank Professor Jianliang Qian for his continuous encouragements, guidance and

valuable suggestions over years. Further thanks go to Professor John Lowengrub

at UCI for some valuable discussions on crystal growth modeling. I would also like

to thank my committee members, Professor Andrea Bertozzi, Professor Russel

Caflisch and Professor Jiun-Shyan Chen, for their valuable suggestions in my oral

exam and in the final thesis defense.

I thank my parents and my brother for their continuous supports in my studies

here at UCLA. I thank my friends and colleagues: Youri Bae, Eric Chung, Jason

Chung, Lin He, Lennon Ho, Raphael Lee, Yan Li, Lok Ming Lui, John Mui,

David Shao, Henry Siu, Nang Keung Sze, Sam Tse, Jinjun Xu and many more.

All of you have helped me a great deal to make it through, so thank you.

I would also like to thank the Department of Mathematics at UCLA and the

IPAM, the Institute of Pure & Applied Mathematics, for providing fantastic

computing facilities and a very comfortable environment for my studies and re-

search.

Chapter 2, 3, 5 and 6 are co-authored with Jianliang Qian and are versions of

[86], [87], [67] and [66, 68], respectively. Chapter 4 is a version of [69] and is co-

authored with Jianliang Qian and Stanley Osher. Chapter 7 is based on [65] and

is co-authored with Stanley Osher. Chapters 2-6 were supported by the ONR

Grant #N00014-02-1-0720. Chapter 7 was supported through the NSF Grant

DMS-0312222 and the NIH Grant U54 RR021813.

xix

Vita

1977 Born, Hong Kong, China.

1999 B.Sc. (Mathematics), Hong Kong University of Science and

Technology, Hong Kong, China.

1999–2001 Teaching Assistant, Department of Mathematics, Hong Kong

University of Science and Technology, Hong Kong, China.

2001 M.Phil. (Mathematics), Hong Kong University of Science and

Technology, Hong Kong, China.

2001–2003 Teaching Assistant, Department of Mathematics, UCLA.

2003 M.A. (Mathematics), UCLA.

2004 C.Phil. (Mathematics), UCLA.

2003–present Research Assistant, Department of Mathematics, UCLA.

Publications

Jianliang Qian and Shingyu Leung, A Level Set Based Eulerian Method for

Paraxial Multivalued Traveltimes, Journal of Computational Physics, Volume

197, Issue 2, Pages 711-736.

xx

Jianliang Qian and Shingyu Leung, A Local Level Set Method for Paraxial Geo-

metrical Optics, SIAM. J. Sci. Comp., Volume 28, Issue 1, Pages 206-223.

Shingyu Leung, Jianliang Qian and Stanley Osher, A Level Set Method for Three-

dimensional Paraxial Geometrical Optics with Multiple Sources, Commun. Math.

Sci., Volume 2, Issue 4, December 2004, Pages 643-672.

Shingyu Leung and Stanley Osher, Fast Global Minimization of the Active Con-

tour Model with TV-Inpainting and Two-phase Denoising, Proceeding of the 3rd

IEEE Workshop on Variational, Geometric and Level Set Methods in Computer

Vision, 2005, Pages 149-160.

Shingyu Leung and Jianliang Qian, A Transmission Tomography Problem Based

on Multiple Arrivals from Paraxial Liouville Equations, In Expanded Abstract

for the SEG 75th Annual Meeting, Houston, USA, 2005.

Shingyu Leung and Jianliang Qian, An Adjoint State Method for 3D Transmis-

sion Traveltime Tomography Using First Arrival. Commun. Math. Sci., Volume

4, Number 1, March 2006. Pages 249-266.

xxi

Abstract of the Dissertation

Applications of the Level Set Method to

Geometrical Optics, Transmission Tomography,

Image Processing and Crystal Growth Modeling

by

Shing-Yu Leung

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2006

Professor Stanley Osher, Chair

The level set method is a successful numerical method. This dissertation fo-

cuses on its applications to geometrical optics, transmission tomography, image

processing, and crystal growth modeling. In geometrical optics, we have proposed

a level set framework to compute multivalued solutions of the paraxial eikonal

equation. To further improve the computational efficiency and the memory re-

quirement of this algorithm, we combine it with a local level set method and a

semi-Lagrangian method. Using these tools, we then solve an inverse problem of

geometrical optics, the so-called transmission traveltime tomography. Namely, we

are inverting the velocity in a medium using possibly multivalued traveltime mea-

surements. We have also studied two other applications of the level set method.

In image processing, we have developed a variational method for image segmen-

tation which determines the global minimizer of the active contour model. In

crystal growth modeling, we have proposed an adaptive level set method. All

these examples show that the level set method is an effective numerical method

and can be easily applied to various fields in applied mathematics.

xxii

CHAPTER 1

Introduction

The level set method, invented by Osher and Sethian [81], is a numerical method

originally proposed to capture a moving interface. The main idea is to represent

the interface by a level set of a function embedded in a higher dimension. This

implicit and Eulerian approach has been successfully generalized and applied

to various areas in applied mathematics [80]. In this dissertation, we focus on

applications to geometrical optics, transmission tomography, image processing,

and crystal growth modeling.

In Chapter 2, we apply the level set method to compute multivalued solu-

tions of the two dimensional paraxial eikonal equation. With N the number

of grid points along each spatial direction, the complexity of this algorithm is

O(N3LogN), rather than O(N4) as seen in typical ray-tracing methods.

In Chapter 3 and Chapter 4, we improve both the computational efficiency

and the memory requirement of the algorithm in Chapter 2 by two numerical

schemes. We first apply a local level set method in Chapter 3. This reduces

the computational complexity from O(N3LogN) to O(N2LogN). In Chapter 4,

we first extend the formulation in Chapter 2 to three-dimensional paraxial geo-

metrical optics. Then we introduce a global semi-Lagrangian method to solve

all level set equations. This numerical method drops the computational memory

requirement from O(N4) to O(N2). Although the whole algorithm has the com-

putational complexity O(MN4), where M is the number of steps in the ODE

1

solver for the semi-Lagrangian scheme, it can handle up to N2 multiple point

sources simultaneously.

In Chapter 2 to Chapter 4, we assume one knows the velocity, or the slowness,

of the medium in the computational domain. The problem then is to determine

the multivalued traveltimes. In Chapter 5 and Chapter 6, we are solving the

inverse of this problem. Namely, we are approximating the velocity in the domain

using traveltimes measured by some receivers on the boundaries. In Chapter 5,

we invert the velocity using only first arrivals which provides a computationally

fast estimation of the velocity. To improve the quality of this approximation, we

apply in Chapter 6 the techniques we developed in Chapter 2 to transmission

traveltime tomography using multiple arrivals.

The last two chapters contain two other applications of the level set method.

In Chapter 7, we study variational methods for image segmentation. One of the

most well-known methods is the active contour model. In a recent paper by Bres-

son et al., a link between the active contour model and the variational denoising

model of Rudin-Osher-Fatemi (ROF) was demonstrated. This relation provides

a method to determine the global minimizer of the active contour model. In that

chapter, we propose a variation of this method to determine the global minimizer

of the active contour model in the case when there are missing regions in the

observed image. This new approach unifies image denoising, image segmentation

and image inpainting.

In Chapter 8, we develop an adaptive level set method to solve the quasi-

steady state approximation of the Stefan problem. Since this adaptive approach

is still based on a structured quadrilateral mesh, we can simply use any standard

finite difference method for all computations. We also implement several numer-

ical examples to demonstrate the computational efficiency of this approach.

2

CHAPTER 2

A Level Set Based Eulerian Method for Paraxial

Multivalued Traveltimes

2.1 Introduction

Consider the linear acoustic wave equation. According to the Debye procedure,

we first insert the high frequency asymptotic ansatz into the wave equation.

Among all these terms in the ansatz, the most important one is the zeroth or-

der term, the so-called geometrical optics term [61]. This geometrical optics

term consists of two functions, a phase function satisfying the eikonal equation,

a first-order nonlinear Hamilton-Jacobi equation, and an amplitude function sat-

isfying a linear transport equation with the phase gradient as coefficients. Thus

to construct the geometrical optics term, one first solves the eikonal equation

for the phase function and then integrates the transport equation for amplitude

afterwards.

Conventionally, both the eikonal equation and the amplitude equation were

solved by the method of characteristics, a.k.a. the ray tracing method in the

seismology and optics. Thus the method inherits the intrinsic shortcoming of the

Lagrangian method, i.e. the non-uniform resolution of the solution in the desired

computational domain [17]. Certainly it is possible to overcome this drawback by

introducing interpolation and bookkeeping data structures [118]. However, these

3

procedures could be fairly complicated in practise.

In the late 80’s, Vidale [115], and van Trier and Symes [114] introduced dif-

ferent direct discretizations of the eikonal equation based on finite difference

schemes. These methods are Eulerian approaches which yield uniform resolutions

of the solution in the computational domain. As pointed out in [114] however,

these obtained solutions should be understood as the minimum phase or the first-

arrival traveltime in the viscosity solution sense for Hamilton-Jacobi equations

[70, 29]. Once the traveltime is obtained, the transport equation for amplitude

might be integrated [116, 121, 106, 88]. But since the viscosity solution usually

develops kinks, the gradient of the phase function is discontinuous. Therefore, the

resulting solution for the transport equation has to be understood in the measure

sense [40]. The difference between the ray tracing solution and the finite differ-

ence solution of the eikonal equation is that one is multiple-valued and the other

single-valued [7, 37]. Although the viscosity concept and those related numerical

methods provide a natural Eulerian framework for geometrical optics, the draw-

back is that it provides only first arrivals while some applications may require

all traveltimes. Moreover, White [120] proved that there is a high probability for

a so-called transmission caustic to occur in an inhomogeneous medium. Beyond

transmission caustics, more than one ray pass over each point in space so that the

phase is multivalued. Therefore, it is important to design an Eulerian method

for multivalued solutions of the eikonal equation, or in general Hamilton-Jacobi

equations.

In the last decade or so, there are a lot of effort in this direction: geometrical

domain decomposition type methods [35, 5, 6], slowness matching method [104,

105], dynamic surface extension method [100, 93], segment projection method

[38], level set method [79, 85, 57, 24, 86], phase space method [43], moment-

4

based methods [36, 48, 56, 49], and etc. See [7, 37] for up-to-date reviews of the

above methods.

Among these schemes, one of the most successful methods is the level set

method. It was first used to compute multivalued phases in the high frequency

asymptotics for acoustic wave equations in [79]. Later it was extended to compute

multivalued phases (traveltimes) in the high frequency asymptotics for anisotropic

elastic wave equations in [85, 25], where the multivalued solutions for a class of

steady Hamilton-Jacobi equations were computed. Recently it was extended to

compute multivalued wavefronts and multivalued phases in the high frequency

asymptotics for the Schrödinger equation in [24], where multivalued solutions for

time dependent Hamilton-Jacobi equations were constructed in a general level set

framework, and it was also extended to compute multivalued wavefront locations

of Hamilton-Jacobi equations in [57].

In this chapter, we propose another level-set based Eulerian method for com-

puting multivalued solutions of the paraxial eikonal equation in both isotropic

and anisotropic metrics. This level-set framework provides a natural link from a

Lagrangian formulation to an Eulerian formulation. We first derive the ray trac-

ing equation using one of the spatial directions as the running parameter, which

corresponds to the paraxial eikonal equation. This ray tracing equation is then

embedded into a level-set motion equation to define a passive motion for level

sets. The corresponding multivalued traveltime is obtained by solving another

advection equation with a non-homogeneous source term.

5

2.2 Ray Tracing Formulation

2.2.1 Isotropic Paraxial Eikonal Equation

Consider the eikonal equation with a point source condition in an isotropic

medium which occupies an open, bounded domain Ω ⊂ R2. By isotropy here

we mean the wave velocity has no directional dependence. The equation is as

follows,

|∇xτ(x,xs)| =
1

c(x)
. (2.1)

limx→xs

τ(x, xs)

‖x− xs‖ =
1

c(xs)
, τ ≥ 0, (2.2)

where xs is the given source point, c ∈ C1(Ω) is the positive velocity. Here

τ(x,xs) denotes the time (traveltime) taken by a particle moving at velocity c(x)

to travel from the source point xs to a target point x ∈ Ω. For x 6= xs near xs,

τ is a differentiable function of both arguments and satisfies the eikonal equation

(2.1). However, if the velocity c(x) is inhomogeneous with spatial position x and

x is sufficiently distant from xs, τ is generally a multivalued function of both

variables. This implies that it is very likely to have cusps and caustics in the

solution [120].

As mentioned above, the concept of viscosity solution can be used to extract a

globally single valued solution for the eikonal equation [28]; this solution assigns

to each point x the least (possibly many) traveltimes from xs to x. Relying on this

concept, we may use finite difference schemes to stably and efficiently compute

this least traveltime [30, 81, 82, 91, 88, 89]. Although the viscosity concept

and these related numerical methods provide a natural Eulerian framework for

geometrical optics, the drawback is that it provides only first-arrivals while some

6

applications may require all arrival times.

By the method of characteristics for the eikonal equation (2.1) with the point

source condition (2.2), we have a ray tracing system,

dx

dt
= c sin θ (2.3)

dz

dt
= c cos θ (2.4)

dθ

dt
= sin θ

∂c

∂z
− cos θ

∂c

∂x
(2.5)

with initial conditions

x|t=0 = xs (2.6)

z|t=0 = zs (2.7)

θ|t=0 = θs (2.8)

where x = (x, z), xs = (xs, zs) and θs varies from −π to π. This is a multivalued

Lagrangian formulation because even though the rays in the phase space (x, z, θ)

may never intersect, the projected rays in the physical space (x, z) may intersect.

In some applications, for example in reflection seismics [26] or in quantum me-

chanics [84], the traveltimes of interest are carried by the so-called sub-horizontal

rays [50, 103, 88], where sub-horizontal means oriented in the positive z-direction.

A convenient characterization for sub-horizontal rays is that

dz

dt
≥ c cos θmax > 0 (2.9)

for some 0 < θmax < π
2
. This inequality holds for rays making an angle θ with

the vertical satisfying |θ| ≤ θmax < π
2
.

7

To be specific, consider Ω = {(x, z) : xmin ≤ x ≤ xmax, 0 ≤ z ≤ zmax} and

assume that the source is located on the surface: xmin ≤ xs ≤ xmax and zs = 0.

Using the sub-horizontal condition, we can use depth z as the running parameter

so that we have a reduced system

dx

dz
= tan θ (2.10)

dθ

dz
=

1

c

(
∂c

∂z
tan θ − ∂c

∂x

)
(2.11)

with

x|z=0 = xs (2.12)

θ|z=0 = θs (2.13)

where now θs varies from −θmax ≤ θ ≤ θmax < π/2. In addition, the traveltime

can be computed by integrating

dt

dz
=

1

c cos θ
(2.14)

with

t|z=0 = 0. (2.15)

This ray tracing system (2.10-2.13) is a multivalued Lagrangian formulation de-

fined in the reduced phase space (z; x, θ). In fact, the same system can be directly

obtained by applying the method of characteristics to the paraxial eikonal equa-

8

tion

∂τ

∂z
= H

(
x, z,

∂τ

∂x

)
=

√√√√max

(
1

c2
−

(
∂τ

∂x

)2

,
cos2 θmax

c2

)
. (2.16)

A theoretical justification can be found in [105].

As we will see, since the ray tracing system (2.10-2.11) is formulated in a

reduced phase space, we may use a 2-dimensional level set motion equation to

move the initial curve deduced from the initial condition.

2.2.2 Anisotropic Paraxial Eikonal Equation

For a general anisotropic medium in which wave propagation velocity has both

spatial and directional dependence, we may also formulate the paraxial eikonal

equation by enforcing the sub-horizontal condition.

To illustrate the idea behind our approach, we consider only the two-dimensional

anisotropic eikonal equation

F (x, z, p1, p3) = 0, (2.17)

where F is a function depending on the anisotropic medium under consideration,

p1 = τx and p3 = τz components of the slowness vector ∇τ with τ being the

traveltime. Parameterize the slowness vector by

p1 =
sin θ

V (x, z, θ)
, p3 =

cos θ

V (x, z, θ)
, (2.18)

where θ is known as the phase angle, varying from −π to π, and V as the phase

velocity solving an eigenvalue problem [85] and selecting different wave modes.

9

Applying the method of characteristics to equation (2.17), we have

dx

dt
=

(
p1

∂F

∂p1

+ p3
∂F

∂p3

)−1
∂F

∂p1

, (2.19)

dz

dt
=

(
p1

∂F

∂p1

+ p3
∂F

∂p3

)−1
∂F

∂p3

, (2.20)

dp1

dt
= −

(
p1

∂F

∂p1

+ p3
∂F

∂p3

)−1
∂F

∂x
, (2.21)

dp3

dt
= −

(
p1

∂F

∂p1

+ p3
∂F

∂p3

)−1
∂F

∂z
, (2.22)

where the normalization is made so that the evolution parameter t has the dimen-

sion of time and is identical to τ . To obtain an equation for dθ
dt

, we differentiate

both equations in (2.18),

dp1

dt
=

V cos θ − ∂V
∂θ

sin θ

V 2

dθ

dt
− sin θ

V 2

(
∂V

∂x

dx

dt
+

∂V

∂z

dz

dt

)
, (2.23)

dp3

dt
=

−V sin θ − ∂V
∂θ

cos θ

V 2

dθ

dt
− cos θ

V 2

(
∂V

∂x

dx

dt
+

∂V

∂z

dz

dt

)
. (2.24)

Thus, solving the above equations for dθ
dt

and substituting in (2.21) and (2.22),

we have

dθ

dt
=

(
p1

∂F

∂p1

+ p3
∂F

∂p3

)−1 (
V

∂F

∂x
cos θ − V

∂F

∂z
sin θ

)
. (2.25)

Equations (2.19), (2.20) and (2.25) give us the ray tracing system which may

be solved with suitable initial conditions as (2.6), (2.7) and (2.8).

The condition for sub-horizontal rays is

dz

dt
=

(
p1

∂F

∂p1

+ p3
∂F

∂p3

)−1
∂F

∂p3

> 0, (2.26)

10

which may be easily enforced in the reduced phase space for different wave modes.

This implies that we may use the depth variable as the running parameter along

the ray so that we have

dx

dz
=

∂F

∂p1

(
∂F

∂p3

)−1

(2.27)

dθ

dz
=

(
∂F

∂p3

)−1 (
V

∂F

∂x
cos θ − V

∂F

∂z
sin θ

)
, (2.28)

augmented with initial conditions (2.12) and (2.13).

Similar to the isotropic case, the traveltime T = t is computed by integrating

dT

dz
= p3 + p1

dx

dz
, (2.29)

with the initial condition (2.15).

2.3 Level Set Formulation

2.3.1 Wavefronts

As we mentioned above, we treat z as an artificial time variable. Now, if we define

φ = φ(z, x, θ) such that the zero level set, {(x(z), θ(z)) : φ(z, x(z), θ(z)) = 0},
gives the location of the reduced bicharacteristic strip (x(z), θ(z)) at z, then we

may differentiate the zero level set equation with respect to z to obtain

φz + uφx + vφθ = 0 , (2.30)

with

u =
dx

dz
and v =

dθ

dz
, (2.31)

11

which are given by the ray equations (2.10-2.11) or (2.27-2.28). In essence, we

embed the ray tracing equations as the velocity field, u = (u, v), into the level

set equation which governs the motion of the bicharacteristic strips in the phase

space.

The initial condition for the level set motion equation (2.30) is taken to be

φ|z=0 = φ(0, x, θ) = x− xs , (2.32)

which is obtained from initial conditions (2.12) and (2.13). This is a signed

distance function, satisfying |∇x,θφ| = 1, to the initial phase space curve

{(x, θ) : x = xs,−θmax ≤ θ ≤ θmax} (2.33)

in the reduced phase space Ωp = {(x, θ) : xmin ≤ x ≤ xmax,−θmax ≤ θ ≤ θmax}.
The initial curve partitions Ωp into two sub-domains represented by {(x, θ) :

φ(0, ·, ·) < 0} and {(x, θ) : φ(0, ·, ·) > 0}. Afterwards, the level set motion

equation takes over and moves this initial curve as z varies. Since the initial

curve defines an implicit function between x and θ, where θ is a multivalued

function of x, the new curve shares the same property. Therefore, for a fixed z,

for some x∗’s we may have more than one θ∗ such that φ(z, x∗, θ∗) = 0. This

essentially tells us where the solutions are multivalued.

2.3.2 Traveltime

To determine the traveltime of the ray from the above level set equation, we now

derive a corresponding equation governing the evolution of traveltime. By the

sub-horizontal condition in the paraxial formulation and the ray equation (2.14)

or (2.29), let Fu(z; x, θ) be the flow generated by the velocity field u = (u, v) in

12

the phase space (x, θ) along the z-direction. Then we can write

dT

dz
(z, Fu(z; x, θ)) =

1

c cos θ
(2.34)

in the isotropic case and

dT

dz
(z, Fu(z; x, θ)) = p3 + p1

dx

dz
(2.35)

in the anisotropic case. Therefore, having t = T (z, x, θ), we get the following

advection equation

dt

dz
=

dT

dz
= Tz + uTx + vTθ =

1

c cos θ
(2.36)

for isotropic traveltime and

dt

dz
=

dT

dz
= Tz + uTx + vTθ = p3 + p1

dx

dz
(2.37)

for anisotropic traveltime.

The initial condition for T is specified according to the initial condition (2.15):

T |z=0 = T (0, x, θ) = 0 , (2.38)

which is consistent with the initial condition (2.32).

By solving the level set equation (2.30), we have the locations of wavefronts;

by solving the traveltime equation (2.36) or (2.37), we have the traveltime values

at the corresponding locations. Therefore, the multivalued traveltime at a spe-

cific location in the physical space can be obtained by first computing wavefront

locations and then interpolating the traveltime at that location from gridded

13

traveltimes.

2.3.3 Amplitude

The amplitude of the ray can be computed according to the formula given in

[44, 121, 88]:

Ã(x, z; xs, zs) =
1

2π

√
c

2

√
|∇T̃ ×∇ψ̃| , (2.39)

where T̃ and ψ̃ are, respectively, the traveltime and the take-off angle of a ray

reaching (x, z) from (xs, zs). Traveltimes and takeoff angles are well defined on

each solution branch in the physical space (x, z). To compute this quantity in

the reduced phase space, we consider T as the extension of T̃ to the phase space;

furthermore, we may also extend ψ̃ and Ã to ψ and A in the (z, x, θ) space,

respectively. Since the takeoff angle is constant along a given ray in the phase

space, we have

ψz + uψx + vψθ = 0 . (2.40)

Moreover, we have

∂T̃

∂x
= Tx + Tθ

∂θ

∂x
,

∂T̃

∂z
= Tz + Tθ

∂θ

∂z
,

∂ψ̃

∂x
= ψx + ψθ

∂θ

∂x
,

∂ψ̃

∂z
= ψx + ψθ

∂θ

∂z
. (2.41)

14

It follows that

∣∣∣∇T̃ ×∇ψ̃
∣∣∣ =

∣∣∣∣(Txψθ − Tθψx)

(
−v + u

∂θ

dx
+

∂θ

∂z

)
− 1

c cos θ

(
ψx + ψθ

∂θ

∂x

)∣∣∣∣ .

(2.42)

Since φ(z, x, θ(x, z)) = 0 on the zero level set and equation (2.11), we have

∂θ

∂x
= −∂φ/∂x

∂φ/∂θ
and

∂θ

∂z
= v − u

∂θ

∂x
. (2.43)

Finally we have

A(z; x, θ) =
1

2π

√
c

2 cos θ

√∣∣∣∣
ψxφθ − ψθφx

φθ

∣∣∣∣ . (2.44)

2.3.4 Caustics

Mathematically, caustic surfaces are envelops of the family of rays. In the geo-

metrical optics, at a caustic the amplitude of the asymptotic expansion becomes

infinite, so that the usual asymptotic expansion is no longer valid at caustics, and

some special expansions have been introduced to construct wave fields near the

caustics [72, 73, 15].

In the current level set formulation, the caustic curves correspond to

{(z, x) : φ(z, x, θ(x, z)) = 0 and φθ(z, x, θ(x, z)) = 0}.

2.4 Implementation

We will give full details on implementing the level set Eulerian method for

isotropic eikonal equations only.

15

2.4.1 Boundary Conditions and an Algorithm

We impose a non-reflective boundary condition for the level set equation, ∂φ/∂n =

0. This ensures the information outside the domain Ωp will not interfere with the

zero level set inside the computational domain.

For the boundary conditions for the traveltime equation, to take care of the

upwind property of the equation, we will split the boundaries into two types, one

with information going into the domain and one with no information coming from

outside the domain. The second type can be easily treated using non-reflective

boundary condition. For the first type, the boundary conditions for the travel-

time equation are determined using the local information from the characteristics

system. We first locally invert equation (2.3) and (2.5) and get

∂T

∂x
=

1

c sin θ
, (2.45)

which is used for boundaries x = xmin and x = xmax, and

∂T

∂θ
=

(
sin θ

∂c

∂z
− cos θ

∂c

∂x

)−1

, (2.46)

which is used for boundaries θ = −θmax and θ = θmax.

The above conditions essentially specify the normal derivatives of traveltime

along the boundaries. Then the values of T on the boundaries will be obtained

by applying the Adams’ Extrapolation formula to equation (2.45), where θ is

considered as fixed, and to equation (2.46), where x is considered as fixed.

In equation (2.45), it seems that there is a singularity when θ = 0. However,

in that case, u = tan θ = 0 and the information on the boundary will not pass

into the computational domain and this case can actually be handled by the

16

non-reflective boundary condition too.

Summarizing all above ingredients, we propose determining the multivalued

traveltimes for all x at some depth z∗ using the following algorithm.

Algorithm 1:

I. Solve the level set equation (2.30) and the traveltime equation (2.36) up to z∗

with the velocity field generated by the ray equations (2.10), (2.11).

II. For all x,

i. determine all θi such that φ(z∗, x, θi) = 0 (i = 1, · · ·) by root finding;

ii. determine T (z∗, x, θi) (i = 1, · · ·) by interpolation.

In Step I, the level set equation and the traveltime equation are decoupled

and can be solved separately. The spacial derivatives are approximated by the

fifth order WENO-Godunov scheme [55] while the time derivatives are solved by

the third order TVD-RK method [82]. Both the level set equation (2.30) and the

traveltime equation (2.36) are linear, hence the CFL step ∆z can be chosen by

∆z ≤ C
min(∆x, ∆θ)

max(
√

u2 + v2)
, (2.47)

where ∆x and ∆θ are mesh sizes along the x- and θ-direction respectively, and

C is the CFL number taken to be 0.6. For the root-finding and the interpola-

tion in Step II, we can simply use any non-oscillatory interpolation scheme like

linear interpolation or ENO reconstruction. For z∗ fixed, the root finding is con-

ducted by checking the values of φ on each line of x and θ varying. Interpolation

for traveltime is performed where a root is present by the Intermediate Value

Theorem.

17

2.4.2 Regularization

Initially at z = 0, we have a signed distance function satisfying |∇φ| = 1, so that

the level sets of φ are equally spaced. However, as z varies the level set function is

no longer equally spaced in general. This implies that φ may develop steep or flat

gradients near the zero level set, making the computed curve locations and fur-

ther computations inaccurate, which does happen in Algorithm 1. Therefore, we

propose the following regularization procedure which consists of reinitialization

and orthogonalization.

To restore the equally spaced property for the level sets, the usual way is

to make φ a signed distance function without moving the zero level set of φ

appreciably. This can be achieved through the so-called reinitialization. The

most-used way is to solve the following equation to steady state φ̃∞ [102, 52, 83,

80]:

∂φ̃

∂ξ
+ S(φ)(|∇φ̃| − 1) = 0 (2.48)

φ̃|ξ=0 = φ(z, ·, ·) (2.49)

∂φ̃

∂n

∣∣∣∣∣
∂Ωp

= 0 , (2.50)

where S(φ) is a smoothed signum function which can be approximated by

S(φ) =
φ√

φ2 + ∆x∆θ
. (2.51)

Other choice of approximation is also possible, for example

S(φ) =
2

π
tan−1(φ) . (2.52)

18

A general principles of picking the function is, S(φ) is a bounded function with

the following properties

1. xS(x) > 0 for all x 6= 0.

2. S(0) = 0.

The steady state φ̃∞ has the same zero level set as φ(z, ·, ·) within a certain

accuracy since φ̃ does not move on the zero level set of φ. Moreover, at the steady

state φ̃∞ is a signed distance function since |∇φ̃∞| = 1. The reinitialization step

is to use φ̃∞ instead of φ(z, ·, ·) as the initial condition at z for solving the level set

equation to the next stage. Because we are interested only in the zero level set,

it is necessary to evolve equation (2.48) for only a few pseudo-time steps. How

often we should invoke the reinitialization step is a subtle issue; see [83, 80] for

some discussions. In our implementation, we invoke the reinitialization at every

z step so that we have a better-behaved function for determining the values θi in

Step II of Algorithm 1.

Even with careful implementation of the above reinitialization procedure, the

location of the zero level set may still be shifted by an amount less than one

grid cell. This is harmless for the visualization purpose of the location of the

ray. However, because the solution from the traveltime equation (2.36) would

typically vary a lot near the corresponding location of the zero level set of φ, this

shift makes the results from the interpolation in Step II highly inaccurate.

Because we are interested only in the value of T where φ = 0, we propose the

following orthogonalization procedure

∂T̃

∂ξ
+ sgn(φ)

(∇φ

|∇φ| · ∇T̃

)
= 0 , (2.53)

T̃ |ξ=0 = T (z, ·, ·) (2.54)

19

∂T̃

∂n

∣∣∣∣∣
∂Ωp

= 0 , (2.55)

which, theoretically, preserves the values of T on where φ = 0 but changes them

elsewhere such that the new T would not vary too much near the desired region.

At the steady state, we have ∇φ ·∇T̃ = 0. Equation (2.53) may also be viewed as

an extension procedure; namely, we extend the values of T on the zero level set of

φ along the normal direction of the zero level set of φ; see [83, 80]. This generally

makes T discontinuous since lines normal to the zero level set will eventually

intersect somewhere away from the zero level set. Even if the location of the zero

level set may be shifted, the effect to the interpolation will still be acceptable.

Similar to the reinitialization in φ, we only need to apply several iterations,

instead of solving it until reaching the steady state solution. This makes the

regularization procedure efficient, simple to implement and robust.

Incorporating those regularization into Algorithm 1, we have an improved al-

gorithm.

Algorithm 2:

I. Initialization: given Nz, Nx and Nθ: ∆z = zmax/(Nz − 1), ∆x = (xmax −
xmin)/(Nz − 1) and ∆θ = 2θmax/(Nθ − 1); initialize φ and T at z = 0.

II. For k = 1 to Nz:

1. March one ∆z step from (k − 1)∆z to k∆z by solving the level set

equation (2.30) and reinitializing the level set motion by solving (2.48) at

every intermediate z-step.

2. March one ∆z step from (k − 1)∆z to k∆z by solving the traveltime

equation (2.36).

20

3. Orthogonalize T and φ by solving equation (2.53).

4. For x = (j − 1)∆x, j = 1, · · · , Nx,

i. determine all θi such that φ(k∆z, x, θi) = 0 (i = 1, · · ·) by root

finding;

ii. determine T (k∆z, x, θi) (i = 1, · · ·) by interpolation.

Since the reinitialization procedure is usually invoked for a fixed number of

steps (from 1 to 4 pseudo-steps in our numerical examples presented below), the

above algorithm in the average case has the complexity O(N3) where we assume

Nz = Nx = Nθ = N . In the worst case, if the reinitialization procedure is invoked

until convergence, the above algorithm has the complexity O(N3LogN).

2.4.3 Amplitude

To compute the amplitude, we need the derivatives of the level set function at

different z’s. However, as discussed above, we have regularized the level set

function using reinitialization and unfortunately, this process would theoretically

fix the location of the zero level set but alter all other level sets. This means

the derivatives of φ cannot be computed directly from the level set function by

differentiating the function φ itself. Therefore, to compute the derivatives of the

level set function on the zero level set, we need to advect those derivatives as

well. We first let ξ = φx and η = φθ. Differentiating the advection equation for

φ with respect to x and θ respectively, we have

ξz + uξx + vξθ + uxξ + vxη = 0 ,

ηz + uηx + vηθ + uθξ + vθη = 0 . (2.56)

We might apply the same idea to the advection equation for takeoff angles

21

as well so that the derivatives of takeoff angles could be determined. Once those

ingredients are in place, the amplitude could be obtained. However, we will not

use this approach because it is not computationally efficient and also numerically

difficult to reconcile the accuracies of four different derivatives.

Instead, defining

∆ = ψxφθ − ψθφx (2.57)

and differentiating it with respect to z, we have the advection equation

∆z +∇x,θ · (u∆) = 0 , (2.58)

and the amplitude can then be computed by

A(z; x, θ) =
1

2π

√∣∣∣∣
c

2 cos θ

∆

φθ

∣∣∣∣ . (2.59)

Therefore in order to get the amplitude, we can simply solve the advection

equations for φx, φθ and ∆. We need the advection equation for φx because it

is coupled with the one for φθ. In general, ∆ is a bounded quantity and φθ may

approach zero. When φθ goes to zero, A goes to infinity and we are approaching

caustics.

Next we have to initialize all quantities that we are going to advect. At z = 0,

we can set φx and φθ equal to 1 and 0 respectively. However, ψx is a delta-type

like function at the source and it is better to start computing ψx and ψθ at some

z = dz > 0 close to zero. Assuming that the velocity c can be approximated by

a constant near the source, we have

ψx(z, x, θ)|z=dz =
cos2 θ

dz
,

22

ψθ(z, x, θ)|z=dz = 1 . (2.60)

Thus at small z = dz > 0, φ(z, x, θ)|z=dz = x − dz tan θ and ∆(dz, x, θ) ≡ −2,

which is independent of the dz as long as the velocity can be well approximated

by a constant near the source. This makes the computation of amplitude stable.

2.4.4 Detecting Caustics

Because passing through a caustic implies overturning of the zero level set in the

x-θ space, the number of θ’s such that φ(z, x, θ(x)) = 0 will increase or decrease

by two when x varies monotonically. Therefore, a simple way to detect caustics

is first enumerating the number of roots θk’s for every xi, then checking where

those numbers have sudden jumps, and finally approximating locations of caustics

by taking the mid-point of two adjacent xi’s which have different number of θk.

The resulting approximation of the caustics detection would be in first order.

We let x∗ be the exact location of a caustic at some fixed z∗. Assuming we

can compute exactly, let xn be the location of the caustic using our level set

formulation in a grid level n. Let x′n be the location computed using our mid-

point approximation. We have at least xn = x∗ + O(∆x2). Because the distance

between xn and x′n would be less than ∆x/2, we have x′n = xn + O(∆x) and,

therefore, x′n = x∗ + O(∆x).

In terms of multivalued traveltimes, passing through a caustic implies that the

number of traveltimes increases or decreases by two as we will see in numerical

examples.

23

2.5 Numerical Experiments

For the first two examples here, we put a point source at the origin and the

velocity functions c(x, z) are all C∞. The third example, the synthetic Marmousi

model, is a more challenging one where the velocity function is given only as a

sampled function.

In all the examples the computational domain is chosen to be

Ωp = {(x, θ) : −1 ≤ x ≤ 1,−9π

20
≤ θ ≤ 9π

20
}. (2.61)

Accordingly, the Marmousi velocity will be rescaled to the above computational

domain. The last example is an anisotropic model which consists of three different

wave modes; one of the wave modes has the so-called instantaneous singularity.

2.5.1 Constant Model

When the velocity c is constant, the analytic solution for the traveltime is known

so that we can study the accuracy and the convergence order of the proposed

Eulerian method. We compute the traveltime up to z=1.0 with different options

of regularization procedures to see how reinitialization and orthogonalization af-

fect the accuracy and the convergence order of the method.

Figure 2.1 shows the evolution of the zero level set as the depth z increases.

Noticed that initially we have a vertical line. Under the influence of the velocity

field u = (tan θ, 0), the upper part of the vertical line is advected to the right, and

the lower part of the line is advected to the left. However, since this traveltime is

single valued in this case, the zero level set always defines a single valued implicit

function between x and θ for every fixed z.

24

−1 −0.5 0 0.5 1

−1.5

−1

−0.5

0

0.5

1

1.5

−1 −0.5 0 0.5 1

−1.5

−1

−0.5

0

0.5

1

1.5

−1 −0.5 0 0.5 1

−1.5

−1

−0.5

0

0.5

1

1.5

−1 −0.5 0 0.5 1

−1.5

−1

−0.5

0

0.5

1

1.5

−1 −0.5 0 0.5 1

−1.5

−1

−0.5

0

0.5

1

1.5

−1 −0.5 0 0.5 1

−1.5

−1

−0.5

0

0.5

1

1.5

Figure 2.1: (Constant Model) Evolution of the zero level set in the phase space
at different z=0.0, 0.2, 0.4, 0.6, 0.8 and 1.0.

25

∆x l1 error l1 order l2 error l2 order l∞ error l∞ order
0.20000 0.01374575 0.01153032 0.01213886
0.10000 0.00366580 1.9067 0.00283586 2.0235 0.00265964 2.1903
0.05000 0.00092272 1.9901 0.00073505 1.9478 0.00079357 1.7447
0.02500 0.00024266 1.9269 0.00018498 1.9904 0.00021538 1.8814
0.01250 0.00005863 2.0491 0.00004600 2.0074 0.00005231 2.0416
0.00625 0.00001497 1.9692 0.00001165 1.9814 0.00001369 1.9336

Table 2.1: Accuracy and convergence order of traveltimes without either reini-
tialization or orthogonalization

Table 2.1 shows the clean second-order accuracy and convergence of travel-

times in l1, l2 and l∞ norms without either reinitialization or orthogonalization.

This is expected because the linear interpolation is used to extract traveltimes

gives us second-order accuracy only, even though the level set equation and the

traveltime equation are solved to third order accuracy. Table 2.2 also shows

second order convergence of traveltimes in different norms without orthogonal-

ization but with two reinitialization pseudo steps at each z-step. This shows that

the reinitialization procedure alone does not move the zero level set too much so

that the accuracy is not affected appreciably. Table 2.3 shows second order con-

vergence of traveltimes in different norms without reinitialization but with two

orthogonalization pseudo steps at each z-step. This shows that the orthogonal-

ization procedure improves the behavior of the traveltime field near the zero level

set so that the traveltime accuracy is enhanced greatly. Table 2.4 shows second

order convergence of traveltimes in different norms when both reinitialization and

orthogonalization are invoked. This indicates that combining reinitialization and

orthogonalization procedures together does enhance the algorithmic behavior and

improve the accuracy of computed traveltimes significantly.

26

∆x l1 error l1 order l2 error l2 order l∞ error l∞ order
0.20000 0.02029779 0.01874370 0.02519635
0.10000 0.00532929 1.9293 0.00430244 2.1231 0.00484257 2.3793
0.05000 0.00135341 1.9773 0.00116012 1.8908 0.00173133 1.4838
0.02500 0.00035766 1.9199 0.00029215 1.9894 0.00050259 1.7844
0.01250 0.00008633 2.0506 0.00007299 2.0008 0.00011961 2.0710
0.00625 0.00002233 1.9506 0.00001873 1.9617 0.00003397 1.8159

Table 2.2: Accuracy and convergence order of traveltimes without orthogonaliza-
tion but 2 reinitialization pseudo steps at each z-step using the approximation
(2.52).

∆x l1 error l1 order l2 error l2 order l∞ error l∞ order
0.20000 0.00727231 0.00770262 0.01124069
0.10000 0.00143178 2.3445 0.00131120 2.5544 0.00181632 2.6296
0.05000 0.00040647 1.8165 0.00038993 1.7495 0.00065443 1.4726
0.02500 0.00010576 1.9422 0.00009684 2.0095 0.00020036 1.7076
0.01250 0.00002598 2.0252 0.00002437 1.9899 0.00004782 2.0667
0.00625 0.00000671 1.9517 0.00000633 1.9446 0.00001484 1.6880

Table 2.3: Accuracy and convergence order of traveltimes without reinitialization
but 2 orthogonalization pseudo steps at each z-step using the approximation
(2.52).

∆x l1 error l1 order l2 error l2 order l∞ error l∞ order
0.20000 0.00393867 0.00383178 0.00440058
0.10000 0.00109580 1.8457 0.00097230 1.9785 0.00122641 1.8432
0.05000 0.00027266 2.0067 0.00024258 2.0029 0.00032516 1.9152
0.02500 0.00007131 1.9349 0.00006096 1.9924 0.00008355 1.9603
0.01250 0.00001745 2.0304 0.00001520 2.0031 0.00002115 1.9814
0.00625 0.00000434 2.0053 0.00000380 1.9996 0.00000530 1.9955

Table 2.4: Accuracy and convergence order of traveltimes with 2 reinitializa-
tion pseudo steps and 2 orthogonalization pseudo steps at each z-step using the
approximation (2.52).

27

2.5.2 Waveguide Model

The velocity function is

c(x, z) = 1.1− exp(−0.5x2) . (2.62)

The function is symmetric with respect to x = 0, and we also expect the same

type of symmetry in the traveltime.

Figure 2.2 shows the traveltime we obtained using only 40×40 grids in the

x-θ space. The solutions here show the traveltimes at z equals 0.8, 1.2, 1.6 and

2.0. The solutions are symmetric as expected. Figure 2.3 shows the zero level set

overlaying the traveltime field at z=0.0, 0.4, 0.8, 1.2, 1.6 and 2.0 respectively. The

dashed line is the location of the zero level set and the solid lines are the contour

plot of the traveltime function T . There are discontinuities in the traveltime field

coming from the orthogonalization procedure, where the normals of the zero level

set intersect. However, it is reminded that we only use the information near the

dashed line and the jump in T will not hurt our interpolation computations if

the grids are fine enough, meaning that the discontinuity is greater than one grid

point away from the zero level set. Figure 2.3 also shows that the contours are

perpendicular to the zero level set as designed. As z varies, the zero level set is

advected so that it has more turnarounds and the number of traveltime arrivals

increases from 1 to 3.

2.5.3 Synthetic Marmousi Model

This example is the Marmousi model from the 1996 INRIA Workshop on Multi-

arrival Traveltimes. The calibration data used here were computed by Dr. Klimes

and can be found at http://www.caam.rice.edu/∼benamou/traveltimes.html.

28

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
6.2

6.4

6.6

6.8

7

7.2

7.4

7.6

7.8

8

8.2

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
7

8

9

10

11

12

13

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
7

8

9

10

11

12

13

14

15

16

17

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
8

10

12

14

16

18

20

Figure 2.2: (Waveguide Model) Multivalued traveltimes by the level set method
for z=0.8, 1.2 (upper row), 1.6 and 2.0 in the wave guide model.

29

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Figure 2.3: (Waveguide Model) The zero level set overlaid on contours of time
field T in the wave guide model at different z=0.0, 0.4, 0.8, 1.2, 1.6 and 2.0.

30

The original Marmousi model is sampled on a 24m by 24m grid, consisting

of 384 samples in the x-direction and 122 samples in the z-direction; therefore

the model dimension is 9.192km long in the x-direction and 2.904km deep in

the z-direction. In the computational results presented here, we use a portion

of Marmousi model, i.e., a window from 4.8km to 7.2km in the x-direction and

from 0km to 2.904km in the z-direction. The source is located at x=6.0km and

z=2.8km. The purpose is to compute (possibly multivalued) traveltimes for those

sampling points, i.e. the receivers from 200 to 300 on the surface z=0.0.

In the first run, we used a 100 by 200 grid in x-θ space with ∆x=24m and

θmax = 9π/20. The computed traveltime at z=0.0 and the comparison with

the ray tracing solution are shown in Figure 2.4. The ray tracing data used to

calibrate the computed Eulerian solutions are presumably accurate. As we can see

from Figure 2.4, the computed Eulerian solution is consistent with the ray tracing

solution, being able to capture most of the structure of the multivalued solution,

but it failed to resolve some fine details, especially the two traveltime branches

located from receivers 260 to 280, where those two branches are very close to

each other. Figure 2.5 explains why the level set method failed in that region.

Figure 2.5 shows that the zero level set and its overlay on the traveltime field in

the reduced phase space. From the ray tracing solution we know that receivers

260 to 280 should have three arrivals, but from the zero level set, receivers from

260 to 280 are single-valued functions of θ, and they correspond to first-arrival

traveltimes. Apparently, the tip of the zero level set near receiver 260 should be

more elongated, but somehow the level set failed to elongate that tip. This is

partly due to the dissipation of the finite difference scheme used here and partly

due to the resolution capability of the level set method which can resolve the

zero level set up to only one grid-cell width. Computationally, if the segments of

the zero level curve get too close to each other, then they will merge and this is

31

200 210 220 230 240 250 260 270 280 290 300
1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

 receivers

ti
m

e
(s

)

200 210 220 230 240 250 260 270 280 290 300
1

1.05

1.1

1.15

1.2

1.25

Receivers

T
im

es
 (

s)

Multiple TT: level−set method vs. ray−tracing

Figure 2.4: (Marmousi Model) (Left) traveltime at z=0.0 by the level-set method
for Marmousi model on 100×200 grid and (right) Eulerian traveltimes (solid line)
vs. ray-tracing traveltimes (*)

happening to the tip that we are interested in.

Therefore, to resolve the fine tip, we have to use a finer grid 400×200 in the

x-θ space. Since the original velocity model is given on the discretized points,

we use interpolation to obtain a velocity model for the finer computational mesh.

The computational results are shown on Figure 2.6 and 2.7. Using this finer grid,

the level-set Eulerian method yields multivalued traveltimes which match with

the ray tracing solution remarkably. From Figure 2.7, the zero level set does

have an elongated tip from receiver 260 to 280, and the segment near the tip are

indeed very close to each other. Without a finer computational mesh, the level

set method is unable to capture the tip and the related multivalued traveltimes.

This demonstrates that given a discretized mesh, the resolution is fixed and the

method can capture only a finite number of traveltimes.

32

200 210 220 230 240 250 260 270 280 290 300

−1

−0.5

0

0.5

1

 receivers

 θ

200 210 220 230 240 250 260 270 280 290 300

−1

−0.5

0

0.5

1

 receivers

 θ

Figure 2.5: (Marmousi Model) The zero level set for Marmousi model on 100×200
grid; the zero level set overlaying contours of T at z=0.0.

200 210 220 230 240 250 260 270 280 290 300
1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2

Receivers

ti
m

e
(s

)

200 210 220 230 240 250 260 270 280 290 300
1

1.05

1.1

1.15

1.2

1.25

Receivers

T
im

e
(s

)

Multiple TT: level−set vs. ray−tracing

Figure 2.6: (Marmousi Model) (Left) traveltime at z=0.0 by the level-set method
for Marmousi model on 400×200 grid and (right) Eulerian traveltimes (solid line)
vs. ray-tracing traveltimes (star).

33

200 210 220 230 240 250 260 270 280 290 300

−1

−0.5

0

0.5

1

 receivers

 θ

zero level set

200 210 220 230 240 250 260 270 280 290 300

−1

−0.5

0

0.5

1

 receivers

 θ

zero level set and time field

Figure 2.7: (Marmousi Model) The zero level set for Marmousi model on 400×200
grid; the zero level set overlaying contours of T at z=0.0.

2.5.4 An anisotropic model

Although a general anisotropic solid has 21 independent elastic parameters, the

transversely isotropic, or TI, solid has only five. It nevertheless retains the es-

sential features of the anisotropic case that we are interested in. Therefore, it is

convenient to use TI solids as models to illustrate the advantages of our approach.

We consider the simplest case for TI solids, those with vertical symmetry axes,

known as VTI solids.

The elastic modulus matrix for transversely isotropic media with vertical sym-

metry axes has five independent components among a total of twelve nonzero

components (see, e.g., [78]). A closed form solution exists in this case for the

eigenvalue problem of so-called phase velocities. The quasi-P and quasi-SV slow-

ness surfaces for VTI can be represented as a quartic polynomial equation and the

quasi-SH slowness surface can be decoupled from this, leading to the equations

[85]

c1p
4
1 + c2p

2
1p

2
3 + c3p

4
3 + c4p

2
1 + c5p

2
3 + 1 = 0, (2.63)

34

and

1

2
(a11 − a12)p

2
1 + a44p

2
3 = 1, (2.64)

where

c1 ≡ a11a44,

c2 ≡ a11a33 + a2
44 − (a13 + a44)

2,

c3 ≡ a33a44,

c4 ≡ −(a11 + a44),

c5 ≡ −(a33 + a44).

In the above equations, aij are independent elastic parameters of VTI media [78].

Thus, the phase velocities for the three different waves take the form

V 2
qP =

1

2

(
−Y1 +

√
Y 2

1 − 4Y2

)
,

V 2
qSV =

1

2

(
−Y1 −

√
Y 2

1 − 4Y2

)
,

V 2
SH =

1

2
(a11 − a12) sin2 θ + a44 cos2 θ,

where

Y1 = c4 sin2 θ + c5 cos2 θ,

Y2 = c1 sin4 θ + c2 cos2 θ sin2 θ + c3 cos4 θ.

As an example, we compute the three waves for Greenriver shale, which is

a typical VTI medium [109]. The five elastic parameters are a11 = 15.0638,

35

a33 = 10.8373, a13 = 1.6381, a44 = 3.1258, and a12 = 6.5616.

Figure 2.8 shows traveltimes for the three different waves at depth z=0.5

computed by the level set approach plotted in circles and the ray tracing method

plotted in solid line. These traveltimes are excited by a point source located at

the origin. The upper-left sub-figure in Figure 2.8 shows the qP wave traveltime

which is the fastest of the three waves. The lower-left sub-figure in Figure 11

shows the qSH wave traveltime. In particular, the qSV wave (the upper-right

sub-figure in Figure 2.8) has cusps which imply the multivaluedness at some

locations; those multivalued solutions are captured very well by the level set

method. The lower-right sub-figure shows the three waves together.

36

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

x (km)

T
 (

s)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

x (km)

T
 (

s)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

x (km)

T
 (

s)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

x (km)

T
 (

s)

Figure 2.8: (Anisotropic Model) Anisotropic paraxial multivalued traveltimes by
the level set method. qP wave traveltime: the upper-left one; qSV traveltime: the
upper-right one; qSH traveltime: the lower-left one; qP-qSV-qSH: the lower-right
one.

37

CHAPTER 3

A Local Level Set Method for Paraxial

Geometrical Optics

3.1 Introduction

In the previous chapter, we have presented a global level set method for the

paraxial eikonal equation in the 2-dimensional case, and the computed multival-

ued traveltime matches the ray tracing solution very well even in the difficult

synthetic Marmousi model. In this chapter, we proceed along the same line and

design a fast local level set method for both multivalued traveltimes and ampli-

tudes, thus construct the geometrical optics term. The overall complexity of our

level set method is O(N2LogN) rather than O(N4) as typically seen in the ray

tracing formulation.

3.2 Local Level Set Method

The computational complexity of the algorithm in the previous chapter can be

improved dramatically by implementing a narrow banding [1] or a PDE based

version [83] of local level set method. In this chapter, we adopt a version similar

to the one proposed in [83].

38

3.2.1 Implementation

Because we are interested in only the zero level set, all the updates can actually

be done in a tube centered at φ = 0. The radius of this tube, γ, is picked to

be 5∆x, due to the fact that 5 grid values are needed for the fifth order WENO

scheme when solving the advection equations. Therefore, by only considering

the grid points within this tube, the complexity of the algorithm in the previous

chapter can be reduced by a factor of N from O(N3LogN) to O(N2LogN).

Reinitialization and orthogonalization are the two core ingredients in the local

level set method as proposed in [83]. Reinitialization restores the equally spaced

property for the level sets. The usual way is to make φ a signed distance function

without moving the zero level set of φ appreciably. To achieve this, one can solve

the following equation to steady state φ̃∞ [102, 123, 42, 83, 80]:

∂φ̃

∂ξ
+ S(φ)(|∇φ̃| − 1) = 0 (3.1)

φ̃|ξ=0 = φ(z, ·, ·) . (3.2)

Here S(φ) could be the smoothed signum function [83]

S(φ) =
φ√

φ2 + |∇φ|2∆x∆θ
, (3.3)

where ∆x and ∆θ are the mesh sizes along x- and θ- directions, respectively.

However, we usually only need to evolve equation (3.1) for a few steps only.

Because we are only interested in the value of T where φ = 0, we apply the

following orthogonalization procedure [83, 80]

∂T̂

∂ξ
+ sgn(φ)

(∇φ

|∇φ| · ∇T̂

)
= 0 , (3.4)

39

T̂ |ξ=0 = T (z, ·, ·) (3.5)

which, theoretically, preserves the values of T where φ = 0 but changes them

elsewhere such that the new T would not vary too much near the desired region.

At the steady state, ∇φ · ∇T̂ = 0.

3.2.2 Algorithm

Hence we have the following algorithm for computing the geometrical optics

terms.

Algorithm:

I. Initialization.

1. Given Nx and Nθ, determine ∆x = (xmax − xmin)/(Nz − 1) and ∆θ =

2θmax/(Nθ − 1).

2. Initialize φ, T, φx and φθ at z = 0.

3. For each (xi, θj), where i = 1, . . . , Nx and j = 1, . . . , Nθ, check if any of

|φ(xi, θj)|, |φ(xi−1, θj)|, |φ(xi+1, θj)|, |φ(xi, θj−1)| or |φ(xi, θj+1)| is less

than γ. Collect all these points and call the set Γ.

II. March in z until z = zmax.

1. Determine ∆z from the CFL condition.

2. March one ∆z step by solving the level set equation (2.30) in Γ.

3. Reinitialize the level set function in Γ by solving (3.1).

4. March one ∆z step by solving the traveltime equation (2.36) in Γ.

5. If z 6= ∆z, update ∆ by solving equation (2.58).

40

6. Orthogonalize T, φx and φθ to φ respectively in Γ by solving (3.4).

7. If z 6= ∆z, orthogonalize ∆ to φ in Γ. Otherwise, initialize ∆.

8. Update the tube Γ.

9. Detect caustics by checking if there is a change in the number of θk’s

which gives φ(z; xi, θk) = 0 for two adjacent xi.

III. Output. For each xi with i = 1, . . . , Nx,

1. Determine all root θk such that φ(zmax; xi, θk) = 0 (k = 1, · · ·).

2. Determine T (zmax; xi, θk) (k = 1, · · ·) by interpolation.

3. Determine φx(zmax, xi, θk), φθ(zmax; xi, θk) and ∆(zmax; xi, θk) (k = 1, · · ·)
by interpolation, and then compute A(zmax; xi, θk).

To determine ∆z in Step II.1, we only need to scan through the grid points in

the computational tube Γ in order to determine the maxima of velocity fields u

and v, and this takes O(NLogN) steps.

In Step II, the level set equation and the traveltime equation are decoupled

and can be solved separately. The spacial derivatives are approximated by the

fifth-order WENO-Godunov scheme [55] while the time derivatives are solved by

the third-order TVD-RK method [82].

Unlike the global level set method, the reinitialization step in Step II.3 is

used not only to regularize the level set function but also to ensure the location

of the tube in Step II.8 more accurate. This step is necessary here and the

number of iterations is to be determined so that the information of the location

of the zero level set is propagated by a distance larger than γ, the radius of

the tube. Numerically, one or two steps per iteration in z would be enough to

get a reasonably good solution. However, formally, let β be the CFL number

41

used in the reinitialization and mmin be the minimum number of iterations of

reinitialization; then we have

mmin =
γ

β min(∆x, ∆θ)
. (3.6)

Because γ = O(∆x), we have mmin = O(1). Overall the complexity of the

reinitialization step for each ∆z advancement would be equal to the number of

grid points within the tube and is given by O(NLogN).

For the root-finding and the interpolation in Step III, we can simply use any

non-oscillatory interpolation scheme like linear interpolation or ENO reconstruc-

tion.

Next issue is how to update the computational tube Γ. A simple way is to

scan all grid points in the domain and to apply the same procedure as that in Step

I.3. The complexity of the resulting method will be O(N2). However, because

the motion of the zero level set is purely advective, zeros will not be generated

outside the tube. We can therefore update the tube by only scanning through

the boundary of Γ, and this requires only O(NLogN) operations.

As a result, for each iteration in z-direction, the complexity is O(NLogN).

Because of the CFL condition, the number of iterations in z is of O(N). Overall

the complexity of this algorithm is only O(N2LogN). Comparing to O(N4) as

typically seen in the Lagrangian ray tracing method, this Eulerian method is

highly efficient and attractive.

3.3 Numerical Examples

For the first two examples, we put a point source at the origin and velocity

functions c(x, z) are all C∞. The third example is the synthetic Marmousi model

42

as described in the previous chapter. Unless specified, the computational domain

we use in the following examples is chosen to be

Ωp = {(x, θ) : −1 ≤ x ≤ 1, θmax ≤ θ ≤ θmax} . (3.7)

where θmax = 9π/20. Accordingly, the Marmousi velocity will be rescaled to the

above computational domain.

3.3.1 Waveguide Model

The velocity function is given by

c(x, z) = 1.1− exp(−0.5x2) . (3.8)

The function is symmetric with respect to x = 0, and we also expect the same

type of symmetry in both the traveltime and the amplitude.

The solutions in Figure 3.1 show traveltimes, amplitudes and some intermedi-

ate quantities at z =1.6 using 240-by-240 grid points, respectively. The solid lines

in the traveltime and amplitude plots are obtained using a ray tracing method.

The solutions are symmetric as expected. ∆ in this velocity model should be

equal to −2 everywhere. As we mentioned earlier, the velocity model is approxi-

mated by a constant near the source and this gives the initial condition ∆ = −2

at z = dz. For this waveguide model, because ux = vθ = 0, the equation for

∆ is purely advective; therefore the exact solution is ∆(z; x, θ) = −2, which is

independent of z. The variations in the subplot of ∆ in Figure 3.1 are due to

numerical errors.

The singularities in the amplitudes, shown in upper right subfigure in Figure

3.1, come from the vanishing of φθ on the zero level set of φ at around x =

43

−1 −0.5 0 0.5 1
8

10

12

14

16

x (km)
T

im
e

(s
)

Traveltime

−1 −0.5 0 0.5 1
0.05

0.1

0.15

0.2

0.25

0.3

x (km)

A

Amplitude

−1 −0.5 0 0.5 1
−2.005

−2

−1.995

−1.99

−1.985

x (km)

∆

−1 −0.5 0 0.5 1
−20

−15

−10

−5

0

5

x (km)

φθ

Figure 3.1: (Waveguide Model) Traveltime, amplitude, ∆ and φθ at z = 1.6km
using a 240-by-240 grid.

±0.45km, shown in lower right subfigure in Figure 3.1.

The caustic curves detected by the local level set method are shown in Figure

3.2: circles are computed locations of the caustics in the waveguide model, and

the solid lines are the rays emanating from the source computed by a ray tracing

method. The caustic locations are exactly those places where rays form an envelop

as seen in the figure.

To demonstrate the improvement in the computational efficiency of the cur-

rent formulation, we computed the solutions of this test case with different num-

ber of grids and recorded the computational time. Using the full level set for-

mulation, it took approximately 72 mins and 641 mins to reach the level z = 1.6

using 120-by-120 and 240-by-240 grids, respectively, in the phase space. With

the current algorithm, the computational times reduced to 8 mins and 19 mins.

If we further double the grids in each direction, the new formulation needed only

44

−0.5 0 0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x

z

Caustics

−0.5 0 0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x

z

Caustics

Figure 3.2: (Waveguide Model) Location of caustics and some rays from a ray
tracing method. Caustics are determined by the local level set method with a
360-by-360 grid in the x-θ space.

45

58 mins, while it took more than a week to reach the same z-level using the full

level set method.

3.3.2 Sinusoidal Model

This example is adapted from the sinusoidal waveguide model used in [104, 105],

and the velocity function is given by

c(x, z) = 1 + 0.2 sin(0.5πz) sin[3π(x + 0.55)] . (3.9)

Figures 3.3 show traveltimes, amplitudes and some intermediate quantities at

z = 2.0 using 240-by-240 grids. The subplot for traveltimes in Figure 3.3 show

that the triplications in the traveltime developed at z = 2.0 are clearly captured

by the level set Eulerian method. Singularities in the amplitude come from the

overturning of the zero level set in the phase space, i.e. φθ = 0, which is shown

in the lower right subfigure in Figure 3.3.

Figure 3.4 shows locations of the caustics detected by the proposed method,

and the results match with that from the ray tracing method.

3.3.3 Synthetic Marmousi Model

As illustrated in the previous chapter, to resolve a complicated wavefront like

the one generated by the Marmousi model, we have to use a relatively fine com-

putational mesh which requires huge memory requirement in the global level set

setup. With the local level set method developed in this chapter, we are able

to tackle a larger portion of the original velocity and a higher resolution with

reasonable memory and computational cost. Figure 3.5 shows the zero level set

and its overlay on the traveltime field by using a refinement of the original model

46

−1 −0.5 0 0.5 1

1.9

2

2.1

2.2

2.3

x (km)
T

im
e

(s
)

Traveltime

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x (km)

A

Amplitude

−1 −0.5 0 0.5 1
−2.6

−2.4

−2.2

−2

−1.8

−1.6

x (km)

∆

−1 −0.5 0 0.5 1
−120

−100

−80

−60

−40

−20

0

20

x (km)

φθ

Figure 3.3: (Sinusoidal Model) Traveltime, amplitude, ∆ and φθ at z = 2.0km
using a 240-by-240 grid.

with a refinement ratio equals 8, i.e. we are using 1440 grids in the x-direction

to resolve the arrivals between the Receiver 160 to 340. As we can see from the

plot, the zero level set has lots of overturnings and tiny tips. Therefore, there are

lots of caustics developed in the wave propagation. The resulting traveltimes at

the surface along with the ray tracing solutions are shown in Figure 3.6; the two

solutions match with each other reasonably well. The development of a compli-

cated caustic can be seen near Receiver 310 as shown in the right hand side of

the Figure 3.6.

47

−0.5 0 0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x

z

Caustics

−0.5 0 0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x
z

Caustics

Figure 3.4: (Sinusoidal Model) Location of caustics and some rays from a ray
tracing method. Caustics are determined by the local level set method with a
360-by-360 grid in the x-θ space.

160 180 200 220 240 260 280 300 320 340

−1.5

−1

−0.5

0

0.5

1

1.5

Receiver

θ

Traveltime

160 180 200 220 240 260 280 300 320 340
−1.5

−1

−0.5

0

0.5

1

1.5

Receiver

θ

φ

Figure 3.5: (Marmousi Model) Contours of the traveltime and the zero level set
at z = 0.0km.

48

160 180 200 220 240 260 280 300 320 340
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

Receiver

T
im

es
 (

s)

Multiple TT: level−set method vs. ray−tracing

300 302 304 306 308 310 312 314 316 318 320
1.2

1.21

1.22

1.23

1.24

1.25

1.26

1.27

1.28

1.29

Receiver

T
im

es
 (

s)

Multiple Traveltime: level−set method

Figure 3.6: (Marmousi Model) (Left) Comparison between traveltimes using a
ray tracing method and the local level set method and (right) the Zoom-in of the
local level set solution at Receiver 310 at z=0.0km.

49

CHAPTER 4

A Level Set Method for Three-dimensional

Paraxial Geometrical Optics with Multiple

Point Sources

4.1 Introduction

To use the Liouville equation based phase space formulation more efficiently,

we have developed the local level set method for the two-dimensional paraxial

multivalued geometrical optics in Chapter 3. In this chapter, we continue to

develop efficient level set methods for three dimensional multivalued geometrical

optics in the paraxial formulation.

Our framework provides multivalued geometrical optics terms for multiple

point sources simultaneously. The fundamental idea of this approach is that we

are able to make use of the information from not only the zero level set but also all

the nonzero level sets. By using a global semi-Lagrangian method to solve all level

set equations, the computational memory requirement is reduced from O(N4) to

O(N2), where N is the number of mesh points in each direction. Comparing to

the usual finite difference discretization of the level set equations which requires

O(N4) memory storage, this saving is very significant in the computational space

of five dimensions. Although the method proposed here has the computational

complexity O(MN4), where M is the number of steps in the ODE solver for

50

the semi-Lagrangian scheme, this approach can simultaneously handle up to N2

multiple point sources.

4.2 3D Paraxial Formulation for Eikonal Equation

To apply the method of characteristics to the three-dimensional eikonal equation,

we first parameterize the 3-D unit vectors by spherical coordinates. Points on a

unit sphere away from the x-axis can be uniquely represented by the following

rotated spherical coordinates,

x = cos θ

y = sin θ sin ψ

z = sin θ cos ψ , (4.1)

where θ ∈ (0, π) is the angle between the point and the positive x-axis, and

ψ ∈ [−π, π) is the angle between the positive z-axis and the projection of the

point onto the y-z plane; Figure 4.1 shows the standard and rotated spherical

coordinates. With this rotated spherical coordinates, the slowness vector ∇τ = p

can be represented by

p1 =
cos θ

c
(4.2)

p2 =
sin θ sin ψ

c
(4.3)

p3 =
sin θ cos ψ

c
(4.4)

51

Figure 4.1: The spherical coordinates and the rotated spherical coordinates

Using the above parameterization, we have the ray tracing system

dx

dt
= c cos θ

dy

dt
= c sin θ sin ψ

dz

dt
= c sin θ cos ψ

dθ

dt
= sin θ

∂c

∂x
− cos θ

(
cos ψ

∂c

∂z
+ sin ψ

∂c

∂y

)

dψ

dt
=

1

sin θ

(
sin ψ

∂c

∂z
− cos ψ

∂c

∂y

)
(4.5)

with initial conditions

x|t=0 = xs

y|t=0 = ys

z|t=0 = zs

θ|t=0 = θs

ψ|t=0 = ψs (4.6)

52

where xs = (xs, ys, zs) and θs and ψs vary from 0 to π and from −π to π re-

spectively. One can compare this formulation with the one from [58, 79]. The

reason why we use this rotated spherical coordinates rather than the standard

spherical coordinates system is that we can now uniquely represent points on

the z-axis. Although points on the x-axis in this rotated coordinate system may

still seem to cause problem, these points are actually out of our computational

domain according to the paraxial assumption which will be discussed below.

Next we extend the traveltime function τ(x, y, z) to the reduced phase space

{(x, y, z, θ, ψ)}, denoted by T (x, y, z, θ, ψ), and consider the t-wavefront expand-

ing from the source point:

T (x, y, z, θ, ψ) = t. (4.7)

Differentiating this identity with respect to t, we have

dx

dt
Tx +

dy

dt
Ty +

dz

dt
Tz +

dθ

dt
Tθ +

dψ

dt
Tψ = 1 (4.8)

with the boundary condition

T (xs, ys, zs, θs, ψs) = 0 , (4.9)

for 0 ≤ θs ≤ π and −π ≤ ψs ≤ π.

Since equation (4.8) is a linear advection equation, one might try to solve

it directly with the condition (4.9). However, for a given (x, y, z) 6= (xs, ys, zs),

T (x, y, z, ·, ·) is well defined for at least one (θ, ψ) corresponding to the first arrival

but is not necessarily well defined for all θ and ψ, which implies that the solution

surface T in the phase space is extremely singular. In other words, equations (4.8)

53

and (4.9) are not well-posed. To obtain a well-posed problem, we will assume the

paraxial condition and use the level set formulation.

Now, we consider the domain

Ω = {(x, y, z) : xmin ≤ x ≤ xmax, ymin ≤ y ≤ ymax, 0 ≤ z ≤ zmax} (4.10)

and assume that the point source is located on the surface: xmin ≤ xs ≤ xmax,

ymin ≤ y ≤ ymax and zs = 0. By the sub-horizontal condition we can use depth z

as the running parameter so that we have the following reduced system

xz =
1

cos ψ tan θ

yz = tan ψ

θz =
cx

c cos ψ
− cz + cy tan ψ

c tan θ

ψz =
cz tan ψ − cy

c sin2 θ
, (4.11)

with x ∈ [xmin, xmax], y ∈ [ymin, ymax], θ ∈ [εθ, π− εθ] and ψ ∈ [εψ−π/2, π/2− εψ].

4.3 Level Set Formulation

4.3.1 Representation of a Point Source

We first assume that a single point source is located at the origin. Therefore,

rays from this point source can now be represented as the intersection of zero

level sets of two level set functions, φ1(z; x, y, θ, ψ) and φ2(z; x, y, θ, ψ).

Differentiating the zero level set of these functions with respect to z, we get

the following level set equations which govern the motion of the corresponding

54

zero level sets,

φm
z +

dx

dz
φm

x +
dy

dz
φm

y +
dθ

dz
φm

θ +
dψ

dz
φm

ψ = 0 (4.12)

for m = 1, 2. Or, these equations can be rewritten as

φm
z + u · ∇x,y,θ,ψφm = 0 (4.13)

for m = 1, 2 where the velocity field u = (u1, u2, u3, u4) is given by the ray tracing

system (4.11).

On z = 0, we initialize the level set functions by

φ1(0; x, y, θ, ψ) = x and φ2(0; x, y, θ, ψ) = y . (4.14)

4.3.2 Traveltime

Traveltime can be computed by inverting the third equation in (4.5) locally. This

gives

Tz + u · ∇x,y,θ,ψT =
1

c sin θ cos ψ
, (4.15)

where T = T (z; x, y, θ, ψ); this equation will be solved along with (4.13).

To obtain the multivalued traveltime on z = z∗, we first solve equations (4.13)

and (4.15) up to z = z∗. We then compute the intersection of the zero level sets,

denoted by

Σ0 = {(x, y, θ, ψ) : φ1(z∗; x, y, θ, ψ) = φ2(z∗; x, y, θ, ψ) = 0} ⊂ R4 . (4.16)

The traveltimes at (z∗; x, y) can be determined by projecting T (z∗; Σ0) onto the

x-y plane.

55

4.3.3 Representation of Multiple Sources

However, we have noticed that the level set functions contain much more infor-

mation than what we have used in the above algorithm since not only the zero

level set but also the non-zero level sets are also useful. Rays emanating from a

point source in the phase space are not necessarily represented by the intersection

of two zero level sets. We can define rays from a point source at a location (xs, ys)

by the intersection of {φ1 = xs} and {φ1 = ys}. Under the same velocity field,

given by u, to find all rays on z = z∗ from this point source (xs, ys), one only

needs to determine the set

Σxs = {(x, y, θ, ψ) : φ1(z∗; x, y, θ, ψ)− xs = φ2(z∗; x, y, θ, ψ)− ys = 0} , (4.17)

rather than the one defined by the set (4.16). In other words, using the initial

conditions (4.14), we can connect a point (xi, yj, θk, ψl) on z = z∗ to the point

(φ1(z∗; xi, yj, θk, ψl), φ
2(z∗; xi, yj, θk, ψl), θ0, ψ0)

on z = 0 through the characteristic curve of (4.13) for some initial conditions

(θ0, ψ0). More importantly, the initial conditions (4.14) can be reinterpreted

as follows. All points, not only (xi, yj), but also ∀x ∈ [xmin, xmax] and ∀y ∈
[ymin, ymax], can be treated as locations of point sources. Therefore, we are able

to determine multi-arrival rays from multiple point sources.

The representation of point sources discussed above is of course not the only

way that we can represent rays from multiple point sources. One can actually

define Σ0 to denote all rays from multiple point sources. The only thing we need

to modify is the initial conditions. φ1(0; x, y, θ, ψ) and φ2(0; x, y, θ, ψ) need to

be independent of the angles θ and ψ, and {φ1(0; x, y) = 0} ∩ {φ2(0; x, y) = 0}

56

at locations of those point sources. With this formulation, one can still get

all the multi-arrival rays from multiple point sources. But, on the level z =

z∗, one cannot distinguish rays from different point sources because all rays are

essentially represented by the same intersection of zero level sets. However, using

the formulation proposed here, we can separate the rays from different point

sources by using only one set of level set functions and making use of all the

available level sets.

4.3.4 Amplitude

The amplitude of a ray can also be computed using the current formulation.

Defining Ã = Ã(z; x, y), we have

Ã(z; x, y) =
c

4π
√

c0

√√√√sin Θ̃

∣∣∣∣∣
∂(T̃ , Θ̃, Ψ̃)

∂(x, y, z)

∣∣∣∣∣ (4.18)

where T̃ = T̃ (z; x, y), Θ̃ = Θ̃(z; x, y) and Ψ̃ = Ψ̃(z; x, y) are the traveltime,

take-off angles of θ and ψ from the point source located at x = xs, respectively.

Following the approach in Chapter 2, we first extend all these functions into the

phase space, denoted as T , Θ and Ψ, respectively. Using (4.13) and (4.15), we

obtain

A(z; x, y, θ, ψ) =
1

4π

√
c sin Θ

c0 sin θ cos ψ

√
∆1

∆2

, (4.19)

57

where Θ and θ are the takeoff angle and the arrival angle respectively, and ∆1

and ∆2 are the Jacobians of the transformation given by

∆1 =

∣∣∣∣∣∣∣∣∣∣∣∣

φ1
x φ2

x Θx Ψx

φ1
y φ2

y Θy Ψy

φ1
θ φ2

θ Θθ Ψθ

φ1
ψ φ2

ψ Θψ Ψψ

∣∣∣∣∣∣∣∣∣∣∣∣

, and ∆2 =

∣∣∣∣∣∣
φ1

θ φ2
θ

φ1
ψ φ2

ψ

∣∣∣∣∣∣
. (4.20)

4.4 Numerical Method

4.4.1 Level Set Equations

One way to solve both equations (4.13) and (4.15) is to use, for example, RK3

in the z-direction and WENO5 upwind scheme in the x-y-θ-ψ space [71, 98].

This is a typical Eulerian approach. Computational complexity of this method is

therefore O(N5LogN). This implies that the Eulerian approach is not computa-

tionally efficient in a high dimensional space as in the current application. One

reason is that, if we want to compute all multivalued arrivals from multiple point

sources, we probably do not want to use any localized level set methods, like the

one proposed in [83] or the one we have proposed in the previous chapter. In this

case, keep tracking of multiple layers of level set functions with reinitializations

and extensions will take a large portion of computational time.

Another potential difficulty is the limitation from the CFL condition when

solving these hyperbolic equations. For this Eulerian approach, each z-direction

marching is of O(min(∆x, ∆y, ∆θ, ∆ψ)). This is acceptable for lower dimen-

sional computations, like those in Chapter 2 and Chapter 3 where the dimension

involved is only 1+2 (time-like direction plus space directions). For the current

problem however, it is unreasonable to spend days of computations in solving

58

Figure 4.2: Semi-Lagrangian method to solve the advection equations.

these linear advection equations.

In this chapter, we implement a semi-Lagrangian method [101, 41] to deter-

mine the values of φm at z = z∗ for m = 1, 2. Solving the level set equations

with the method of characteristics, we have φm = const for m = 1, 2 along the

characteristics given by (4.11). Following the idea of semi-Lagrangian methods,

we trace back in the z-direction until z = z0, i.e. we solve

d(x̂, ŷ, θ̂, ψ̂)

dz
= u (4.21)

for (x̂, ŷ, θ̂, ψ̂)|z=z0 with initial conditions (x̂, ŷ, θ̂, ψ̂)|z=z∗ = (x, y, θ, ψ) at the

current point, as shown in Figure 4.2. Then the level set values are assigned as

φ1(z∗; x, y, θ, ψ) = x̂|z=z0

φ2(z∗; x, y, θ, ψ) = ŷ|z=z0 . (4.22)

Numerically, the above ODE system is solved using RK3, and the step size is

independent of the number of grid points used in the computational domain.

By using this semi-Lagrangian approach, the computational complexity drops

59

to O(MN4), where M is the number of iterations in the z-direction and N is

the number of grid points in each of x-y-θ-ψ direction. Different from the finite

difference Eulerian approach, the factor M is independent of N and is chosen

mainly for the purpose of accuracy. In the current implementation, we choose M

large enough so that the errors from the RK3 ODE solver are negligible comparing

to the errors from the linear interpolation on the uniform mesh used in finding

intersections of level set functions.

A simpler case is to consider only one point source on z = z0. Then the order

of complexity of using the global level set method approach as in Chapter 2 can

still be reduced by a factor of N2 to O(N3LogN) if we apply the local level set

method we discussed in Chapter 3. However, the memory requirement, which

will be addressed later in Section 4.4.3, may still make the local level set method

difficult to implement. Moreover, to compute arrival solutions from N2 point

sources individually, one may need to solve N2 times localized level set equations

which makes the overall computational complexity back to O(N5LogN).

4.4.2 Traveltime Equation

For the traveltime equation, we have

DT

Dz
=

1

c sin θ cos ψ
, (4.23)

where D
Dz

is the material derivative given by

D

Dz
=

∂

∂z
+ u · ∇ =

∂

∂z
+ xz

∂

∂x
+ yz

∂

∂y
+ θz

∂

∂θ
+ ψz

∂

∂ψ
. (4.24)

60

Figure 4.3: Determining the intersection of level set functions.

Therefore, we get

T =

∫

Γ

ds

c sin θ cos ψ
(4.25)

where T (0; x, y, θ, ψ) = 0 by the reciprocity and Γ is the characteristic given by

the system (4.21). Again, RK3 is used to integrate the traveltime of rays.

4.4.3 Multivalued Traveltimes

After we solve for φm (m=1,2) and T on the grid points at the time level z = z∗,

we need to compute the intersection of the level surfaces {φ1 = xs} ∩ {φ2 = ys}.
To simplify this computation, we discretize the θ−ψ space for each point (xi, yj)

in the following way. We first use rectangular grids in the θ − ψ space, giving

(θk, ψl). One more grid point, denoted by (θk+1/2, ψl+1/2), will then be added to

the center of each cell, as seen in Figure 4.3. Therefore, each grid cell, vertices at

(θk, ψl), (θk+1, ψl), (θk, ψl+1) and (θk+1, ψl+1), will be sub-divided into 4 triangles,

denoted by TN , TE, TS and TW . φm (m=1,2) and T will be computed at all points

(xi, yj, θk, ψl) and (xi, yj, θk+1/2, ψl+1/2). On each triangle T(.), we interpolate φ1

and φ2 linearly. Intersection of the level curves of φ1 and φ2 in each of the

triangles T(.), {φ1 = xs}|T(.)
∩ {φ2 = ys}|T(.)

, is computed, if any. The traveltime

61

at this intersection point will be interpolated linearly using the values of T at the

vertices of the triangle T(.).

We emphasize that we solve each of the level set equations (4.13) and the

traveltime equation (4.15) only once, even if we care about more than one point

source on z = z0. It is the intersection of the level surfaces that we need to repeat

for each of the point sources.

In the Lagrangian or the semi-Lagrangian approach, on the other hand, grid

points in the x− y space are independent of each other throughout all processes

above. Level set function values at any two points (xi, yj, ·, ·) and (xi′ , yj′ , ·, ·),
with i 6= i′ or j 6= j′, are determined independently through solving a system

of ODE’s with different initial conditions. Although points in the θ-ψ space

are dependent upon each other through the processes in determining Σxs and

T (z∗; Σxs), numerically, the memory allocation can still be reduced to O(N2) as

long as the multiple point source locations are given at the beginning, no matter

how many there are. However, if there are up to O(N2) point sources given, the

computational complexity will be O(MN4).

This reduction in the memory requirement may not be significant in the two

dimensional paraxial geometrical optics formulation. However, it is important in

the current calculations in the 1+4 dimensions (time-like direction plus x− y −
θ − ψ directions).

4.4.4 Reinitialization and Intersection

In our current formulation, all the values of level set functions are used rather

than only the zero value. The usual reinitialization is a process of reconstructing a

signed distance function to the zero level set so that the only useful information

from the original level set function is concentrated at/near the zero level set.

62

Therefore, the information at other places is no longer meaningful. Hence, it is

impossible to apply such a technique in our setup.

On the other hand, we have to find the intersections of the level sets eventually,

i.e. to determine (4.17). Since we use the semi-Lagrangian method to solve the

level set equations, the accuracy of the level set functions solely depends on the

ODE solver rather than on the number of grid points in the (x, y, θ, ψ) space.

However, to obtain accurate intersections of both zero level sets and non-zero

level sets, we may refine the grids in the (θ, ψ) space, as illustrated in Figure 4.3.

4.4.5 Amplitude

We notice that the takeoff angles Θ and Ψ are the by-products in the above

computations of φ1 and φ2. We can simply set

Θ(z∗; x, y, θ, ψ) = θ̂(z = z0)

Ψ(z∗; x, y, θ, ψ) = ψ̂(z = z0) . (4.26)

However, in computing ∆1, instead of numerically differentiating these four func-

tions with respect to x, y, θ and ψ respectively, we notice that this quantity

satisfies the equation
D∆1

Dz
= −(∇ · u)∆1 (4.27)

where ∆1(0; x, y, θ, ψ) = 1 by the reciprocity principle and

∇ · u =
(1 + cos2 ψ)cz + (tan ψ cos2 ψ)cy

c sin2 θ cos2 ψ
. (4.28)

In turn we solve this equation by introducing ∆̃1 = log(∆1). Then, similar to

63

the computation of the traveltime, we integrate

∆̃1 =

∫

Γ

−(∇ · u) ds (4.29)

with ∆̃1(0; x, y, θ, ψ) = 0 using RK3. Finally, we have

∆1 = exp(∆̃1) . (4.30)

For the quantity ∆2, we can simply use the linear interpolants of φ1 and

φ2 in the triangle T(.) when we determining Σxs . Assuming that those linear

interpolants are

φ1
T = a11θ + a12ψ + b1

φ2
T = a21θ + a22ψ + b2 , (4.31)

we have ∆2 = |a11a22 − a12a21| defined on the triangle T(.).

To compute A(z∗; Σxs), we first determine the quantity

α =
∆1 sin Θ

cos ψ sin θ
(4.32)

at each grid point. Then, we use linear interpolation to find its value at the

intersection {φ1 = xs}|T(.)
∩ {φ2 = ys}|T(.)

. Finally, we have

A(z∗; Σxs) =
1

4π

√
c

cs

√
(α)Σxs

(∆2)T(.)

. (4.33)

64

4.5 Numerical Examples

In the following numerical examples, we use the computational domain

Ω = {(x, y, θ, ψ) : x ∈ [−1, 1], y ∈ [−1, 1], θ ∈ [π/20, 19π/20], ψ ∈ [−9π/20, 9π/20]} .

(4.34)

Multiple point sources are located on z = 0. Their coordinates (xs, ys) (s=1,

· · ·, 4) are given by (0, 0), (0.3, 0.4), (−0.1, 0.2) and (0.2,−0.3). It should be

emphasized that the number of point sources can be up to O(N2) and their

locations can be arbitrary.

4.5.1 Waveguide Model

This velocity model is the same as the one in previous chapters where

c(x, y, z) = 1.1− exp(−0.5x2) . (4.35)

Figure 4.4 shows the computed multivalued traveltimes at z = 1.2 with point

sources located at (xs, ys) (s =1,· · ·,4), respectively using M = 24, 1 ≤ i, j ≤ 41

and 1 ≤ k, l ≤ 201. As the point source varies, the traveltime varies for a ray to

reach a specific location. Solutions using ray tracing method are given in Figure

4.5. For these ray tracing solutions, rays are emitted from the point sources

located at (xs, ys) with initial angles (θ, ψ) given by uniformly partition the angle

space into 50 by 50 grids. The paraxial ray tracing system (4.11) is then solved

using RK45 until z = 1.2. As expected, we can see from the figures, we do not

have uniform resolutions in the solution. Rays are more concentrated on the later

arrivals. Solutions from the first arrivals, on the other hand, are relatively poorly

resolved.

65

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
7

8

9

10

11

12

13

14

15

16

xy −1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
4

6

8

10

12

14

16

18

20

xy

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
6

8

10

12

14

16

18

xy −1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
5

10

15

20

xy

Figure 4.4: (Waveguide Model) Traveltimes in the physical space.

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
7

8

9

10

11

12

13

14

15

16

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
4

6

8

10

12

14

16

18

20

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
6

8

10

12

14

16

18

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
5

10

15

20

Figure 4.5: (Waveguide Model) Traveltimes in the physical space using ray tracing
method.

66

Because of this non-uniform resolution in the solutions, it is difficult to com-

pare the solutions using the current level set formulation with that from the ray

tracing method directly. However, in this case, cy = cz = 0 and this implies

u3 =
cx

c cos ψ
and u4 = 0 . (4.36)

Considering rays shooting out from the origin with ψ = 0 and using the paraxial

ray tracing system (4.11), we get ψ(z) ≡ 0. This means that all the rays with

ψ(z = 0) = 0 from the origin will stay on the cross section y = 0 (one can compare

our solution with that in previous chapters). We compare the solution of this

cross section with the one from the ray tracing method, as shown in the first sub-

figure of Figure 4.6. The solution from the ray tracing method is plotted in the

solid line, while the circles represent the solution from the current formulation.

They match with each other very well.

There are three sheets of traveltime surfaces at z = 1.2 for those given point

sources. When two sheets connect to each other in the phase space, they connect

along the caustic curves, which are shown in the figures; this can also be seen

more clearly in Figure 4.6. In all the sub-figures, we can see that the caustics

develop and the traveltime becomes triple valued around caustics. To look at

the solutions more closely, we concentrate on the solution for the point source

located at (xs, ys) = (0, 0). More cross sections of the multivalued traveltime

are plotted on Figure 4.7. The locations of the slides are y = (j − 21)/20 for

j = 6, 11, 16, 26, 31, 36. One can imagine that the leftmost slice is shifted to the

left to the right and scaled according to the distance to the origin, since the

velocity is a function of the x variable only.

Amplitudes of the arrival rays are also calculated. Figures 4.8 to 4.10 show the

amplitude solutions corresponding to Figures 4.4, 4.6 to 4.7. In the calculation

67

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

18

20

x

T

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

18

20

x

T

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

18

20

x

T

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

18

20

x

T

Figure 4.6: (Waveguide Model) Traveltimes in the physical space on the cross
section y = 0. Solution using ray tracing method is plotted using solid line.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

18

20

x

T

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

18

20

x

T

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

18

20

x

T

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

18

20

x

T

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

18

20

x

T

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

18

20

x

T

Figure 4.7: (Waveguide Model) Traveltimes in the physical space on different
cross sections.

68

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

xy −1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

xy

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

xy −1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
0

0.1

0.2

0.3

0.4

0.5

xy

Figure 4.8: (Waveguide Model) Amplitudes in the physical space.

of the amplitude, one needs to calculate the Jacobian ∆2. This quantity can

be zero which corresponds to the location of caustics. Near caustics, the usual

asymptotic expansion of the wave field is not valid anymore. This reflects in the

fact that the amplitude blows up, as seen clearly in these figures.

4.5.2 Vinje’s Gaussian Model

This velocity model comes from [117] where

c(x, y, z) = 3− 1.75 exp

(
−x2 + y2 + (z − 0.75)2

0.52

)
. (4.37)

Figure 4.11 shows the multivalued traveltimes at z = 1.5 with sources located

at (xs, ys) for s = 1, · · · , 4 respectively using M = 15, 1 ≤ i, j ≤ 51 and 1 ≤
k, l ≤ 401. As the source varies, the traveltime varies for a ray to reach a specific

location. There are three sheets of traveltime surfaces at z = 1.5 for those given

69

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

x

A

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

x

A

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

x

A

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

x

A

Figure 4.9: (Waveguide Model) Amplitudes in the physical space on the cross
section y = 0.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

x

A

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

x

A

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

x

A

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

x

A

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

x

A

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

x

A

Figure 4.10: (Waveguide Model) Amplitudes in the physical space on different
cross sections.

70

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

xy −1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

xy

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

xy −1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

xy

Figure 4.11: (Vinje’s Gaussian Model) Traveltimes in the physical space.

sources. When two sheets connect to each other in the phase space, they connect

along the caustic curves, which are shown in the figures; this can also be seen

more clearly in Figure 4.13.

In this case, although u4 cannot be simplified to 0, rays from the origin with

initial ψ = 0 are still staying on the cross section y = 0. From the last equation in

equation (4.11), if ψ(z = 0) = 0 and y = 0, which implies cy = 0, we can obtain

ψ(z) ≡ 0. Therefore, we can still compare our solution with the one obtained from

ray tracing method on the cross section y = 0, as shown in Figure 4.13. Again,

the solid line represents the solution using the ray tracing method. The solutions

by the method presented here are plotted using circles. Two solutions match

with each other very well. In all the sub-figures, we can see that the caustics

develop and the traveltime becomes triple valued around caustics. To look at the

solutions more closely, we concentrate on the solution for the source located at

(xs, ys) = (0, 0). More cross sections of the multivalued traveltime are plotted on

71

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
0.2

0.4

0.6

0.8

1

1.2

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
0.2

0.4

0.6

0.8

1

1.2

Figure 4.12: (Vinje’s Gaussian Model) Traveltimes in the physical space using
ray tracing method.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

x

T

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

x

T

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

x

T

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

x

T

Figure 4.13: (Vinje’s Gaussian Model) Traveltimes in the physical space. Solution
using ray tracing method is plotted using solid line.

72

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

x

T

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

x

T

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

x

T

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

x

T

Figure 4.14: (Vinje’s Gaussian Model) Traveltimes in the physical space on dif-
ferent cross sections.

Figure 4.14. The locations of the slides are y = (j − 26)/25 for j = 11, 21, 31, 41.

One can see the obvious symmetry since the velocity has rotational invariance

for z fixed.

We have also calculated amplitudes of the arrival rays. Figures 4.15 to 4.17

show the amplitude solutions corresponding to Figures 4.11, 4.13 to 4.14.

73

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

xy −1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
0

0.05

0.1

0.15

0.2

0.25

xy

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

xy −1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

xy

Figure 4.15: (Vinje’s Gaussian Model) Amplitudes in the physical space.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

x

A

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

x

A

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

x

A

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

x

A

Figure 4.16: (Vinje’s Gaussian Model) Amplitudes in the physical space on the
cross section y = 0.

74

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

x

A

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

x

A

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

x

A

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

x

A

Figure 4.17: (Vinje’s Gaussian Model) Amplitudes in the physical space on dif-
ferent cross sections.

75

CHAPTER 5

Transmission Traveltime Tomography Using

First Arrivals

5.1 Introduction

The goal of transmission traveltime tomography is to estimate the wave-speed dis-

tribution from acoustic, seismic or electromagnetic (possibly multivalued) trav-

eltime data. In seismics, this velocity analysis is often an important step in

prospect evaluation in areas where lithology and structure undergo significant

lateral change. In this chapter, we propose a new, robust and efficient tomogra-

phy method based on only first arrival data. In the next chapter, we will discuss

how we can incorporate multiple arrival data.

All traditional methods of traveltime tomography are directly based on the

Fermat’s least traveltime principle and they all bear a close link to the X-ray

computerized tomography (CT) used in medical diagnosis. In medical CT the

measured data are modeled by line integrals of wave amplitude attenuation for

straight ray-paths passing through the body, and the Radon transform provides

a foundation for medical CT. In seismics however, the ray-path curvature has

to be taken into account in that lithology and structure usually have strong

inhomogeneity, and the resulting ray-paths can strongly depend on the unknown

wave speeds. To achieve such a purpose, ray-tracing based traveltime tomography

76

methods require very complicated data structure to trace curved rays through

each pixel [11]; see [119] for 3-D examples. In addition, such ray-tracing based

methods inevitably produce irregular ray coverage of the computational domain,

and the resulting system of equations may not be well-conditioned [8, 9, 10]. In

this paper we propose a PDE-based Eulerian approach to traveltime tomography

so that we can avoid the cumbersome ray-tracing.

Recall that a necessary condition for Fermat’s least traveltime principle to

hold is characterized by the eikonal equation for traveltime [45], and the viscosity

solution for the eikonal equation with a point-source condition is the least trav-

eltime from the source to an arbitrary point connected by a shortest ray-path,

as observed by [63, 70]. Because of its continuous dependence on the wave-speed

distribution and source locations, the viscosity solution can be stably computed

by various numerical schemes. In this chapter, we model traveltimes from a

single source to multiple receivers by using the eikonal equation and propose a

fast sweeping based adjoint state method for transmission traveltime tomogra-

phy. This new approach not only overcomes some shortcomings inherited in the

traditional ray-tracing based traveltime tomography but also enjoys quadratic

convergence, thus it is very fast and robust.

In this chapter, we will only concentrate on first-arrival based traveltime to-

mography. We start from a mismatching functional between measured and sim-

ulated data and drive the functional to zero by a well designed limited memory

BFGS (L-BFGS) optimization method. Although our approach shares some sim-

ilarities with that in Sei-Symes [94, 95], that work was based on the paraxial

formulation of the eikonal equation and only illustrated the feasibility of com-

puting the traveltime gradient by using the adjoint state method. Instead of

the paraxial formulation of the eikonal equation, we derive the gradient of the

77

mismatching functional directly from the steady eikonal equation by using the ad-

joint state method; furthermore, we apply the fast sweeping method [122, 111, 60]

to solve the eikonal equation directly (the forward problem) and design a new

fast sweeping method to solve the adjoint equation of the linearized eikonal equa-

tion (the adjoint problem) so that the required gradient can be computed highly

efficiently; finally a limited memory BFGS optimization method drives the mis-

matching functional to zero with quadratic convergence.

5.2 Governing Equations

We start with the eikonal equation with a point source condition in an isotropic

medium

|∇T | =
1

c
(5.1)

with the point source condition

T (xs) = 0 , (5.2)

where T (x) is the traveltime of wave from the source xs to the point x, and

c ∈ C1(Ω) is a positive velocity function.

For a given velocity model c, the viscosity solution of this equation can be

computed efficiently by fast sweeping methods, and such solutions correspond to

the least traveltime or the first-arrival traveltime according to [70].

In this work, we are interested in a related inverse problem, the so-called

transmission traveltime tomography problem: given both the first-arrival trav-

eltime measurements on the boundary ∂Ωp and the location of the point source

78

xs ∈ Ωp, we want to invert for the velocity field c(x) inside the domain Ωp.

To achieve this, we propose inverting the velocity model by minimizing the

following mismatching functional (energy),

E(c) =
1

2

∫

∂Ωp

|T − T ∗|2 , (5.3)

where T ∗|∂Ωp is the measurement and T |∂Ωp is computed by solving (5.1) with

a point source condition (5.2). In other words, this energy measures the L2-

difference between the experimental measurement, T ∗, and the solution from the

eikonal equation, T , on the boundary of the computational domain.

To minimize this energy, we use the method of gradient descent. We first

perturb the velocity field c by εc̃, which causes a corresponding change in T by

εT̃ . The change in the energy is then given by

δE = ε

∫

∂Ωp

T̃ (T − T ∗) + O(ε2) . (5.4)

From the state equation (5.1), the perturbations in c and T are related by

TxT̃x + TyT̃y + TzT̃z = − c̃

c3
. (5.5)

We need to determine the perturbation in c, c̃, so as to decrease the energy

E(c). The main difficulty is that the perturbation in E, δE, depends on c̃ implic-

itly through T̃ and the partial differential equation (5.5). To efficiently compute

c̃ which minimizes E, we apply the adjoint state method.

Multiplying (5.5) by ελ, integrating it over Ωp, applying integration by parts,

79

and adding the resulting expression to (5.4), we have

δE

ε
=

∫

∂Ωp

T̃ (T − T ∗) +

∫

y

∫

z

λTxT̃ |xmax
xmin

+

∫

x

∫

z

λTyT̃ |ymax
ymin

+

∫

x

∫

y

λTzT̃ |zmax
zmin

−
∫

Ωp

T̃ [(λTx)x + (λTy)y + (λTz)z] +

∫

Ωp

c̃λ

c3
+ O(ε) . (5.6)

Next, we choose λ satisfying

[(−Tx)λ]x + [(−Ty)λ]y + [(−Tz)λ]z = 0 , (5.7)

with the boundary condition,

(n · ∇T)λ = T ∗ − T, (5.8)

on the boundary ∂Ωp, where n is the unit outward normal of the boundary. By

introducing this adjoint state equation, one can eliminate the dependence of T̃

when determining the gradient of E with respect to c.

Ignoring all higher than linear order terms in the energy perturbation, we

have
δE

ε
=

∫

Ωp

c̃λ

c3
. (5.9)

To minimize the energy using the method of gradient descent, one could choose

the perturbation c̃ = −λ/c3. This implies

δE = −ε

∫

Ωp

c̃2 ≤ 0 (5.10)

and the equality holds when ||c̃||H0(Ωp) = 0. However, it is not straight-forward

how one can guarantee the following two properties,

80

1. c̃k|∂Ωp = 0;

2. ck+1 = ck + εc̃k smooth.

The first condition assumes that we can measure c on the boundary ∂Ωp, de-

noted by c∗|∂Ωp , which is a reasonable assumption. This means that the variations

of the velocity function on the boundary should be zero.

The second condition is a regularity condition on ck. This regularity seems

to be too restrictive in practice. In general, one only needs ck ∈ C1 to guarantee

well-posedness of the state equation (5.1). However, assuming that one uses

c̃k = −λ/c3 directly, it is not clear whether this function would give us the

desired regularity. Even if this perturbation is in C1, the numerical solution may

have jumps or spikes. These irregularities will force one to pick a very small

step-size, εk, in the minimization process. Therefore, to have faster convergence,

we impose the above regularity in each iteration.

One way to satisfy both properties is to use the descent direction

c̃ = −(I − ν∆)−1

(
λ

c3

)
, (5.11)

where I is the identity operator, ∆ is the Laplacian operator and ν ≥ 0 controls

the amount of regularity that one wants. The homogeneous boundary condition

is imposed in inverting the operator (I − ν∆). With this particular c̃, we have

δE = −ε

∫

Ωp

(c̃2 + ν|∇c̃|2) ≤ 0 . (5.12)

We notice that this process amounts to seeking updates in some weighted Sobolev

space in the case ν > 0. Then the above equality holds when ‖c̃‖H1
ν (Ωp) = 0.

In the above calculation, we use the first-arrivals at different receivers associ-

81

ated with only a single point source. If we perform multiple such experiments,

namely, we have many such data sets, then those can be easily incorporated into

the formulation. For example, we can assume that there are N point sources

located at xi
s, for i = 1, · · · , N, and we also have N sets of first-arrival traveltime

measurements T ∗
i associated with these N sources. Then we can simply define a

new energy

EN(c) =
1

2

N∑
i=1

∫

∂Ωp

|Ti − T ∗
i |2 , (5.13)

where Ti is the solution from the eikonal equation with the corresponding point

source condition T (xi
s) = 0. Utilizing the same approach as above, we have the

following perturbation in the energy

δEN

ε
=

∫

Ωp

c̃

c3

N∑
i=1

λi , (5.14)

where λi is the adjoint variable of Ti satisfying

{[−(Ti)x]λi}x + {[−(Ti)y]λi}y + {[−(Ti)z]λi}z = 0 , (5.15)

with the boundary condition,

(n · ∇Ti)λi = T ∗
i − Ti , (5.16)

for i = 1, · · · , N.

Consequently, we can choose the following gradient direction to minimize the

energy EN(c),

c̃ = −(I − ν∆)−1

(
1

c3

N∑
i=1

λi

)
. (5.17)

We remark that the above updating procedure is similar to the so-called simul-

82

taneous iterative reconstruction technique frequently used in medical imaging; it

is also possible to adopt the algebraic reconstruction type technique as used in

[34] to update the velocity.

5.3 Algorithm and Numerical Implementations

5.3.1 Tomography Algorithm

Here we give an algorithm for this tomography problem.

Tomography Algorithm:

1. Initialize ck for k = 0 by solving

(I − ν∆)c0 = 0 , (5.18)

with the boundary condition c0|∂Ω = cexact|∂Ω.

2. Compute T (x, z) by solving (5.1) with the point source condition (5.2) using

c = ck.

3. Compute λ(x, z) by solving (5.7) with the boundary condition (5.8).

4. Determine c̃k using (5.11).

5. Determine εk using, for example, the Armijo-Goldstein rule or simply εk = ε.

6. Update

ck+1 = ck + εkc̃k .

7. Go back to Step 2 until ||c̃k(x, z)||2 ≤ δ or k ≥ kmax, where δ and kmax are

given convergence parameters.

83

To start the iteration, we need to initialize c0. In the algorithm, we assume

that we can measure the velocity at receivers, giving c0|∂Ω = cexact|∂Ω. This

condition can of course be replaced by other assumptions. In practice, due to

the nonlinearity in the problem, different initial guesses will generally converge

to different energy minimizers. This non-uniqueness can be overcome by some a

priori knowledge of the model. For example, the above assumption can be relaxed

by replacing the Dirichlet conditions on both the left and right boundaries with

the Neumann boundary conditions ∂c0/∂x|x=xmin
= ∂c0/∂x|x=xmax = 0.

We can speed up the convergence by replacing the gradient descent method

with BFGS-type iterations. To solve the elliptic equation in Step 4, we use the

FFT. In Step 2 and Step 3, both the equations (5.1) and (5.7) can be solved by

the fast sweeping method [122, 111, 60].

5.3.2 Fast Sweeping Method for Equation (5.1)

The fast sweeping method was originated in Boue and Dupis [12], its first PDE

formulation was in implicit and non-parametric shape reconstruction from unor-

ganized points using a variational level set method [124]; Zhao [122] proved the

O(N) convergence of the method for the eikonal equation based on the Godunov

Hamiltonian on Cartesian meshes; later on, the fast sweeping method was ex-

tended to treat Hamilton-Jacobi equations with convex Hamiltonians based on

the Godunov Hamiltonian [111] and handle Hamilton-Jacobi equations with non-

convex Hamiltonians based on the Lax-Friedrichs Hamiltonian [60]; see [111, 60]

and references therein for the fast sweeping method on Cartesian meshes and

[90] for the method on triangulated meshes. Certainly, one may also use other

methods such as the fast marching method [97].

To be self-contained, we give a short summary of the fast sweeping method

84

for eikonal equations. To avoid cluttered notations we present the algorithm for

the 2-D case only; see [122] for more details.

First we discretize the rectangular domain Ω ⊂ R2 into a uniform mesh with

mesh points xi,j and mesh sizes ∆x = ∆z = h, and we denote the numerical

solution at xi,j by Ti,j. Applying the Godunov numerical Hamiltonian to the

eikonal equation, for i = 2, · · · , I − 1, j = 2, · · · , J − 1, we have

[(Ti,j − Txmin)+]2 + [(Ti,j − Tzmin)+]2 =
h2

c2
i,j

, (5.19)

where Txmin = min(Ti−1,j, Ti+1,j), Tzmin = min(Ti,j−1, Ti,j+1) and (x)+ denotes

the positive part of x. At the boundary of the computational domain one sided

difference is used.

Fast Sweeping Algorithm:

1. Initialize the point source condition T (xs) = 0 by assigning the exact value if

xs is a mesh point, or assigning to grid points near xs exact values which are

computed by using the constant velocity at the point source. These values are

fixed in later iterations. Assign larger positive values at all other grid points,

and these values will be updated later.

2. Update the solution by Gauss-Seidel iterations with alternating sweeping. At

each grid point xi,j whose value was not fixed during the initialization, compute

the candidate solution, denoted by T̄ of (5.19) from the current values of its

neighbors Ti±1,j, Ti,j±1 and then update Ti,j to be the smaller one between T̄

and its current value; i.e., T new
i,j = min(T old

i,j , T̄). We sweep the whole domain

with four alternate ordering repeatedly: i = 1 : I, j = 1 : J ; i = 1 : I, j =

J : 1; i = I : 1, j = 1 : J ; i = I : 1, j = J : 1. Here i and j are the running

85

indices along x and y directions.

3. Test the convergence: given convergence criterion ε > 0, check whether

‖T n+1 − T n‖L1 ≤ ε.

We remark that the sweeping strategy can be used for more general Hamilton-

Jacobi equations as long as an efficient local solver is available at each grid point,

so that an iterative procedure is well defined at each local grid point.

5.3.3 Fast Sweeping Method for Equation (5.7)

Next we design a fast sweeping method for equation (5.7). Once again to simplify

the notation, we give a 2-D formulation only; the extension to a 3-D formulation

is straightforward.

The adjoint state equation (5.7) can be written in the following form

(aλ)x + (bλ)z = 0 , (5.20)

where a and b are given functions of (x, z).

Considering a computational cell centered at (xi, zj) and discretizing the equa-
tion in conservation form, we have

1

∆x

�
ai+1/2,jλi+1/2,j − ai−1/2,jλi−1/2,j

�
+

1

∆z

�
bi,j+1/2λi,j+1/2 − bi,j−1/2λi,j−1/2

�
= 0 . (5.21)

The values of λ on the interfaces, λi±1/2,j and λi,j±1/2, are determined according to

the propagation of characteristics. In the case when ai+1/2,j > 0, the characteristic

for determining λ goes from the left hand side of the interface to the right hand

side, and this suggests that we use the value λi,j to define λi+1/2,j; otherwise, we

have λi+1/2,j = λi+1,j. The terms λi,j±1/2 can be defined in a similar way.

86

Introducing the following notations

a±i+1/2,j =
ai+1/2,j ± |ai+1/2,j|

2
, a±i−1/2,j =

ai−1/2,j ± |ai−1/2,j|
2

,

b±i,j+1/2 =
bi,j+1/2 ± |bi,j+1/2|

2
and b±i,j−1/2 =

bi,j−1/2 ± |bi,j−1/2|
2

,

we have

1

∆x

(
(a+

i+1/2,jλi,j + a−i+1/2,jλi+1,j)− (a+
i−1/2,jλi−1,j + a−i−1/2,jλi,j)

)
+

1

∆z

(
(b+

i,j+1/2λi,j − b−i,j+1/2λi,j+1)− (b+
i,j+1/2λi,j−1 − b−i,j+1/2λi,j)

)
= 0 , (5.22)

which can be rewritten as

0
@

a+
i+1/2,j

− a−
i−1/2,j

∆x
+

b+
i,j+1/2 − b−

i,j−1/2

∆z

1
Aλi,j =

a+
i−1/2,j

λi−1,j − a−
i+1/2,j

λi+1,j

∆x

+
b+
i,j−1/2λi,j−1 − b−

i,j+1/2λi,j+1

∆z
. (5.23)

This gives an expression to build up a fast sweeping-type iterative method.

To apply this iterative scheme to equation (5.7), we need to specify the func-

tion values of a and b not at the cell centers (xi, zj), but on the cell interfaces

(xi±1/2, zj) and (xi, zj±1/2). This can be done easily using central differences. For

example, we have ai+1/2,j = −(Ti+1,j−Ti,j)/∆x and ai−1/2,j = −(Ti,j−Ti−1,j)/∆x.

In addition, we have to incorporate the boundary condition (5.8) into the above

linear system for λ as well. Then we can show that the coefficient matrix of

the resulting linear system for λ is irreducibly diagonally dominant, therefore the

alternating symmetrical Gauss-Seidel iteration converges.

Fast Sweeping Algorithm for equations (5.7) and (5.8):

1. On the boundary, compute (n·∇T) from the solution of the eikonal solver using

87

one side difference. Next, compute the boundary condition for λ according to

(8). These values will be fixed in the following computations.

2. Update λi,j at the interior points according to (22). As in the fast sweeping

method for (1), we sweep the whole domain with four alternate orderings.

3. For some given convergence criterion ε > 0, repeat 2 until ||λn+1−λn||L1 ≤ ε.

We point out that the above fast sweeping method is different from the fast

marching method used in [43], in that our method is iterative and the one in [43]

is constructive based on upwinding properties.

5.3.4 L-BFGS Method

In the tomography algorithm above, we update the approximation to the velocity

by the typical gradient descent method, where

ck+1 = ck − εkc̃k . (5.24)

Although it is simple to implement, the method is not efficient because it takes

a large number of iterations to converge to the steady state solution.

To speed up the convergence, we can apply the quasi-Newton method defined

by

ck+1 = ck + εksk , (5.25)

where sk = −A−1
k E ′(ck) and Ak is a positive definite operator satisfying the

secant condition

Ak+1(c
k+1 − ck) = E ′(ck+1)− E ′(ck) . (5.26)

In this iteration, the operator Ak+1 is updated by modifying the previous operator

88

Ak.

One possible way to modify this operator is given by the Broydon-Fletcher-

Goldfarb-Shanno (BFGS) procedure,

Akv = Ak−1v + α < p, v > p + β < q, v > q , (5.27)

where

p = y/||y|| , q = Ak−1s/||Ak−1s|| ,
α = ||y||2/ < y, s > , β = −||Ak−1s||2/ < s, Ak−1s > (5.28)

with s = ck − ck−1, y = E ′(ck)− E ′(ck−1) and A0 = I.

However, in practice, the condition number of Ak can be increased significantly

throughout the iteration, which makes the computation inaccurate. To alleviate

this, one can modify the iteration using the limited memory BFGS (L-BFGS)

given by

Akv = v +
k∑

j=k−L+1

(αj < pj, v > pj + βj < qj, v > qj) . (5.29)

In this paper, we adapt the L-BFGS-B code from [16]. This code requires user to

provide only subroutines to compute both the energy to be minimized and the

gradient of this energy. The step size εk is automatically determined.

5.4 Two-Dimensional Numerical Examples

In the following examples, we use 129 × 129 grid points in the x-z space. Using

the above formulation, we need measurements, denoted by φ∗ and T ∗, on the

boundary ∂Ωp. If the point source is located inside Ω, the characteristics of

89

the eikonal equation always flow out from the domain. Therefore, in synthetic

experiment the boundary measurements can be obtained by solving the equation

(5.1) directly using the fast sweeping method together with the exact velocity c.

For each velocity model below, we have implemented the following two cases

- one source and ten sources. For the one source case, we use the boundary

measurements from the only point source located at (x, z) = (0, 0.1). In the

cases with ten point sources, we use nine more sets of boundary measurements,

and these correspond to source locations at (x, z) = (±0.25, 0.1), (±0.5, 0.1),

(0, 1.9), (±0.25, 1.9) and (±0.5, 1.9), respectively. However, to save some space

we only present the results corresponding to the case of ten sources.

To start the algorithm, we initialize the velocity c0 by solving the above elliptic

equation (5.18) with ν = 1.

5.4.1 Constant Model

The exact velocity model is given by c ≡ 1. We use the BFGS method to invert

for the velocity. The results are shown in Figure 5.1. As we can see, the recovered

velocity is almost exact, the relative error is almost negligible, and we observe

the typical quadratic convergence of the algorithm due to the L-BFGS method.

5.4.2 Waveguide Model

The exact velocity model is given by

c(x, z) = 3− 2.5 exp

(
−x2

2

)
. (5.30)

We apply the BFGS method to invert for the velocity. Figure 5.2 shows the

relative error at convergence and the convergence history. In Figure 5.3, we show

90

−1

−0.5

0

0.5

1

0

0.5

1

1.5

2
0

0.05

0.1

0.15

0.2

0.25

xy

|c
∞

−
c ex

ac
t|/|

c ex
ac

t|

−1

−0.5

0

0.5

1

0

0.5

1

1.5

2
0.9992

0.9994

0.9996

0.9998

1

1.0002

1.0004

1.0006

1.0008

xy

c(
x,

z)
(a) (b)

−1

−0.5

0

0.5

1

0

0.5

1

1.5

2
0

2

4

6

8

x 10
−4

xy

|c
∞

−
c ex

ac
t|/|

c ex
ac

t|

0 5 10 15 20 25 30 35
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Iteration, k

E
(c

k)

(c) (d)

Figure 5.1: (Constant Model. Ten Sources.) BFGS. (a): the initial guess; (b):
final approximated c; (c): the relative error in the solution; (d): the convergence
history of energy.

91

−1

−0.5

0

0.5

1

0

0.5

1

1.5

2
0

0.005

0.01

0.015

0.02

0.025

xz

|c
∞

−
c ex

ac
t|/|

c ex
ac

t|

0 2 4 6 8 10 12 14 16
10

−4

10
−3

10
−2

Iteration, k

E
(c

k)

(a) (b)

Figure 5.2: (Waveguide Model. Ten Sources.) (a): the relative error in the
solution and (b): the convergence history of energy.

slices of the cross-sections of the solution along z = 1 and x = 0. As we can see,

we are able to recover the velocity as well.

5.4.3 Gaussian Model

The exact velocity model is given by

c(x, z) = 3− 1

2
exp

(
−x2 + (z − 0.5)2

0.52

)
− exp

(
−x2 + (z − 1.25)2

0.52

)
. (5.31)

In Figure 5.4, we show the convergent velocity and the convergence history of the

algorithm; once again, we observe quadratic convergence. In Figure 5.5, we show

slices of cross-sections of the final converged velocity; as we can see, they fit well

with the exact velocity.

To further test the algorithm, we repeat the experiment but perturb the syn-

thetic data T ∗ with some noise. Using the same velocity model, we first compute

the traveltime on the boundary of the domain. These measurements are added

5% Gaussian noise with zero mean. Figures 5.6 and 5.7 show that we have ro-

92

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

x

c(
x,

z=
1)

c
exact

c0

c∞

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

z

c(
x=

0,
z)

c
exact

c0

c∞

(a) (b)

Figure 5.3: (Waveguide Model. Ten Sources.) Cross-sections of the solutions.
(a): z = 1 and (b): x = 0.

bust convergence as well. As shown in Figure 5.6(b), we are not able to drive the

energy to zero. This is expected because the boundary measurements are highly

oscillatory, and in general we cannot find a smooth velocity c which produces

exactly the same traveltimes as those noisy data.

5.5 Three-Dimensional Numerical Examples

In the following examples, we use 65×65×65 grid points in the three-dimensional

space. Using the above formulation, we need measurements, denoted by T ∗, on

the boundary ∂Ωp. For each velocity model shown below, we have implemented

the following case, 49 sources on the levels z = 0.1 and z = 1.9, and we have 98

sets of measurements in total. To start the algorithm, we initialize the velocity

c0 by solving the elliptic equation (5.18) with ν = 1.

93

−1

−0.5

0

0.5

1

0

0.5

1

1.5

2
1.8

2

2.2

2.4

2.6

2.8

3

3.2

xz

c(
x,

z)

0 5 10 15 20 25 30 35
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

Iteration, k

E
(c

k)

(a) (b)

Figure 5.4: (Gaussian Model. Ten Sources.) BFGS. (a): the final approximated
c and (b): the convergence history of energy.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

x

c(
x,

z=
1)

c
exact

c0

c∞

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
1.8

2

2.2

2.4

2.6

2.8

3

z

c(
x=

0,
z)

c
exact

c0

c∞

(a) (b)

Figure 5.5: (Gaussian Model. Ten Sources.) BFGS. Cross-sections of the solu-
tions. (a): z = 1 and (b): x = 0.

94

−1

−0.5

0

0.5

1

0

0.5

1

1.5

2
2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

xz

c(
x,

z)

1 2 3 4 5 6 7 8 9 10 11

10
−1.11

10
−1.1

10
−1.09

10
−1.08

10
−1.07

10
−1.06

10
−1.05

10
−1.04

10
−1.03

10
−1.02

Iteration, k

E
(c

k)

(a) (b)

Figure 5.6: (Gaussian Model with added noise. Ten Sources.) BFGS. (a): the
final approximated c; (b): the convergence history of energy.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
2

2.5

3

x

c(
x,

z=
1)

c
exact

c0

c∞

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
1.8

2

2.2

2.4

2.6

2.8

3

z

c(
x=

0,
z)

c
exact

c0

c∞

(a) (b)

Figure 5.7: (Gaussian Model with added noise. Ten Sources.) BFGS. Cross-sec-
tions of the solutions: (a): z = 1 and (b): x = 0.

95

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

|c∞−c
exact

|/|c
exact

|

y

0

0.5

1

1.5
x 10

−3

0 5 10 15 20 25
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Iteration, k

E
(c

k)

(a) (b)

Figure 5.8: (Constant Model. 98 Sources.) 3-D case. (a): the relative error in the
solution on the cross-section z = 1 and (b): the convergence history of energy.

5.5.1 Constant Model

The exact velocity model is given by c ≡ 1. We use the BFGS method to invert

for the velocity. The results are shown in Figure 5.8; we observe the quadratic

convergence once again.

5.5.2 Gaussian Model

The exact velocity model is given by

c(x, y, z) = 3− 1

2
exp

(
−x2 + y2 + (z − 0.5)2

0.52

)
−exp

(
−x2 + y2 + (z − 1.25)2

0.52

)
.

(5.32)

We use the gradient descent method to invert for the velocity. The results are

shown in Figure 5.9.

96

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

|c∞−c
exact

|/|c
exact

|

y

0.05

0.1

0.15

0.2

0.25

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
0

0.5

1

1.5

2

x

c∞

y

z

1.6

1.8

2

2.2

2.4

2.6

2.8

3

(a) (b)

Figure 5.9: (Gaussian Model. 98 Sources.) 3-D case. (a): the relative error in
the solution on the cross-section z = 1 and (b): the final approximated c.

5.6 Synthetic Marmousi Model

We use twenty sources and their (x, z)-coordinates are (200, 2800), (1000: 1000:

9000, 2800), (200, 100) and (1000: 1000: 9000, 100), respectively, where we have

used by now the standard Matlab colon notation.

The true Marmousi velocity model is illustrated in Figure 5.10(a). As we can

see, this velocity model has high contrast with variations of different scales. On

the one hand, since the fast sweeping method used here is unconditionally stable,

the forward eikonal solver will not have difficulty in computing traveltime to first

order accuracy. On the other hand, viscosity-solution based first-arrival travel-

times will not be able to give us too much information about variations of small

scales occurring in the velocity model; to retain the information related to small

scales, we have to use multiple arrivals, which in turn calls for multiple-arrival

based traveltime tomography. In this regard, for computing multiple arrivals of

the Marmousi model in the Eulerian framework, see chapters 2-4 for more.

To start the algorithm, we initialize the velocity c0 by solving the Laplace

97

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

−2500

−2000

−1500

−1000

−500

0

x

z

1500

2000

2500

3000

3500

4000

4500

5000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

−2500

−2000

−1500

−1000

−500

0

x

z

1500

2000

2500

3000

3500

4000

4500

5000

(a) (b)

Figure 5.10: (Marmousi model) (a): the true velocity distribution and (b): the
initial profile c0.

equation −∆c0 = 0 with c0|∂Ω = cexact|∂Ω. The solution is plotted in Figure

5.10(b).

We use the BFGS method to invert for the velocity. Figure 5.11 presents

the inversion results for different cases in terms of the sampling size ∆x and the

parameter ν.

Comparing Figure 5.11(a) with the true model Figure 5.10(a), we have suc-

cessfully imaged the macro scale variations of the velocity model, but not able

to compute those finer scale variations of the velocity model which does exist in

the true velocity model. However, transmission tomography usually has very lim-

ited resolution, and we believe that this result is near optimal using the current

approach.

To confirm this, we refine the velocity model by doubling the number of grid

points in each direction while keeping the regularization parameter ν fixed; the

corresponding solution is shown in Figure 5.11(d). We also check the following

98

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

−2500

−2000

−1500

−1000

−500

0

x

z

1500

2000

2500

3000

3500

4000

4500

5000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

−2500

−2000

−1500

−1000

−500

0

x

z

1500

2000

2500

3000

3500

4000

4500

5000

(a) (b)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

−2500

−2000

−1500

−1000

−500

0

x

z

1500

2000

2500

3000

3500

4000

4500

5000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

−2500

−2000

−1500

−1000

−500

0

x

z

1500

2000

2500

3000

3500

4000

4500

5000

(c) (d)

Figure 5.11: (Marmousi model) Converged solutions. (a): ν = 104 and ∆x = 24;
(b): ν = 102 and ∆x = 24; (c): ν = 106 and ∆x = 24; (d): ν = 104 and ∆x = 12.

99

0 5 10 15 20 25 30
10

2

10
3

10
4

Iteration, k

E
(m

k)

(a)
(b)
(c)
(d)

0 5 10 15 20 25 30
0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

Iteration, k

R
es

id
ua

l

(a)
(b)
(c)
(d)

(I) (II)

Figure 5.12: (Marmousi model) The change in (I): the energy and (II): the resid-
ual. Legend: (a): ν = 104 and ∆x = 24; (b): ν = 102 and ∆x = 24; (c): ν = 106

and ∆x = 24; (d): ν = 104 and ∆x = 12.

residual in the solution defined by

R =
ΣN

i=1

∫
∂Ω
|Ti − T ∗

i |/T ∗
i ds

N
∫

∂Ω
ds

(5.33)

where N is the number of sources defined above. This quantity essentially is the

average relative error in the first-arrival time per source per receiver.

If the above residual is not changing too much, we will accept the inversion

result since there is not much model misfit left to drive improvement. Indeed,

as shown in Figure 5.12, even if we refine the velocity model, the residuals are

almost the same after 15 BFGS steps. In fact, the solutions from the coarse and

fine resolution are similar, as shown in Figures 5.11(a) and 5.11(d) .

Using a relative small ν = 102, the BFGS iteration has difficulty in converging

to a smooth solution. This is clearly seen in Figure 5.11(b). The BFGS iteration

stops at the fourth iteration with E(m4) ' 1700, where m = log c; see Figure

5.12. This difficulty comes from the sharp spikes in the solution near the source

locations, where the traveltime field is not differentiable [88]. These sudden

100

∆x Eikonal equation Adjoint equation
24 20 (6.68× 10−10) 17 (1.62× 10−9)
12 28 (9.60× 10−11) 25 (3.38×−8)

Table 5.1: Iteration count for the fast sweeping methods. The numbers in the
brackets are the errors in the corresponding iteration, ||T n+1−T n|| or ||λn+1−λn||.

changes will degrade accuracy in the computed gradient and make it hard for

BFGS to search for a descent direction.

Increasing the magnitude of ν (from 104 to 106), we have a little bit better

convergent result. As seen in the energy plot, the energy which uses the larger

ν (the dashed line) reaches a lower state than that using ν = 104 (the solid

line). Theoretically we penalize the gradient of c̃ so that it is small in a weighted

Sobolev space as illustrated in equation (5.12).

Concerning the speed, the computational time for the cases with ν = 104 using

∆x = 24 and 12 are 53 minutes and 387 minutes, respectively. We also list in

Table 1 the number of iterations required to solve both the eikonal equation and

the adjoint equation for each given velocity field. These numbers are obtained

for the case ν = 104 with only one point source located at (5000,−2800) in the

first BFGS iteration. The first row shows the number of iterations with ∆x = 24,

while the second row corresponds to the case with ∆x = 12.

101

CHAPTER 6

Transmission Traveltime Tomography Using

Multiple Arrivals

6.1 Introduction

Traveltime tomography [11, 32, 27, 14, 74, 119, 75] is an important class of in-

verse problems. Theoretically, it amounts to determining uniquely a Riemannian

metric by knowing the length of geodesics joining points of the boundary of a

two-dimensional or three-dimensional compact domain; those geodesics solve a

family of Hamilton-Jacobi equations. Computationally, it amounts to designing

fast, high resolution methods to invert given data for the unknown velocities or

other material parameters [94, 95, 112, 113, 8, 9, 10, 51, 54].

Geophysical traveltime tomography is closely related to X-ray computerized

tomography used in medical diagnosis [33]. The so-called transmission travel-

time tomography uses traveltime data between boreholes to invert velocity as

a discretized field [14, 119, 31, 76]. Seismic tomography is usually formulated

as a minimization problem that produces a velocity model which minimizes the

difference between traveltimes generated by tracing rays through the model and

traveltimes measured from the data [11, 14, 119, 8, 9, 10, 51, 54]. The ray tracing

in the above methods is based on Fermat’s Principle and the resulting ray path

is computed from an explicit discretization of a nonlinear ray path integral; as

102

such, the methods inherit some shortcomings from typical ray tracing methods,

such as shadow zones due to non-uniform coverage of the computational domain.

On the other hand, the work in [94, 95] has shown that it is possible to

formulate the transmission tomography problem in a purely Eulerian framework

based on finite difference eikonal solvers; [94, 95] have also derived the linearized

eikonal equation and the traveltime gradient based on the adjoint state method

borrowed from the optimal control theory.

However, all the above cited methods, together with the one we discuss in the

previous chapter, are based on first arrival traveltimes only. As far as we know,

no attempt has been made to formulate the transmission tomography problem

by using all arrivals, including multivalued traveltimes. The works presented in

[32, 27] have used multivalued traveltimes from ray tracing methods, but those

works are on reflection traveltime tomography which is different from transmission

tomography in that rays start at the surface, reflect off interfaces whose depths

are to be determined, and return to the surface.

Because multivalued traveltimes and resulting multipathings are common in

complex velocity structures, it is necessary to take into account all the arrivals

systematically. To achieve this purpose, we propose to formulate transmission

tomography by using the Liouville equation based PDE framework in phase space.

The Liouville equation is a linear hyperbolic equation derived from a Hamil-

tonian system, which in turn is obtained from a Hamilton-Jacobi equation by the

method of characteristics; therefore, the Liouville equation shares the same char-

acteristics as the original nonlinear HJ equation, but it is linear at the price of

doubling the number of independent variables; see [37, 4, 57, 24]. In particular, in

[86, 87, 69], we have proposed paraxial formulations of the Liouville equation for

geometrical optics; the resulting Eulerian framework for computing geometrical

103

optics related quantities has shown to be computationally efficient and accurate,

since to some extent this formulation has overcome the shortcoming of doubling

the number of independent variables in the Liouville framework.

Encouraged by the success of the formulations using the paraxial Liouville

equations, we apply such techniques to seismic transmission traveltime tomog-

raphy problems so that multivalued traveltimes and resulting multipathings can

be utilized systematically. To that end, we minimize a new energy functional

which consists of mismatching terms for multivalued traveltimes and source loca-

tions. To minimize the functional, we derive its gradient using the adjoint state

technique. Starting from some initial guess, we minimize the nonlinear energy

functional by a Newton-type method. The required gradient is computed by

solving one forward and one adjoint problem of the paraxial Liouville equations.

Then the velocity model is updated iteratively by solving a Helmholtz equation

with the computed gradient as the right-hand side. Therefore, the functional can

be efficiently minimized by using the simple method of gradient descent, which

is a simplified version of the Newton method.

We are also going to carry out the comparison between first arrival based and

multiple arrivals based transmission tomography to justify the effectiveness of

the approach.

6.2 Tomography Based on Paraxial Liouville Equations

In a forward problem as discussed in Chapter 2 to 4, we assume that the velocity c

in the physical domain Ωp is known; this velocity can then be used to compute the

corresponding multivalued arrival-times. The inverse problem is to determine the

velocity inside Ωp using the multivalued arrival-times measured on the physical

104

boundary.

Denote Ω̃ = Ω× (0, zf). According to the forward problem given in the above

section, we have the following state equations,

φz + uφx + vφθ = 0,

Tz + uTx + vTθ =
1

c cos θ
, (6.1)

where u = (u, v) = (tan θ,mz tan θ −mx) and m = m(c) = log c. The initial and

boundary conditions of this system are given by

φ(z0, ·, ·) = x,

T (z0, ·, ·) = 0,

φ(z, ·, ·)|∂Ω =

φ∗ if (u · n) < 0,

no b.c. needed if (u · n) ≥ 0;

T (z, ·, ·)|∂Ω =

T ∗ if (u · n) < 0,

no b.c. needed if (u · n),≥ 0,
(6.2)

where n is the outward normal vector of ∂Ω, and ∗ denotes the conditions on the

inflow boundary of ∂Ω, where u · n < 0.

In the following, without abusing of notation, we also use ∗ to denote the

measured values on the outflow boundary of ∂Ω, where u·n ≥ 0, and the measured

values on the level z = zf .

Assume that one can measure the data φ(z, ·, ·)|∂Ω on the outflow boundary,

φ(zf , ·, ·) on the level z = zf , T (z, ·, ·)|∂Ω on the outflow boundary, T (zf , ·, ·) on

the level z = zf and m|∂Ωp . Such measurement can be picked from seismic data

by suitably pairing as in [32].

105

Based on the above assumptions, the traveltime tomography problem is to

determine m, and therefore c, such that the predicted data from the solutions

for the system (6.1) and (6.2) are as close to these measurements as possible. To

achieve this, we propose to minimize the following energy

E(m) =
1

2

∫

Ω

(φ− φ∗)2|z=zf
+

1

2

∫

z

∫

∂Ω

(u · n)(φ− φ∗)2

+
β

2

∫

Ω

(T − T ∗)2|z=zf
+

β

2

∫

z

∫

∂Ω

(u · n)(T − T ∗)2 (6.3)

The proposed energy is always positive. Although it is possible that (u·n) < 0

on ∂Ω, in that case φ−φ∗ = T −T ∗ = 0. This implies that these negative values

of (u · n) will have no contribution to the overall energy. In other words, the

proposed energy measures the difference between the computed solution and the

measurements on the outflow boundary. On the inflow boundary, the numerical

solution automatically matches the measurements according to the conditions in

(6.2).

The parameter β balances the mismatching of the traveltimes and the arrival

angles. The energy functional may also consist of a regularization term related

to m due to the ill-posedness of an inverse problem. More discussion on the

regularity of the solution m, or c, will be discussed later.

To compute the minimizer of the energy (6.3), one can use the method of

gradient descent. To do that we need to compute the gradient of this functional

by linearization. Here we give a formal derivation of the gradient. Therefore, we

perturb m by εm̃; the corresponding changes in φ and T , denoted by εφ̃ and εT̃ ,

respectively, satisfy

φ̃z + uφ̃x + vφ̃θ = [m̃x − m̃z tan θ]φθ, (6.4)

106

T̃z + uT̃x + vT̃θ = [m̃x − m̃z tan θ]Tθ − m̃

c cos θ
. (6.5)

Define ũ = (0, ṽ) = (0, m̃z tan θ − m̃x). The corresponding change in the

energy is given by

δE = E(m + εm̃)− E(m)

= ε

[∫

Ω

φ̃(φ− φ∗)|z=zf
+

∫

z

∫

∂Ω

(u · n)φ̃(φ− φ∗)

+
1

2

∫

z

∫

∂Ω

(ũ · n)(φ− φ∗)2 + β

∫

Ω

T̃ (T − T ∗)|z=zf

+β

∫

z

∫

∂Ω

(u · n)T̃ (T − T ∗) +
β

2

∫

z

∫

∂Ω

(ũ · n)(T − T ∗)2

]

+O(ε2) . (6.6)

However, it is not clear how to choose the perturbation m̃ at this moment so

that the energy is decreased. The reason is that δE depends not only on m̃, but

also on the perturbations in φ̃ and T̃ , and the latter two variations depend on m̃

implicitly according to (6.4) and (6.5).

To make m̃ explicit in the above energy perturbation, we use integration by

parts and introduce adjoint equations. First, introducing a Lagrange multiplier

λ1 for equation (6.4), multiplying the equation by λ1 and integrating over Ω̃, we

have

0 =

∫

Ω̃

(λ1, uλ1, vλ1) · ∇φ̃ +

∫

Ω̃

λ1ṽφθ

=

∫

Ω

λ1φ̃|z=zf
+

∫

z

∫

∂Ω

(u · n)λ1φ̃

−
∫

Ω̃

∇ · (λ1, uλ1, vλ1)φ̃ +

∫

Ω̃

λ1ṽφθ . (6.7)

Similarly, we introduce another Lagrange multiplier λ2 for equation (6.5).

107

This gives

0 =

∫

Ω

λ2T̃ |z=zf
+

∫

z

∫

∂Ω

(u · n)λ2T̃ −
∫

Ω̃

∇ · (λ2, uλ2, vλ2)T̃

+

∫

Ω̃

λ2

{
ṽTθ +

m̃

c cos θ

}
. (6.8)

To eliminate φ̃ and T̃ in δE, we multiply equations (6.7) and (6.8) by ε and

βε, respectively, and then add them to equation (6.6). This gives

δE = ε

[∫

Ω

φ̃(φ− φ∗)|z=zf
+

∫

z

∫

∂Ω

(u · n)φ̃(φ− φ∗)

+
1

2

∫

z

∫

∂Ω

(ũ · n)(φ− φ∗)2 + β

∫

Ω

T̃ (T − T ∗)|z=zf

+β

∫

z

∫

∂Ω

(u · n)T̃ (T − T ∗) +
β

2

∫

z

∫

∂Ω

(ũ · n)(T − T ∗)2

+

∫

Ω

λ1φ̃|z=zf
+

∫

z

∫

∂Ω

(u · n)λ1φ̃

−
∫

Ω̃

∇ · (λ1, uλ1, vλ1)φ̃ +

∫

Ω̃

λ1ṽφθ

+β

∫

Ω

λ2T̃ |z=zf
+ β

∫

z

∫

∂Ω

(u · n)λ2T̃

−β

∫

Ω̃

∇ · (λ2, uλ2, vλ2)T̃ + β

∫

Ω̃

λ2

{
ṽTθ +

m̃

c cos θ

}]

+O(ε2) . (6.9)

Next, we choose λ1 and λ2 satisfying

(λ1)z + (uλ1)x + (vλ1)θ = 0,

(λ2)z + (uλ2)x + (vλ2)θ = 0 , (6.10)

with the initial conditions on z = zf ,

λ1(z = zf) = φ∗ − φ and λ2(z = zf) = T ∗ − T, (6.11)

108

and the boundary conditions,

λ1|∂Ω =

φ∗ − φ if (u · n) > 0,

no b.c. needed if (u · n) ≤ 0;

λ2|∂Ω =

T ∗ − T if (u · n) > 0,

no b.c. needed if (u · n) ≤ 0.
(6.12)

Ignoring all higher than linear order terms in the above equation for δE, we

have the energy perturbation

δE = ε

∫

Ω̃

[
ṽ(λ1φθ + βλ2Tθ) +

βλ2m̃

c cos θ

]

+
ε

2

∫

Ωp

ṽ(φ− φ∗)2|θ=θmax
θ=θmin

+
εβ

2

∫

Ωp

ṽ(T − T ∗)2|θ=θmax
θ=θmin

= −ε

∫

Ωp

{
m̃x

[∫

θ

λ1φθ + βλ2Tθ

]
− m̃z

[∫

θ

tan θ (λ1φθ + βλ2Tθ)

]

− m̃β

c

[∫

θ

λ2

cos θ

]
− 1

2

∫

Ωp

ṽ
[
(φ− φ∗)2 + β(T − T ∗)2

] |θ=θmax
θ=θmin

}

= ε

∫

Ωp

m̃g , (6.13)

where

g(x, z) = [f1(x, z)]x − [f2(x, z)]z +
β

c
f3(x, z) + f4(x, z),

f1(x, z) =

∫

θ

λ1φθ + βλ2Tθ,

f2(x, z) =

∫

θ

tan θ (λ1φθ + βλ2Tθ) ,

f3(x, z) =

∫

θ

λ2

cos θ
,

f4(x, z) =
1

2

{
∂

∂x

[
(φ− φ∗)2 + β(T − T ∗)2

]

109

− tan θ
∂

∂z

[
(φ− φ∗)2 + β(T − T ∗)2

]}∣∣∣∣
θ=θmax

θ=θmin

. (6.14)

To minimize the energy using the method of gradient descent, one could choose

the perturbation m̃ = −g. This implies

δE = −ε

∫

Ωp

m̃2 ≤ 0 (6.15)

and the equality holds when ||m̃|| = 0. However, it is not straight-forward how

one can guarantee the following two properties:

1. m̃|∂Ωp = 0;

2. mk+1 = mk + εm̃k smooth.

The first condition assumes that we can measure m on the boundary ∂Ωp,

denoted by m∗|∂Ωp , which is a reasonable assumption. This means that the

variations of the velocity function near the boundary should be zero.

The second condition is a regularity condition in mk. The regularity require-

ment seems to be too restrictive in practice. In general, one only needs mk ∈ C1,

rather than C∞ as required here, to guarantee well-posedness of state equations

(6.1). However, assuming that one uses m̃k = −g directly, it is not clear whether

this function g would give us the desired regularity. Even if g ∈ C1, the numerical

solution of g could have jumps or spikes. These irregularities will force one to pick

a very small step-size, εk, in the minimization process, and/or a very restrictive

step-size, dz, in solving the advection equations (6.1) and the conservation laws

(6.10). Therefore, to have faster convergence to the minimizer, we impose the

above regularity in each iteration.

110

One way to satisfy the above two properties is to use the descent direction

m̃ = −(I − ν∆)−1g , (6.16)

where I is the identity operator, ∆ is the Laplacian operator and ν ≥ 0 controls

the amount of regularity that one wants. The homogeneous boundary condition

is imposed in inverting the operator (I − ν∆). With this m̃, we have

δE = −ε

∫

Ωp

(|m̃|2 + ν|∇m̃|2) ≤ 0 , (6.17)

and the equality is achieved when m̃ ≡ 0.

Here, we give a brief justification on the above regularization. Assume that

g ∈ L2(Ωp). Consider the operator equation

−m̃ = g (6.18)

in H1
0 (Ωp). Apparently this equation is ill-posed. To use the Tikhonov regu-

larization method [110], we constrain m̃ to be bounded in H1
0 (Ωp); then by the

Poincare’s inequality, we only need to bound ∇m̃ in L2-norm.

We have the following theorem.

Theorem 1 Consider equation (6.18) in

M̃ad = {m̃ : ‖∇m̃‖L2 ≤ B, m̃ ∈ H1
0 (Ωp)},

where B is a positive number. The following functional

J(m̃) = ‖ − m̃− g‖2
L2 + ν‖∇m̃‖2

L2 (6.19)

111

has a unique minimizer in M̃ad satisfying

−(I − ν∆)m̃ = g, (6.20)

where ν ≥ 0 is a so-called regularization parameter.

Proof: It is easy to verify that M̃ad is a closed, convex bounded set in H1
0 (Ωp).

Tikhonov regularization reduces solving equation (6.18) in M̃ad to minimizing the

functional J(m̃). Then the variational principle applied to J(m̃) yields the equa-

tion (6.20). Because J(m̃) is a quadratic functional, according to the standard

theory J(m̃) has a unique minimizer given by the condition (6.20). 2

Determining an optimal regularization parameter is one of the crucial points

in applications of regularization methods. One simple way is to fix this parame-

ter in all iterations. In most examples below, we determine this regularization

parameter by trial and error. However, as mk is getting closer to a minimizer, it

is not necessary to have large regularization. Therefore, one may try to decrease

the magnitude of ν as k increases. In this paper, we have also tried in Section

6.5.2 to vary νk by νk = (νmax− νmin)ν
k
0 + νmin with k is the number of iteration.

Remark:

1. We may define some functional spaces and inner products, introduce some

operator notations, derive the corresponding adjoint operators and gradient

operators accordingly; however, here we prefer the above formal derivation

which we think is much more transparent.

2. We have to justify the Frechet differentiability of the nonlinear functional,

which in general is not an easy task.

112

3. We may also carry out the sensitivity analysis of the underlying forward

nonlinear operator. The above issues will be addressed in a forthcoming

paper.

6.3 An Algorithm and Some Implementation Details

According to the above formulation, we have the following algorithm.

Algorithm:

1. Initialize m = mk for k = 0.

2. Obtain φ(x, θ, z) and T (x, θ, z) by solving (6.1), with the velocity m = mk

using the initial and boundary conditions (6.2).

3. Obtain λ1(x, θ, z) and λ2(x, θ, z) by solving (6.10) with the velocity m = mk

using the initial condition (6.11) and the boundary condition (6.12).

4. Compute g using (6.14).

5. Obtain m̃k(x, z) by solving (6.16).

6. Update mk+1 = mk + εkm̃k.

7. Go back to Step 2 until ||m̃k|| ≤ δ or k ≥ kmax, where δ is a small positive

number and kmax is a large positive integer.

In the above algorithm, one might improve the computational efficiency, for

example, by using the Armijo-Goldstein rule in picking εk or by replacing the

method of gradient descent by the BFGS method. However, to simplify the pre-

sentation we use the method of gradient descent to demonstrate the effectiveness

113

of the new formulation; thus we simply choose εk = ε to be a sufficiently small

constant.

The initial guess for m, denoted by m0, has to satisfy the conditions

1. m0|∂Ωp = m∗|∂Ωp ;

2. m0 smooth.

One way to meet these conditions is to solve

(I − ν∆)c0 = 0 , (6.21)

with the boundary condition c0|∂Ωp = c∗|∂Ωp , and set m0 = log c0. Or, m0 can

directly be obtained by solving (I − ν∆)m0 = 0 with the boundary condition

m0|∂Ωp = log c∗|∂Ωp . Yet another possibility is to initialize it by solving a trans-

mission tomography problem based on the first arrival-time only, for example, as

in [94, 95] or in the previous chapter. By using this approach, the initial guess

m0 should be closer to the exact minimizer of (6.3) than that from solving the

above elliptic equation.

In Step 2 and Step 3 in the above algorithm, we need to solve two advection

equations and two conservation laws. They are solved by the third order weighted

essentially non-oscillatory (WENO) scheme [55] in space and the second order

total variation diminishing (TVD) Runge-Kutta (RK) method in time [99]. In

Step 5, we solve the Helmholtz equation (6.16) by FFT.

6.4 Practical Details

In this section, we briefly explain how the above method can be used in real

applications. The first concern is the problem of association. When a receiver

114

measures the arrival-time, it usually does not have any further information on

the arrival-angle, θ. In using the above algorithm directly, the first difficulty

is that we need to match the measurements with our numerical solution in the

phase space and this requires the information in the θ-direction. This problem

can be easily solved. According to the arrival-time information, we can easily

approximate the arrival-angle using

tan θ∗ =
Tx√

c−2 − T 2
x

or tan θ∗ =
Tz√

c−2 − T 2
z

(6.22)

according to whether the receiver is on the level z = 0 or x = xmin,max. This

approach is similar to the ray parameter method developed as in [32].

Therefore, to associate different arrival rays in the phase space in practise,

we first numerically compute Tx, or Tz, along each branch of the arrival-time

measured at a receiver on z = zf , or x = xmin,max respectively. Assuming that

we know the velocity close to the surface, the arrival-angle can be approximated

using the above expression. After this arrival-angle is determined for each arrival-

rays received at a receiver, we associate the level set function and the arrival-time

function by φ(x, θ∗, zf) = xs and T (x, θ∗, zf) = T ∗, respectively, with xs is the

corresponding source location on the underground level z = 0.

Another difficulty concerns with the boundary conditions (6.2), and there-

fore (6.12). In practise, it might not be obvious how one can obtain all bound-

ary values of φ∗ and T ∗. For example, it might be expansive to have receivers

everywhere on the sides x = xmin and x = xmax. Even if we had enough re-

sources to do so, the above formulation also requires measurements on the sur-

faces {(z, x, θ) : 0 ≤ z ≤ zf , xmin ≤ x ≤ xmax and θ = θmin} and {(z, x, θ) : 0 ≤
z ≤ zf , xmin ≤ x ≤ xmax and θ = θmax}. These information might not be easily

accessible in general. We may need to modify the above algorithm in real applica-

115

tion to cope with the situation when only a limited number of both receivers and

sources are available. In particular, it is more natural to have several receivers

on z = zf and some sources on z = 0. This is what we are going to assume for

the rest of this section.

To solve this problem, we propose the following strategy. We first denote the

measurements on the ground level in the phase space by the set

Γ(zf) = {(x, θ) : both φ(x, θ, zf) and T (x, θ, zf) are known} . (6.23)

Next, we define Γ(z) as the collection of all characteristic curves in the phase

space obtained by tracing back all arrival rays from the set Γ(zf) according to

the Liouville equation. Because of the paraxial assumption, any characteristics

from Γ(z) have to satisfy −π/2 < −θmax < θ(z) < θmax < π/2 for all z ∈ [0, zf].

This means that any characteristics from Γ(z) should never touch the surfaces

{(z, x, θ) : 0 ≤ z ≤ zf , xmin ≤ x ≤ xmax and θ = ±π/2}.

Because the Liouville equation is a linear hyperbolic equation and therefore

any characteristics will never intersect, we can use an enlarged numerical domain

for our computations so that any imposed boundary conditions (6.2) and (6.12)

for φ, T, λ1 and λ2 will not interfere any values located in Γ(z) at all in any later

calculations. In the implementation, one could for example simply set numerically

(n · ∇φ)|∂Ω = 0 for the level set equation, if a boundary condition on ∂Ω is

necessary.

Next, we need to modify our energy. The reason is that we have finite mea-

surements only at Γ(zf) in the phase space. We can match all measurements with

our numerical solutions only at these locations. Now, because all characteristics

116

from Γ(z) will not touch ∂Ω, our original energy reduces to

Enew(m) =
1

2

∫

Ω

(φ− φ∗)2δ(Γ(z))

∣∣∣∣
z=zf

+
β

2

∫

Ω

(T − T ∗)2δ(Γ(z))

∣∣∣∣
z=zf

,(6.24)

where δ(.) is the Dirac’s delta function. Any of these terms

∫

z

∫

∂Ω

(u · n)(φ− φ∗)2 and

∫

z

∫

∂Ω

(u · n)(T − T ∗)2 (6.25)

will have no contributions to this new energy.

Even with these modifications, we do not need to change much of the above

formulations however. For the forward problem, we can still keep both paraxial

Liouville equations (6.1) and their corresponding initial conditions. Furthermore,

because we have enlarged our computational domain, the boundary conditions for

these equations will not affect the energy we are going to minimize. If necessary,

as mentioned above, we could simply numerically impose a Neumann boundary

condition.

The adjoint equations are still the same as in (6.10). Their corresponding

initial conditions (6.11), however, are modified to incorporate with the measure-

ments

λ1(z = zf) = (φ∗ − φ)δ(Γ(zf)) and λ2(z = zf) = (T ∗ − T)δ(Γ(zf)) . (6.26)

Their boundary conditions are treated in the same way as for the state equations.

Numerically, we could approximate this delta-function by the following smeared

version as in the standard level set method

δε(x) =
1

4ε
[1− sign(|x| − ε)]

[
1 + cos

(πx

ε

)]
, (6.27)

117

for some small ε > 0. Therefore, we are smearing the set of the experimental

measurements Γ(zf). The characteristics Γ(z) now becomes tubes with radius ε

in the phase space.

The gradient of this new energy, gnew(x, z), is also similar to the expression as

before. Following the same approach as in Section 6.4, we have

gnew(x, z) = [f1(x, z)]x − [f2(x, z)]z +
β

c
f3(x, z) , (6.28)

with the functions f1, f2 and f3 same as in (6.14).

Practical Algorithm:

1. Initialize m = mk for k = 0.

2. Obtain φ(x, θ, z) and T (x, θ, z) by solving (6.1), with the velocity m = mk

using the initial condition as in (6.2) and a Neumann boundary conditions.

3. Obtain λ1(x, θ, z) and λ2(x, θ, z) by solving (6.10) with the velocity m = mk

using the initial condition (6.26) and a Neumann boundary conditions.

4. Compute gnew(x, z) using (6.28).

5. Obtain m̃k(x, z) by solving (6.16).

6. Update mk+1 = mk + εkm̃k.

7. Go back to Step 2 until ||m̃k|| ≤ δ or k ≥ kmax, where δ is a small positive

number and kmax is a large positive integer.

There are a few ways one can further speed up this algorithm. For ex-

ample, it is possible to apply a Semi-Lagrangian method as in Chapter 4 to

118

solve all the state equations and the adjoint equations. As a simple case, to

determine φ(x∗, θ∗), one could solve the following the system of equations for

(x(z = 0), θ(z = 0))

d

dz

 x(z)

θ(z)

 =

 u(x, θ)

v(x, θ)

 (6.29)

with terminal conditions x(z = zf) = x∗ and θ(z = zf) = θ∗. Then, φ(x∗, θ∗) =

x(z = 0). This numerical method is similar to the classical ray tracing method,

except that we are now tracing the ray backward instead. With this Semi-

Lagrangian method, it is also possible to speed up the computations by solving

φ, T, λ1 and λ2 only within the computational tube Γ(z). This is because the

initial conditions for λ’s are non-zero only in a neighborhood of the set Γ(zf).

According to (6.10), this initial condition implies that both λ1 and λ2 will both

be zero in Ω̃ \ Γ(z). This concludes with (6.28) that we can skip computing φ

and T outside the tube of characteristics Γ(z). In the current paper, however, we

have not implemented this idea. Instead, we follow the same Eulerian approach

as before by solving all these equations using WENO3-RK2.

6.5 Examples

In the following examples, both the parameters β and ν are set to be equal to

1. This means that the regularization for the velocity comes from the operator

(I − ν∆). The physical domain Ωp is defined by (xmin, xmax) = (−1, 1) and

(z0, zf) = (0, 2). For the constant model, we use (θmin, θmax) = (−9π/20, 9π/20).

For the waveguide and Gaussian example, we use (θmin, θmax) = (−π/3, π/3). The

initial guess of the model m0 is determined by solving equation (6.21) with FFT.

The inflow boundary conditions for φ and T , represented by φ∗ and T ∗, are

119

obtained by solving equations (6.1) using a semi-Lagrangian method, as in [69];

here the characteristic system is solved using the MATLAB function ode45.

The outflow boundary conditions φ∗ and T ∗ are obtained by solving the

system (6.1) using the exact velocity c with the third order WENO scheme in

space and the second order TVD-RK stepping in time.

To demonstrate the practical algorithm, we also repeat these examples but

with limited information recorded on the boundary. We consider the situation

where only 1 source is located at (x, z) = (0, 0) and 5 receivers are located at

z = 2 and xs = 0.2, 0.1, 0.0, 0.1 and 0.2. The set Γ(zf) is obtained by solving (6.1)

using a semi-Lagrangian method on all grid points on the level z = zf . Then,

Γ(zf) =

{
(x, θ) :

∑
xs,xr

δε(φ(x, θ)− xs)δε(x− xr) 6= 0

}
,

where δε(·) is defined by (6.27).

6.5.1 Constant Model

The exact velocity model is given by c ≡ 1. In this case, the boundary measure-

ments of m∗ are simply given by

m∗|∂Ωp = 0 . (6.30)

The number of grid points used in this test case is 129 × 129× 129 in the x-θ-z

space.

The first row of Figure 6.1 shows the initial guess c0 and the approximated

solution c500; the second row shows the error in c500 and the change in the energy

during the iteration.

120

−1

−0.5

0

0.5

1

0

0.5

1

1.5

2
0.75

0.8

0.85

0.9

0.95

1

xz

c

−1

−0.5

0

0.5

1

0

0.5

1

1.5

2
0.75

0.8

0.85

0.9

0.95

1

xz

c

−1

−0.5

0

0.5

1

0

0.5

1

1.5

2
0

1

2

3

4

5

6

7

x 10
−3

xz

|c
∞

−
c ex

ac
t|

0 50 100 150 200 250 300 350 400 450 500
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Iteration, k

E
(m

k)

Figure 6.1: (Constant Model) The initial guess and final approximated c, the
error in the solution and the convergence history of energy in semi-log scale.

121

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

x

c(
x,

z=
1)

c
exact

c0

c∞

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

z

c(
x=

0,
z)

c
exact

c0

c∞

Figure 6.2: (Constant Model) Cross-sections of the velocity cexact, c0 and c∞

along x = 0 and z = 1.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

x

θ

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

x

θ

Figure 6.3: (Constant Model) The contour plot of φ(z = 2, x, θ) using c0 and the
exact c, respectively.

122

Figure 6.2 shows the cross-sections of the initial guess, the convergent velocity

and the exact velocity; the results validate the effectiveness and the convergence

of the algorithm.

Figure 6.3 shows the contour plots of the level set function φ(z = 2, x, θ) using

c = c0 and c = 1. The dashed line represents the zero level set. An essential part

of the transmission tomography problem is to drive the level sets with c = c0 to

match with the level sets with the exact velocity model c.

To compare with the results from the first-arrival based traveltime tomogra-

phy discussed in the previous chapter, we start from the same initial guess as

illustrated in Figure 6.1 and carry out the first-arrival based tomography using

the same physical discretization with the mesh size of 129× 129 in the x-z space.

Figure 6.4 shows the final converged velocity c after 10000 iterations and the

convergence history, where the fast sweeping method is used to carry out the

forward simulation [122, 60]; Figure 6.5 shows the cross sections of the converged

velocity along z = 1 and x = 0; the above computation is carried out with a

single source only, namely, the traveltime information being generated from a

single point source.

As we can see, the Liouville formulation proposed here does give us some

advantages over the traditional first-arrival based traveltime tomography since

it takes into account all the sources in a natural way even though there are no

multi-arrivals for the constant velocity model.

6.5.2 Waveguide Model

The exact velocity model is given by

c(x, z) = 3.0− 2.5 exp

(
−x2

2

)
. (6.31)

123

−1

−0.5

0

0.5

1

0

0.5

1

1.5

2
0.75

0.8

0.85

0.9

0.95

1

xz

c(
x,

z)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Iterations, k

E
(c

k)

Figure 6.4: (Constant Model) First-arrival based traveltime tomography with a
single source and multiple receivers: the final approximated c and the convergence
history of energy in semi-log scale.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

x

c(
x,

z=
1)

c
exact

c0

c∞

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

z

c(
x=

0,
z)

c
exact

c0

c∞

Figure 6.5: (Constant Model) First-arrival based traveltime tomography with a
single source and multiple receivers: Cross-sections of the velocity cexact, c0 and
c∞ along x = 0 and z = 1.

124

−1

−0.5

0

0.5

1

0

0.5

1

1.5

2
0.75

0.8

0.85

0.9

0.95

1

xz

c∞

−1

−0.5

0

0.5

1

0

0.5

1

1.5

2
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

xz

|c
∞

−
c ex

ac
t|/|

c ex
ac

t|

Figure 6.6: (Constant Model) Practical Algorithm. Inverted velocity and the
corresponding relative error in the solution.

The number of grid points used is 129× 129× 129 in the x-θ-z space.

The first row of Figure 6.7 shows the initial guess c0 and the approximated

solution c100; the second row of the figure shows the error in c100 and the change

in the energy during the iteration.

Figure 6.9 shows the contour plots of the level set function φ(z = 2, x, θ)

using c = c0 and the exact velocity model. The dashed line represents the zero

level set. Multivalued arrival angles in θ are clearly seen, and this implies that

the corresponding traveltimes are also multivalued. For example, for the exact

velocity field c, if we look at rays from source (xs, zs) = (0, 0), then we have 3

arrivals at most locations on the level z = 2. Even though multivalued solutions

are obtained from the initial guess, the shape of the level sets are quite different

from that produced by the exact velocity model.

There are some artifacts related to the aperture limitation introduced by the

paraxial formulation as we can see from Figure 6.7; these could be filtered out by

some filters applied to the data near the surface.

As discussed in Section 6.3, we have regularized the minimization by search-

125

−1

−0.5

0

0.5

1

0

0.5

1

1.5

2
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

xz

c(
x,

z)

−1

−0.5

0

0.5

1

0

0.5

1

1.5

2
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

xz

c(
x,

z)

−1

−0.5

0

0.5

1

0

0.5

1

1.5

2
0

0.02

0.04

0.06

0.08

0.1

xz

|c
∞

−
c ex

ac
t|/|

c ex
ac

t|

0 10 20 30 40 50 60 70 80 90 100
10

−4

10
−3

10
−2

10
−1

10
0

10
1

Iteration, k

E
(m

k)

Figure 6.7: (Waveguide Model) The initial guess and final approximated c, the
relative error in the solution and the convergence history of energy in semi-log
scale.

126

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0.4

0.6

0.8

1

1.2

1.4

1.6

x

c(
x,

z=
1)

c
exact

c0

c∞

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

z

c(
x=

0,
z)

c
exact

c0

c∞

Figure 6.8: (Waveguide Model) Cross-sections of the velocity cexact, c0 and c∞

along x = 0 and z = 1.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

θ

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

θ

Figure 6.9: (Waveguide Model) The contour plot of φ(z = 2, x, θ) using c0 and
the exact c, respectively.

127

(a)
0 5 10 15 20 25 30 35 40 45 50

10
−2

10
−1

10
0

10
1

Iteration, k

E
(m

k)

ν=0.1
ν=0.5
ν=1.0
ν=5.0

(b)
0 5 10 15 20 25 30 35 40 45 50

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Iteration, k

E
(m

k)

ν=0.1
ν=0.5
ν=1.0
ν=5.0

(c)
0 10 20 30 40 50 60 70 80 90 100

10
−1

10
0

10
1

Iteration, k

E
(m

k)

ν=0.1
ν=0.5
ν=1.0
ν=5.0
ν varying

(d)
0 20 40 60 80 100 120 140 160 180 200

10
−2

10
−1

10
0

10
1

Iteration, k

E
(m

k)

(e)
−1

−0.5

0

0.5

1

0

0.5

1

1.5

2
0.5

1

1.5

xz

c∞

(f)
−1

−0.5

0

0.5

1

0

0.5

1

1.5

2
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

xz

|c
∞

−
c ex

ac
t|/|

c ex
ac

t|

Figure 6.10: (Waveguide Model) Energy histories with different regularization ν
using the method of gradient descent with (a) ε = 0.01 and (b) ε = 0.10, and (c)
varying ν using the strategy proposed in Section 6.2 and (d) the relative error in
the solution using this strategy.

128

ing the gradient m̃ in a Sobolev space H1
0 (Ωp) through equation (6.16). In all

examples above, we have fixed ν = 1.0 in our computations. We have also studied

the effect of the solution by changing this variable ν. Figure 6.10 (a) and (b)

show the convergent histories of different ν’s using two different but fixed ε’s,

respectively. On (a), we have plotted the energies for the case with a relatively

smaller ε. We first notice that the smaller the regularization ν, the faster the

energy converges to it’s minimum. This can be seen clearly from the first few

iterations. Among those four ν’s, ν = 0.1 gives the fastest decreasing rate in

the energy. However, as seen from those later iterations in the case ν = 0.1 in

the plot (a) and the cases ν = 0.1, 0.5 and 1.0 from (b), we also notice that the

smaller the regularization, the smaller the step size ε is required in the iteration.

If we pick a relatively large ε, the energy will not converge to its minimum, but

will over-shoot around it. Therefore, to have a stable convergence, we conclude

numerically that a smaller regularization parameter will require more iterations

to reach its steady state.

Apart from the rate of convergence, we also note that the minimizer itself

depends on the magnitude of the amount of regularization we imposed. To speed

up the computations and remove the stability dependence from ε as discussed

above, we have applied the Armijo-Goldstein rule in deciding a εk > εmin. Corre-

sponding changes in the energies are plotted in Figure 6.10 (c). Considering these

energies with fixed ν, we find that the larger the magnitude of the regularization

we imposed, the lower the energy can achieve. However, as we increase the value

of ν, it takes more iterations to reach the minimizer.

As discussed earlier near the end of Section 6.2, when the solution mk is close

to a minimizer, it is possible to reduce the amount of the regularization in m̃.

We have implemented this idea by decreasing νk exponentially using νmin = 0.1,

129

−1

−0.5

0

0.5

1

0

0.5

1

1.5

2
0.5

1

1.5

xz

c∞

−1

−0.5

0

0.5

1

0

0.5

1

1.5

2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

xz

|c
∞

−
c ex

ac
t|/|

c ex
ac

t|

Figure 6.11: (Waveguide Model) Practical Algorithm. Inverted velocity and the
corresponding relative error in the solution.

νmax = 1 and ν0 = 0.975. The change in the energy is shown in Figure 6.10 (c) and

(d). As we can see from these two subplots, we can further lower the energy of the

minimizer using a gradually reducing ν. We also plot the corresponding minimizer

and the relative error in this solution in Figure 6.10 (e) and (f), respectively.

As discuss before, it may be difficult to obtain perfect measurements as re-

quired in Section 6.4. In practise, we may only have finite receivers on the ground

level. Figure 6.11 shows the case where we have only one source at (x, z) = (0, 0)

and 5 receivers at x = −0.2 : 0.1 : 0.2 and z = 2.

6.5.3 Gaussian Model

The exact velocity model is given by

c(x, z) = 3− 1

2
exp

(
−x2 + (z − 0.5)2

0.52

)
− exp

(
−x2 + (z − 1.25)2

0.52

)
. (6.32)

The number of grid points used is 257× 129× 257 in the x-θ-z space.

The first row of Figure 6.12 shows the initial guess c0 and the convergent

130

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Iteration, k

E
(m

k)

Figure 6.12: (Gaussian Model) The initial guess and final approximated c, the
relative error in the solution and the convergence history of energy in semi-log
scale.

131

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

x

c(
x,

z=
1)

c
exact

c0

c∞

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
1.8

2

2.2

2.4

2.6

2.8

3

z

c(
x=

0,
z)

c
exact

c0

c∞

Figure 6.13: (Gaussian Model) Cross-sections of the velocity cexact, c0 and c∞

along x = 0 and z = 1.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

x

θ

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 6.14: (Gaussian Model) The contour plot of φ(z = 2, x, θ) using c0 and
the exact c, respectively.

132

solution c300; the second row of the figure shows the error in c300 and the change

in the energy during the iteration. Figure 6.13 shows the cross-section of the

initial guess, the convergent velocity and the exact velocity; the results validate

the effectiveness and the convergence of the algorithm. Figure 6.14 shows the

contour plots of the level set function φ(z = 2, x, θ) using c = c0 and the exact

velocity model. The dashed line represents the zero level set.

To compare with the results from the first-arrival based traveltime tomogra-

phy as discussed in Chapter 5, we start from the same initial guess as illustrated

in Figure 6.1 and carry out the tomography using the same physical discretization

with the mesh size of 257×257 in the x-z space. Figure 6.15 shows the final con-

verged velocity c after 10000 iterations and the convergence history, where again

the fast sweeping method is used to carry out the forward simulation; Figure 6.16

shows the cross sections of the converged velocity along z = 1 and x = 0; the

above computation is carried out with a single source only, namely, the traveltime

information being generated from a single point source. As we can see, the Li-

ouville formulation proposed here yields much better results than the traditional

first-arrival based traveltime tomography does since it takes into account all the

sources and multiple arrivals in a systematic way.

To test the robustness of the new formulation, we have added the Gaussian

noise up to 5% to the measured data and carried out the tomography process.

The results are shown in Figures 6.17, 6.18 and 6.19; comparing with the results

without noise, the new formulation is robust and accurate.

133

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10

−5

10
−4

10
−3

10
−2

Iterations, k

E
(c

k)

Figure 6.15: (Gaussian Model) First-arrival based traveltime tomography with a
single source and multiple receivers: the final approximated c and the convergence
history of energy in semi-log scale.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

x

c(
x,

z=
1)

c
exact

c0

c∞

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
1.8

2

2.2

2.4

2.6

2.8

3

z

c(
x=

0,
z)

c
exact

c0

c∞

Figure 6.16: (Gaussian Model) First-arrival based traveltime tomography with a
single source and multiple receivers: cross-sections of the velocity cexact, c0 and
c∞ along x = 0 and z = 1.

134

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Iteration, k

E
(m

k)

Additive Noise on φ and T
Clean Measurements

Figure 6.17: (Gaussian Model with Additive Gaussian Noise) The final approxi-
mated c and the convergence history of energy in semi-log scale.

Figure 6.18: (Gaussian Model with Additive Gaussian Noise) Errors and relative
errors in c∞.

135

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

x

c(
x,

z=
1)

c
exact

c0

c∞

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
1.8

2

2.2

2.4

2.6

2.8

3

z

c(
x=

0,
z)

c
exact

c0

c∞

Figure 6.19: (Gaussian Model with Additive Gaussian Noise) Cross-sections of
the velocity cexact, c0 and c∞ along x = 0 and z = 1.

Figure 6.20: (Gaussian Model) Practical Algorithm. Inverted velocity and the
corresponding relative error in the solution.

136

CHAPTER 7

Global Minimization of the Active Contour

Model with TV-Inpainting and Two-Phase

Denoising

7.1 Introduction

Image segmentation, image restoration and image inpainting are a few basic yet

important areas in image processing and computer vision. Traditionally, these

closely related fields were developed independently. However, the use of the level

set method and variational methods in recent years started to bring all these

fields together. One example is the TV-inpainting model [22]. We can perform

inpainting in a desired domain while applying the ROF model [92] to remove

noise from the rest of the domain using only one energy functional. Another

example is the Mumford-Shah model [77] which was originally designed for image

segmentation but can also be used as an image denoising tool. Extension of the

Mumford-Shah model to image inpainting was also carried out in [39].

There are two interesting recent developments about the connection between

different fields in image processing. We will discuss later in this paper how they

link different fields in an interesting way. The first development concerns the

impulse-noise removal method and the variational method for image regulariza-

tion. In two recent papers by Chan, Nikolova et al. [18, 19], a two-phase method

137

was proposed to remove impulse-type noise. For a true image u∗(x) and an ob-

served image f(x) defined in a domain Ω, impulse-type noise is defined by

f(x) =

r(x) with probability r0

u∗(x) with probability (1− r0).
(7.1)

As an example, for the so-called salt-and-pepper noise, r(x) is simply the maxi-

mum or the minimum of the image intensity (0 and 255 for grey-scaled images).

The main idea in those papers is to separate the denoising process into a noise

detection phase and a noise removal phase. In the first stage, a median-type filter

is applied to the observed image to detect the possible locations of the impulse

noise. Then in the second phase, instead of replacing the intensity at all loca-

tions by the median intensity around a certain neighborhood, a L1-regularization

method is applied only to those locations reported in the first phase while keep-

ing the other pixels unchanged. The resulting method was shown to be able to

remove the salt-and-pepper noise efficiently even at a very high noise level (for

example r0 = 0.75). The main reason for its success is that this method retains

those pixels that are unlikely to be polluted and maintains sharp edges in the

whole image.

Another interesting development is a new model that uses variational method

for image segmentation [20, 13]. The idea of the model is to minimize an energy

functional consisting of a weighted TV-norm with a L1-fidelity term. For the

segmentation of a binary image, the papers showed an equivalence between the

new energy functional and that of the active contour model. This relation can be

used to overcome the problem of the active contour model in which the energy

function is not convex. Very often the snake will be trapped in a local minimizer

thus giving unsatisfactory segmentation results. The link between these two

138

energies, as demonstrated in the above papers, provides a convenient way to

determine the global minimizer of the active contour energy.

In this chapter, we will combine the two recent advances in image processing

mentioned above. This provides an efficient and unified way to perform image

denoising (for both impulse-type and Gaussian-type noises), image segmentation,

and image inpainting at the same time.

7.2 Two Recent Developments

7.2.1 A Two-Phase Method to Remove Impulse-Type Noise

Unlike the usual way to denoise impulse noise by applying the median-type filter

to the image and replacing the image intensity everywhere, the idea in [18, 19]

is to separate the denoising processing into a noise-detection phase and a noise-

removal phase. Mathematically, the first phase can be formulated as determining

a noise candidate set

N = {x ∈ Ω : f(x) 6= fMF(x)} (7.2)

in which Ω is the image domain, f(x) is the observed image intensity at the pixel

x, and fMF(x) is the intensity at x after applying a median-type filter, such as

the classical median filter or the adaptive median filter. In the second phase, the

following functional is minimized

F |N (u) =

∫

N

{
|u(x)− f(x)|+ β

2
[S1(u) + S2(u)]

}
(7.3)

139

where

S1(u) =

∫

V(x)∩(Ω\N)

2 φ[u(x)− f(y)]dy

S2(u) =

∫

V(x)∩N
φ[u(x)− u(y)]dy , (7.4)

V(x) is the neighborhood centered at x and φ is an edge-preserving potential

function. As seen in [18, 19], one possible choice for φ is

φ(t) =
√

t2 + ε2 (7.5)

with a small constant ε. The first term in the curve-bracket is a L1-fidelity term.

The terms in the square-bracket can be interpreted as an approximation of the

total variation (TV) of u.

In the simple case when the noise can be separated accurately in the first

step, the fidelity term is not important. A simplification of this whole algorithm

is therefore the same as an image inpainting algorithm. For example, if ROF [92]

or L2-fidelity is used instead, we arrive at the TV-inpainting [22]. That is, given

an observed image f , one minimizes the following energy

E1(u) =

∫

Ω

|∇u|+ 1

2

∫

Ω

λ(x)|u− f |2 (7.6)

where

λ(x) =

0 if f(x) = fMF(x)

λ∞ ' ∞ otherwise.
(7.7)

The idea of using a piecewise constant λ(x) in TV-inpainting is not new [22].

However, it is interesting to see here the relationship between the impulse-type

noise removal and image inpainting by using a piecewise constant λ(x) determined

140

Figure 7.1: Segmentation results using the active contour model. We show dif-
ferent initial configurations of the snake on the first row. The corresponding
segmented results using these initial conditions are shown on the second row.

by a median-type filter.

7.2.2 Global Minimizer of the Active Contour Model

In the classical active contour model, the initial guess of the segmented image

plays a very important role. We show in Figure 7.1 some minimizers of the active

contour model. As we can see, different initial conditions in the evolution will give

different segmented region. More importantly, none of these results corresponds

to the true segmented results, i.e. curves which separate all regions with different

intensities in the whole image. One reason for these unsatisfactory results is that

the minimization problem of the active contour is not convex, and therefore it is

very likely that the energy minimization could be trapped into a local minimizer,

as shown in the left most case.

141

Recently, a few algorithms were proposed [20, 13] to determine the global

minimizers of some image segmentation models. In particular, an algorithm to

determine the global minimizer of the active contour model based on the ROF

model was given in [13]. The idea is to modify the ROF energy

EROF(u, λ) =

∫

Ω

|∇u|+ λ

2

∫

Ω

|u− f |2 (7.8)

by first replacing the TV-norm by a weighted TV-norm and then, more impor-

tantly, changing the measure in the fidelity term from L2-norm to L1-norm. This

gives

E2(u, λ) =

∫

Ω

g̃(f)|∇u|+ λ

∫

Ω

|u− f | (7.9)

in which

g̃(f) =
1

1 + β|∇f |2 . (7.10)

As pointed out in [13], if u is the characteristic function of a set ΩC with

boundary given by the curve C (i.e. u = 1ΩC
), the minimizer of the above energy

E2 is the same as the minimizer of the active contour energy

EAC(C) =

∫

C

g̃(f)ds (7.11)

with f approximated (in the sense of L1) by a binary function of a region ΩC .

Numerically, the minimization problem (7.9) is convex. This means that the

method of gradient descent will converge to a unique minimizer, i.e. the global

minimum of the energy function, independent of the initial condition. The signifi-

cance of this equivalence is that by minimizing (7.9), one can determine the global

minimizer of the active contour model (7.11) without the danger of trapping into

any local minimum and the uncertainty in picking an initial configuration of the

142

Figure 7.2: Problem setting. Definition of the set Ω′ (domain for inpainting), Ω̃′

(compliment of Ω′) and ΩC (domain bounded by the curve C).

snake.

7.3 The New Energy

7.3.1 The Energy

Here, we propose a new model to combine the two recent developments in image

processing. Given an observed image f , we minimize the energy

E(u) =

∫

Ω

g(f)|∇u|+
∫

Ω

λ(x)|u− f | . (7.12)

This energy is similar to (7.9), except that λ(x) is now changed to a function in

space and the weight in the weighted TV-norm is also modified. The function

λ(x) has the following properties.

λ(x) =

0 TV-inpainting

λ0 Denoising

λ∞ ' ∞ Unchanged.

(7.13)

143

In the subdomain for image inpainting, f(x) (and therefore g̃(f)) might not be

known. We therefore set g(f) = 1, or β = 0. For the rest of the domain, we keep

g(f) = g̃(f). In other words, we have

g(f) =

1 if λ(x) = 0

g̃(f) ≡ (1 + β|∇f |2)−1 otherwise.
(7.14)

Mathematically, minimizing the above energy (7.12) is the same as

min
u

∫

Ω

g(f)|∇u| (7.15)

such that ∫

Ω

ω(x)|u− f | = constant (7.16)

for some weighted function ω(x). Therefore, the way to determine λ(x) is equiv-

alent to the way to spread the error in approximating the observed image f .

Here we give some suggestions in picking such λ(x) and also provide a variation

in using the above minimization algorithm.

For the salt-and-pepper noise, the following λ(x) works efficiently. We define

d(x) to be the difference in the intensities between the original image f(x) and

the modified image after applying the median-type filter fMF(x), i.e.

d(x) = |f(x)− fMF(x)| . (7.17)

Then one can set

λ1(x) =

λ∞ if d(x) = 0 and x 6∈ Ω′

0 otherwise
(7.18)

144

where Ω′ ⊂ Ω is a given subdomain for doing image inpainting and is character-

ized by an user predefined mask function. This means that if x is in the inpainting

domain Ω′ or if the noise-detector detects that the image at x is polluted (there-

fore f(x) will be different from the intensity after applying the median-type filter

fMF(x)), then the intensity at x will be modified by a TV-type regularization.

Otherwise, the intensity at that location will remain unchanged.

If the impulse noise is random-valued instead, one can use a similar λ(x)

λ2(x) =

λ0 if d(x) = 0 and x 6∈ Ω′

0 otherwise
(7.19)

with λ0 << λ∞.

For the Gaussian-type noise, one can simply use

λ3(x) =

λ0 if x 6∈ Ω′

0 otherwise.
(7.20)

In the case when the type of noise is not known a priori, one can try to

minimize (7.12) iteratively. More specifically, given the observed image u0 = f ,

for m = 1, · · · ,mmax, one minimizes

E(um) =

∫

Ω

g(um−1)|∇um|+
∫

Ω

λ4(x)|um − um−1| (7.21)

iteratively with

λ4(x) =

λ0 if d(x) ≤ d∗ and x 6∈ Ω′

0 otherwise
(7.22)

where d∗ is a threshold in the intensity difference function d(x) ≡ |um−1 −
(um−1)MF|.

145

7.3.2 The Link Between Active Contour for Segmentation, Denoising

and TV-Inpainting

The relations between the minimization of the energy functional (7.12), the active

contour model and the TV-inpainting model are explained here.

Assuming Ω′ = {x ∈ Ω : λ(x) = 0} is the subdomain for inpainting (notice

that N ⊂ Ω′) and Ω̃′ = Ω \ Ω′, we have

E(u) =

∫

Ω̃′
g(f)|∇u|+

∫

Ω̃′
λ0|u− f |+

∫

Ω′
|∇u|

= E1(u) + E2(u) (7.23)

where

E1(v) =

∫

Ω̃′
g(f)|∇v|+

∫

Ω̃′
λ0|v − f |

E2(w) =

∫

Ω′
|∇w| (7.24)

with v : Ω̃′ → [umin, umax] and w : Ω′ → [umin, umax]. So minimizing E(u) is the

same as

min
v

E1(v) + min
w

E2(w) , (7.25)

and the minimizer of E(u) is given by u = 1Ω̃′(x) · v + 1Ω′(x) · w in which 1Ω̃′ is

the characteristic function of the set Ω̃′.

First we consider the energy E1(v). If ΩC is a set in Ω̃′ whose boundary is

denoted by C and if the minimizer of E1(v) is given by v = 1ΩC
, then we have

E1(v) =

∫

Ω̃′
g(f)|∇1ΩC

|+
∫

Ω̃′
λ0|1ΩC

− f |

=

∫

C

g(f)ds +

∫

Ω̃′
λ0|1ΩC

− f | . (7.26)

146

Therefore, minimizing E1(v) in the subdomain Ω̃′ in the case of a binary

observed image is equivalent to minimizing the active contour energy in Ω̃′, given

by

min
C

∫

C

g(f)ds (7.27)

while

approximating f (in the L1 sense) in Ω̃′

by a binary function of the set/region ΩC .

For the energy E2(w) defined in the complement, Ω′, we have

E2(w) =

∫

Ω′
|∇w| (7.28)

together with the boundary condition w|∂Ω′ = v|∂Ω′ where v is the minimizer of

E1(v). In the case when v is binary on ∂Ω′, we have w = 1ΩC′ again. This gives

E2(w) =

∫

Ω′
|∇1ΩC′ | =

∫

C′
ds . (7.29)

This implies that when the boundary ∂Ω′ is binary valued, minimizing E2(w) in

Ω′ is equivalent to

min
C′

∫

C′
ds (7.30)

while the end points of C ′ are fixed on ∂Ω′. Further analysis on the behavior of

TV-inpainting can be found in [21].

147

7.4 Numerical Method

To minimize the above energy, one can use the method of gradient descent. The

Euler-Lagrange equation of the energy functional (7.12) is given by

∂u

∂t
= ∇ ·

(
g(x)

|∇u|∇u

)
− λ(x)

u− f

|u− f | . (7.31)

Here we give the details of the algorithm in updating un+1 by solving (7.31)

using the Alternative Direction Explicit (ADE) technique. This numerical scheme

is second order accurate in time for linear equations and fully explicit but yet

unconditionally stable for any time-step ∆t. Given the observed image f and an

intermediate approximation un, we use the following procedures.

Algorithm:

1. Define vn = un and wn = un.

2. Compute

hx±
i,j = {1 + β[(D±

x fi,j)
2 + (D0

yfi,j)
2]}−1[(D±

x un
i,j)

2 + (D0
yu

n
i,j)

2 + δ2]−1/2

hy±
i,j = {1 + β[(D0

xfi,j)
2 + (D±

y fi,j)
2]}−1[(D0

xu
n
i,j)

2 + (D±
y un

i,j)
2 + δ2]−1/2

αi,j =
∆t

2

(
hx+

i,j + hx−
i,j + hy+

i,j + hy−
i,j

)
+

λi,j∆t

2
√

(un
i,j − fi,j)2 + ε2

.

where D±
x , D0

x, D±
y and D0

y are the standard forward, backward and central

difference operators in the x- and y-directions respectively.

3. For i = 1, 2, · · · , nx and j = 1, 2, · · · , ny, compute

vn+1
i,j =

1

(1 + αi,j)
[(1− αi,j)v

n
i,j + ∆t(hx+

i,j vn
i+1,j

148

+hx−
i,j vn+1

i−1,j + hy+
i,j vn

i,j+1 + hy−
i,j vn+1

i,j−1)

+
∆tλi,jfi,j√

(vn
i,j − f)2 + ε2

] (7.32)

4. For i = nx, nx − 1, · · · , 1 and j = ny, ny − 1, · · · , 1, compute

wn+1
i,j =

1

(1 + αi,j)
[(1− αi,j)w

n
i,j + ∆t(hx+

i,j wn+1
i+1,j

+hx−
i,j wn

i−1,j + hy+
i,j wn+1

i,j+1 + hy−
i,j wn

i,j−1)

+
∆tλi,jfi,j√

(wn
i,j − f)2 + ε2

] (7.33)

5. Compute

un+1
i,j =

1

2

(
vn+1

i,j + wn+1
i,j

)
. (7.34)

7.5 Examples

In the following examples, we use u0(x, y) = 0 as the initial condition for the

Euler-Lagrange equation. Unlike the classical active contour/snake model, dif-

ferent initial guesses used here will give the same global minimizer of the seg-

mentation model in the case of binary images.

As discussed before, the ADE scheme has no stability condition imposed on

∆t, and therefore we used ∆t = 100 in all of the examples below.

7.5.1 Example 1

The true image used in this example has 256×256 pixels and is shown on the left

in Figure 7.3. The user predefined mask is shown on the right. The dark region

is the domain Ω′ where we want to perform TV-inpainting. Figure 7.4 shows the

149

Figure 7.3: The original true image and the user defined mask.

noisy versions of the true image.

Figure 7.5 shows the denoised together with the segmented results of the

image with 75% salt-and-pepper noise. The graphs show the intensity contour

of the minimizer u. The salt-and-pepper noise is completely removed from the

image. The red curves on the graph are the boundaries of the segmented regions.

Unlike the minimization of the active contour model, we can now easily reach

Figure 7.4: The original image with 75% salt-and-pepper noise, 50% random-val-
ued impulse noise and additive Gaussian noise (σ = 20) respectively.

150

intensity=110 intensity=120

intensity=130 intensity=140

Figure 7.5: (Salt-and-Pepper) The minimizer for the energy (7.12) without an
extra mask.

the global minimum of the energy for this binary image regardless of the initial

condition of the Euler-Lagrange equation. In the case of denoising together with

image inpainting, the segmented results are shown in Figure 7.6. Again, the salt-

and-pepper noise is removed completely from the image and we are able to fill

in the missing part of the image using only one energy function. Figure 7.7 and

7.8 show the denoised, inpainted and segmented results when the random-valued

impulse noise is added to the original true image. Figure 7.9 and 7.10 show the

case when the additive Gaussian noise is added to the true image.

7.5.2 Example 2

The true image of Elaine used in this example has 512× 512 pixels and is shown

on the left of Figure 7.11. On the right, we give the predefined mask. 75% salt-

and-pepper noise and 50% random-valued impulse noise are added to the original

image and these observed images are shown on the left and middle of Figure 7.12,

151

intensity=110 intensity=120

intensity=130 intensity=140

Figure 7.6: (Salt-and-Pepper) The minimizer for the energy (7.12) with an extra
mask.

intensity=110 intensity=120

intensity=130 intensity=140

Figure 7.7: (Random-valued Impulse) The minimizer for the energy (7.12) with-
out an extra mask.

152

intensity=110 intensity=120

intensity=130 intensity=140

Figure 7.8: (Random-valued Impulse) The minimizer for the energy (7.12) with
an extra mask.

intensity=110 intensity=120

intensity=130 intensity=140

Figure 7.9: (Additive Gaussian) The minimizer for the energy (7.12) without an
extra mask.

153

intensity=110 intensity=120

intensity=130 intensity=140

Figure 7.10: (Additive Gaussian) The minimizer for the energy (7.12) with an
extra mask.

Figure 7.11: The original true image and the user defined mask.

154

Figure 7.12: The original image with 75% salt-and-pepper noise, 50% random–
valued impulse noise and additive Gaussian noise (σ = 20) respectively.

Figure 7.13: (Salt-and-Pepper) The minimizer for the energy (7.12) without (left)
and with (right) an extra mask.

155

Figure 7.14: (Random-valued impulse) The minimizer for the energy (7.12) with-
out (left) and with (right) an extra mask.

Figure 7.15: (Additive Gaussian) The minimizer for the energy (7.12) without
(left) and with (right) an extra mask.

156

Figure 7.16: Some noisy brain MRI images and their corresponding denoised
MRI images.

respectively. On the right hand side, we show the image with additive Gaussian

noise with standard deviation σ = 20. The minimizers of the energy functional

(7.12) for these noisy images are shown in Figure 7.13 to 7.15. Figure 7.13 shows

the results for the salt-and-pepper noise without (left) and with (right) an user

defined mask function. Results for the random-valued impulse noise and the

additive Gaussian noise are given in Figure 7.14 and 7.15.

7.5.3 Example 3

Figures 7.16 show the denoising results of a 3D brain MRI image. The number of

voxels are 128× 256× 256. The computational time is approximately 354 mins.

157

CHAPTER 8

An Adaptive Level Set Method for Stefan

Problems

8.1 Introduction

Crystal growth is a classical problem for phase transition. To experimentally

visualize this transition process, we can drop a small solid seed into a bath of

undercooled liquid. This seed will then expand and grow into a finger-like shape,

or the so-called dendritic shape. Usually, this final shape depends strongly on the

bath environment. For example, a slightly change in the liquid temperature will

completely change the way how the crystal evolves. Understanding this transition

process is important. For instant, in making a metal alloy, how the crystal evolves

could affect the conductivity or the strength of the final alloy. A small change

in the growth condition could result in a poor quality of alloy. It is, therefore,

necessary to have a complete study in relating the growth process to the bath

environment.

Numerical modeling provides an efficient way to study the crystal growth.

Rather than doing a whole series of real experiment, we can understand how a

particular parameter changes the growth process by varying the corresponding

value in a computer program. Moreover, we can precisely control the growth

environment in these imaginary experiments in computer, which is very chal-

158

lenging in a laboratory. However, there are still challenges in simulating the

dendritic growth in a computer. Main difficulties include the numerical method

should be able to solve the growth equation on an arbitrary domain with irregular

boundaries; to evolve the interface between the solid phase and the liquid phase

according to some physical laws; to solve the problem in a reasonable time, and

most importantly, to easily handle the topological changes of the interface.

The level set method [96, 23, 62, 47, 46] has been successfully introduced

recently to model the growth of a crystal. The main idea is to represent the

crystal interface by the zero level set of a level set function. This method can

naturally handle any change in the topology of the solid boundary. However, one

drawback of this method is that this finite difference method introduces excessive

numerical dissipations in the calculations. In other words, to have an accurate

solution, one may need to use a very fine mesh. This is not efficient in the sense

that many grid points are far away from the interface and any numerical solution

at these locations has little contribution to the motion of the zero level set.

This chapter aims to improve the computational efficiency of the above ap-

proach by cooperating the level set method with an adaptive moving grid method

[64, 53, 108, 107]. Since this adaptive approach is based on structured quadrilat-

eral grids, we can directly apply any standard finite difference method in solving

all physical laws and the level set equation.

8.2 The Quasi-steady Stefan Problem

In this section, we briefly summarize the classical Stefan problem. A full descrip-

tion can be found in, for example, [23]. The classical Stefan problem is given

159

by

∂T

∂t
= ks∇2T in Ωs

∂T

∂t
= kl∇2T in Ωl , (8.1)

where T denotes the temperature in both the crystal Ωs and the supercooled

liquid Ωl. These two phases are separated by the interface Σ = φ−1(0) which is

defined by the zero level set of a function φ. ks and kl are related to volumetric

heat capacities and thermal diffusivities of the materials. On the interface Σ, we

impose the Gibbs-Thomson relation for the temperature,

T = −σκ− µvn , (8.2)

where σ is the surface tension coefficient, κ is the curvature of the interface, and

µ is the molecular kinetic coefficient. vn is the normal velocity of the interface

motion and is defined by the jump in the normal derivative of the temperature

across the interface,

vn = [n · ∇T] on Σ , (8.3)

where [.] is defined as the jump across the interface, i.e. [f] = fs|Σ − fl|Σ. To

update the location of the interface, we use this normal velocity and solve the

following level set equation

φt + vn|∇φ| = 0 in Ω . (8.4)

To further simplify the problem, we assume that the diffusion coefficients

ks and kl are large. This reduces the classical Stefan problem to the following

160

quasi-steady Stefan problem

∇2T = 0 in Ω

T = −σκ− µvn on Σ

vn = [n · ∇T] on Σ

φt + vn|∇φ| = 0 in Ω . (8.5)

8.3 Numerical Method

In this chapter, we will focus only on two-dimensional cases. It is relatively

straightforward to apply the same idea to higher dimensions. The numerical

procedures compose of the following steps:

1. Adapt the grid according to the level set function φ [64, 107].

2. Solve the Laplace equation with the Gibbs-Thomson relation imposed on

the crystal interface [80, 47].

3. Update the location of the interface by solving the level set equation.

In the following subsections, we explain each of these steps in detail.

8.3.1 Grid Adaptation

The adaptivity of the grid can be interpreted as a time dependent map between

the physical domain (x, y) and the computational domain (ξ, η). Because the

computational domain is fixed, we can also treat (ξ, η) as the index used in

discretizing the physical space. This means (ξ, η) ∈ {1, 2, . . . , nξ}×{1, 2, . . . , nη}
with ∆ξ = ∆η = 1. We denote this desired mapping as x = x(ξ, η) and y =

y(ξ, η).

161

Given a level set function φn defined on the grids (xn
i,j, y

n
i,j) at time tn, we want

to find a new set of structured grids (xn+1
i,j , yn+1

i,j) with grid points concentrated

around the zero level set of φ. A simple idea is to minimize the following so-called

Winslow’s functional defined in the computational domain

min
(x,y)

E(x(ξ, η), y(ξ, η)) =
1

2

∫
ω

(|∇ξ,ηx|2 + |∇ξ,ηy|2
)
dξdη , (8.6)

where ω is called a monitor function which controls how the grids will be adapted.

Numerically, it is found that

ω(φ) = 1 + α exp(−φ2/σ2) , (8.7)

with α = 10 and σ = 0.1, is a reasonable choice. This monitor function is

symmetric in φ = 0, meaning that the grid points are symmetrically distributed

around the zero level set. This function has its largest value when φ = 0, therefore

the concentration of the grid points decreases away from the zero level set. In

[107], the authors used a Heaviside level set function instead of a signed distance

level set function. They proposed

ω(ψ) =
√

1 + |∇x,yψ|2 , (8.8)

with ψ = sign(φ). In our case, the monitor function is chosen in a more natural

way such that the distance property of the level set function is incorporated in

the grid adaptation.

To minimize the above functional (8.6), we use the method of variations and

derive the corresponding Euler-Lagrange equations

∇ξ,η · (ω∇ξ,ηx) = 0

162

∇ξ,η · (ω∇ξ,ηy) = 0 . (8.9)

These equations are elliptic and uncoupled. Therefore, they can be easily solved

using any standard iterative scheme like SOR or PCG.

8.3.2 Coordinate Transformation

The next step in the above algorithm is to solve the Laplace equation in this

new set of grid points (xn+1, yn+1). This can be done by the following coordinate

transformation,

dx = Adξ + Bdη

dy = Mdξ + Ndη , (8.10)

where

A =
∂x

∂ξ
, B =

∂x

∂η
, M =

∂y

∂ξ
and N =

∂y

∂η
(8.11)

are determined from the local grid information. Using this transformation and

defining ∆ to be the Jacobian of this transformation, we rewrite the gradient

operator in the Cartesian coordinates to

∇x,y =
1

∆

(
−M

∂

∂η
+ N

∂

∂ξ
,−B

∂

∂ξ
+ A

∂

∂η

)
. (8.12)

Therefore, the Laplacian operator is replaced by the Beltrami operator given by

∇2
x,yT =

1

∆

[
∂

∂ξ

(
(B2 + N2)Tξ − (AB + MN)Tη

∆

)

+
∂

∂η

(
(A2 + M2)Tη − (AB + MN)Tξ

∆

)]
. (8.13)

163

Unlike the standard five-point difference for the Laplacian, the numerical ap-

proximation of the Beltrami operator at T (ξi, ηj) uses a linear combination of

the following 9 grid points centered at (ξi, ηj), i.e. {Ti,j, Ti−1,j−1, Ti,j−1, Ti+1,j−1,

Ti−1,j, Ti+1,j, Ti−1,j+1, Ti,j+1, Ti+1,j+1}.

All computations away from the interface is straightforward. For grid points

near the interface, however, we need to pay spacial care. Since we have a boundary

condition imposed on the interface, we apply the Ghost Fluid Method [80, 47] to

those cells near the zero level set. For example, consider the one-dimensional case

where φi−1φi > 0 and φiφi+1 < 0, i.e. the interface is located between the grid

point at xi and xi+1 but not between xi−1 and xi. By the Ghost Fluid Method,

the Laplacian of T at xi can be approximated by

∇2
hTi =

Ti−1 − 2Ti + T ∗
i+1

∆x2
, (8.14)

where T ∗
i+1 is the value extrapolated from T (φ−1(0)), Ti, and/or Ti−1.

In the two dimensional case with the Cartesian coordinates, we only need to

check the above condition on φi,j with the 4 neighboring grid points (xi±1, yj)

and (xi, yj±1). However, with the adaptive grids, we need to consider a total of 8

points (ξi±1, ηj), (ξi, ηj±1) and (ξi±1, ηj±1).

8.3.3 Temperature Extension

After we compute the temperature in both domains Ωs and Ωl, we need to com-

pute the jump of their normal derivatives across the interface. This can be done

using the following extension algorithm [3, 46].

1. Define T 1 = χΩ1T and T 2 = χΩ2T , where χ{} is the characteristic function

and is defined to be 1 if (x, y) is in the subscripted domain and is 0 otherwise.

164

2. Define T 1
n = χΩ1(~n · ∇T), T 2

n = χΩ2(~n · ∇T).

3. Define T 1
nn = χΩ1(~n · ∇Tn), T 2

nn = χΩ2(~n · ∇Tn).

4. Extend T 1
nn and T 2

nn to Ω2 and Ω1, respectively, by solving

(T 1
nn)τ + H(φ)~n · ∇T 1

nn = 0

(T 2
nn)τ −H(−φ)~n · ∇T 2

nn = 0 , (8.15)

where H(.) is the Heaviside function.

5. Extend T 1
n and T 2

n to Ω2 and Ω1, respectively, by solving

(T 1
n)τ + H(φ)(~n · ∇T 1

n − T 1
nn) = 0

(T 2
n)τ −H(−φ)(~n · ∇T 2

n − T 2
nn) = 0 . (8.16)

6. Compute vn = T 1
n − T 2

n .

In [3, 46], the above equations are solved only for a few ∆τ steps in the arti-

ficial time τ -direction. Due to the CFL restriction, the computational speed is

relatively slow. To speed up the computation, we determine directly the steady

state solution of the above equations by considering the corresponding time-

independent version. This implies that equations (8.15) and (8.16) are replaced

by

H(φ)~n · ∇T 1
nn = 0

−H(−φ)~n · ∇T 2
nn = 0 , (8.17)

165

and

H(φ)(~n · ∇T 1
n − T 1

nn) = 0

−H(−φ)(~n · ∇T 2
n − T 2

nn) = 0 , (8.18)

respectively. These static Hamilton-Jacobi equations can be solved using a fast

sweeping method [111, 60, 59]. Here, we briefly describe the numerical procedures.

Note that all equations are in the form of

uTξ + vTη = R(ξ, η) . (8.19)

Using upwind differencing, we get the following iterative scheme for Ti,j with

1 ≤ i ≤ nξ and 1 ≤ j ≤ nη,

T k+1
i,j =

 ∆η{(u− |u|)T k′

i+1,j − (u + |u|)T k′
i−1,j}+

∆ξ{(v − |v|)T k′
i,j+1 − (v + |v|)T k′

i,j−1} − 2∆ξ∆ηRi,j

−2(∆η|u|+ ∆ξ|v|) , (8.20)

for k = 1, 2, · · · and k′ = k or k + 1, depending on the direction of the sweeping.

Theoretically, the normal velocity vn is defined only on the interface through

equation (8.3). To update the level set equation, on the other hand, one needs

to define a normal velocity everywhere in the computational domain. One way

to find such a velocity is to extend the normal velocity perpendicular to the

interface. At each point (xi, yj), we

1. determine the closest point on the interface to that point, given by

(x∗, y∗) = (xi, yj)− φ(xi, yj)~n , (8.21)

166

where ~n is the normal vector at the point (xi, yj).

2. use cubic interpolation to determine vn(x∗, y∗) and assign

vn(xi, yj) = vn(x∗, y∗) . (8.22)

8.3.4 Updating the Level Set Function

Applying the coordinate transformation (8.10) to the level set equation, we have

φt +
vn

∆

√
aφ2

ξ + 2bφξφη + cφ2
η = 0 , (8.23)

where a = B2 + N2, b = −(AB + MN), c = A2 + M2 and ∆ = AN − BM .

This Hamilton-Jacobi equation is solved using a fifth order WENO-LF scheme

in space [55] and a third order TVD-RK scheme in time [82].

8.3.5 Reinitialization

It is important to regularize the level set function in the evolution. For example,

an over-flattened region could introduce large errors in the interpolation from

determining the zero level set. To reduce these errors, we numerically preserve

the signed-distance property of the level set function near the zero level set by

solving the following reinitialization equation

φτ + S(φ0)(|∇φ| − 1) = 0 , (8.24)

167

where S(.) approximate the signum function. In the transformed coordinates,

this equation reads

φτ + S(φ0)

(
1

∆

√
aφ2

ξ + 2bφξφη + cφ2
η − 1

)
= 0 . (8.25)

Again, this Hamilton-Jacobi equation is solved using a fifth order WENO-LF

scheme in space and a third order TVD-RK scheme in time. Few iterations in

the τ -direction are sufficient to get a regular level set function near the zero level

set.

8.3.6 A Predictor-Corrector Approach

Traditionally, a moving grid technique updates both an objective function and

the mesh in the following way:

1. Given the grids (xn, yn) and the function φn(xn, yn) defined at time tn,

update φn to get φn+1/2(xn, yn). This step is denoted by the operator Exn .

2. With the function φn+1/2(xn, yn) fixed, adapt the grid to obtain (xn+1, yn+1).

We denote this step by A(φn+1/2).

3. Interpolate φn+1(xn+1, yn+1) at (xn+1, yn+1). The interpolation procedure

is denoted by Ixn+1 .

A problem with the above procedure is the excessive numerical dissipation in the

operator Ixn+1 . To reduce this error, [107] introduced different types of interpo-

lation scheme.

In this work, however, we design the following predictor-corrector approach

to reduce the numerical dissipation in the interpolation.

168

1. The procedures Exn and A(φn+1/2) are considered as a predictor step. The

function φn+1/2(xn, yn) is considered as a prediction of the function values

at the next time step tn+1, and it is used only to give the new location of

the grids.

2. A new operator Exn→xn+1 is introduced. This operator couples the level set

equation with the grid motion driven by the velocities

F =
dx

dt
and G =

dy

dt
, (8.26)

in terms of the following transformation

dt = dτ

dx = Fdτ + Adξ + Bdη

dy = Gdτ + Mdξ + Ndη , (8.27)

where the local grid information is given by

A =
∂x

∂ξ
, B =

∂x

∂η
, M =

∂y

∂ξ
,N =

∂y

∂η
and ∆ = AN −BM . (8.28)

Now the level set equation in this moving grid coordinates is given by

φτ−FN −GB

∆

∂φ

∂ξ
−GA− FM

∆

∂φ

∂η
+

vn

∆

√
aφ2

ξ + 2bφξφη + cφ2
η = 0 , (8.29)

169

8.4 Numerical Examples

8.4.1 Example 1

The initial condition is a square of length 0.2. The domain of interested is given

by Ω = [−1, 1]2. The temperature is given by T = −0.0005κ on the interface and

T = −1 on the outer boundary {x = ±1} ∪ {y = ±1}. We plot the interfaces at

time from t = 0 to 0.2 in increment of 0.025 in Figures 8.1-8.3. Figure 8.1 shows

the numerical solution computed using fixed Eulerian grids. It clearly shows the

grid anisotropy in the computation. This effect can, of course, be eliminated by

increasing the total number of grids. However, comparing the solutions in the

first row of Figure 8.2 with Figure 8.3, we can eliminate this anisotropy effect by

simply using the proposed adaptive grid strategy.

8.4.2 Example 2

This example simulates crystal anisotropy in which the crystal grows in some

preferred directions. The Gibbs-Thomson relation on the interface is given by [2]

T = −σ(~n)κ− µ(~n)vn , (8.30)

with

σ(θ) = σ

{
1 + As

[
8

3
sin4

(
1

2
ms(θ − φs)

)
− 1

]}

µ(θ) = µ

{
1 + Ak

[
8

3
sin4

(
1

2
ml(θ − φk)

)
− 1

]}
. (8.31)

Here ms and mk determine the mode of symmetry of the crystal, φs and φk

determine the angles of the symmetry axis made with the x-axis, As and Ak are

170

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 8.1: (Example 1) Evolution of the interface using 150-by-150, 200-by-200
and 400-by-400 uniform rectangular grids with two different orientations of the
initial profile.

171

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 8.2: (Example 1) Evolution of the interface using 100-by-100 and
150-by-150 adaptive grids. The second row shows the grid points at the last
time step.

172

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 8.3: (Example 1) Evolution of the interface using 100-by-100 and
150-by-150 adaptive grids with another orientation for the initial seed. The sec-
ond row shows the grid points at the last time step.

173

the strength of the anisotropy and θ is the angle made between the normal vector

~n and the x-axis. We have tried three different initial conditions.

(a) Initial seed is a square with sides 1/6. As = Ak = 0.5, σ = µ = 0.0005 and

ms = mk = 4.

(b) Initial seed is a square with sides 1/6 but rotated by π/4. As = Ak = 0.5,

σ = µ = 0.0005 and ms = mk = 4.

(c) Initial seed is four-folded given by

r = r0 + p0 cos 4θ , (8.32)

with r0 = 0.05 and p0 = 0.01. As = Ak = 0.5, σ = µ = 0.00025 and

ms = mk = 6.

All solutions are plotted at increments of 0.025 from t = 0 to 0.2. The outer

boundary condition T = −1 is imposed on r = 0.95.

Figure 8.4 shows the solutions using adaptive moving grids with setting (a).

The mode of symmetry in the Gibbs-Thomson relation is 4. Comparing the so-

lutions with Figure 8.5, the resolution of the solutions using 100-by-100 adaptive

grids is similar to that of 200-by-200 uniform adaptive grids.

Solutions with the initial setting (b) are plotted in Figures 8.6 and 8.7. Similar

to case (a), the uniform grids solutions are similar to that from our proposed

adapted grids with approximately only one-forth the total number of grid points.

Figure 8.8 and 8.9 show the solutions with the initial setting (c). We now

halve both the surface tension coefficient and the kinetic coefficient. We see that

the growth is now becoming more sensitive to the initial profile and the resulting

shape of the crystal is more complex. The mode of symmetry of the crystal is

174

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 8.4: (Example 2a) 50-by-50, 100-by-100 and 150-by-150 adaptive grids.
Second row shows the adaptive grids at the last time step.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 8.5: (Example 2a) 100-by-100 and 200-by-200 uniform rectangular grids.

175

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 8.6: (Example 2b) 50-by-50, 100-by-100 and 150-by-150 adaptive grids.
Second row shows the adaptive grids at the last time step.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 8.7: (Example 2b) 100-by-100 and 200-by-200 uniform rectangular grids.

176

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 8.8: (Example 2c) 50-by-50, 100-by-100 and 150-by-150 adaptive grids.
Second row shows the adaptive grids at the last time step.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 8.9: (Example 2c) 100-by-100, 150-by-150 and 200-by-200 uniform rectan-
gular grids.

177

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 8.10: (Example 3) Four four-fold initial seeds with (left to right)
σ = 0.0001, 0.00025 and 0.0005 in the Gibbs-Thomson condition. The corre-
sponding grid points at the last time step are shown on the bottom.

increased to 6. Again, we obtain a similar evolution of the crystal using only

one-forth of grid points in our proposed adaptive method than that from the

uniform grids.

8.4.3 Example 3

This last example models the growth of four four-folded seeds with each seed

defined by (8.32). These seeds are initially centered at (±0.075,±0.075) and

(±0.075,∓0.075). The Gibbs-Thomson relation on the interfaces are given by

T = −σκ. Temperature on the outer boundary r = 0.95 is defined as T = −1.0.

Solutions at t = 0 to 0.1 using 150-by-150 grid points are shown in Figure 8.10.

178

References

[1] D. Adalsteinsson and J.A. Sethian. A fast level set method for propagating
interfaces. J. Comput. Phys., 118:269–277, 1995.

[2] R. Almgren. Variational algorithms and pattern formation in dendritic
solidification. J. Comput. Phys., 106:337–354, 1993.

[3] T. Aslam. A partial differential equation approach to multidimensional
extrapolation. J. Comput. Phys., 193:349–355, 2004.

[4] G. Bal, J. B. Keller, G. Papanicolaou, and L. Ryzhik. Transport theory
for acoustic waves with reflection and transmission at interfaces. Wave
Motion, 30:303–327, 1999.

[5] J. D. Benamou. Big ray tracing: multivalued travel time field computa-
tion using viscosity solutions of the eikonal equations. J. Comput. Phys.,
128:463–474, 1996.

[6] J.-D. Benamou. Direct solution of multi-valued phase-space solutions for
Hamilton-Jacobi equations. Comm. Pure Appl. Math., 52:1443–1475, 1999.

[7] J. D. Benamou. An introduction to Eulerian geometrical optics (1992 -
2002). J. Sci. Comp., 19:63–93, 2003.

[8] J. Berryman. Stable iterative reconstruction algorithm for nonlinear trav-
eltime tomography. Inverse Problems, 6:21–42, 1990.

[9] J. Berryman. Analysis of approximate inverses in tomography I. resolu-
tion analysis of common inverses. Optimization and Engineering, 1:87–115,
2000.

[10] J. Berryman. Analysis of approximate inverses in tomography II. iterative
inverses. Optimization and Engineering, 1:437–473, 2000.

[11] T. N. Bishop, K. P. Bube, R. T. Cutler, R. T. Langan, P. L. Love, J. R.
Resnick, R. T. Shuey, D. A. Spindler, and H. W. Wyld. Tomographic
determination of velocity and depth in laterally varying media. Geophysics,
50:903–923, 1985.

[12] M. Boue and P. Dupuis. Markov chain approximations for deterministic
control problems with affine dynamics and quadratic costs in the control.
SIAM J. Numer. Anal., 36:667–695, 1999.

179

[13] X. Bresson, S. Esedoḡlu, P. Vandergheynst, J.P. Thiran, and S. Osher.
Global minimizers of the active contour/snake model. UCLA CAM Report
(05-04), 2005.

[14] K. P. Bube and R. T. Langan. Hybrid l1-l2 minimization with applications
to tomography. Geophysics, 62:1183–1195, 1997.

[15] R. Burridge. Asymptotic evaluation of integrals related to time-dependent
fields near caustics. SIAM J. Appl. Math., 55:390–409, 1995.

[16] R.H. Byrd, P. Lu, J. Nocedal, and C. Zhu. A limited memory algorithm for
bound constrained optimization. SIAM J. Sci. Comput., 16(5):1190–1208,
1995.

[17] V. Cerveny, I. A. Molotkov, and I. Psencik. Ray method in seismology.
Univerzita Karlova press, 1977.

[18] R. Chan, C.-W. Ho, and M. Nikolova. Salt-and-pepper noise removal by
median-type noise detectors and detail-preserving regularization. IEEE
Transactions on Image Processing, 14:1479–1485, 2005.

[19] R. Chan, C. Hu, and M. Nikolova. An iterative procedure for removing
random-valued impuse noise. IEEE Signal Processing Letters, 11:921–924,
2004.

[20] T.F. Chan, S. Esedoḡlu, and M. Nikolova. Algorithms for finding global
minimizers of image segmentation and denoising models. UCLA CAM Re-
port (04-54), 2004.

[21] T.F. Chan and S.H. Kang. Error analysis for image inpainting. UCLA
CAM Report (04-72), 2004.

[22] T.F. Chan and J. Shen. Mathematical models of local non-texture inpaint-
ing. SIAM J. Appl. Math., 62:1019–1043, 2001.

[23] S. Chen, B. Merriman, S. Osher, and P. Smereka. A simple level set method
for solving stefan problems. J. Comput. Phys., 135, 1997.

[24] L.-T. Cheng, H. Liu, and S. J. Osher. High frequency wave propa-
gation in Schrodinger equations using the level set method. Preprint
(www.levelset.com), 2003.

[25] L.-T. Cheng, S. J. Osher, and J. Qian. Level set based eulerian methods
for multivalued traveltimes in both isotropic and anisotropic media. In
73st Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, pages
1801–1804. Soc. Expl. Geophys., Tulsa, OK, 2003.

180

[26] J. F. Claerbout. Fundamentals of geophysical data processing. McGraw-
Hill, 1976.

[27] R. A. Clarke, B. Alazard, L. Pelle, D. Sinuquet, P. Lailly, F. Delprat-
Jannaud, and L. Jannaud. 3D traveltime reflection tomography with multi-
valued arrivals. In 71st Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded
Abstracts, pages 1601–1604. Soc. Expl. Geophys., Tulsa, OK, 2001.

[28] M. G. Crandall, L. C. Evans, and P. L. Lions. Some properties of viscosity
solutions of hamilton-jacobi equations. Trans. Amer. Math. Soc., 282:487–
502, 1984.

[29] M. G. Crandall and P. L. Lions. Viscosity solutions of Hamilton-Jacobi
equations. Trans. Amer. Math. Soc., 277:1–42, 1983.

[30] M. G. Crandall and P. L. Lions. Two approximations of solutions of
Hamilton-Jacobi equations. Math. Comp., 43:1–19, 1984.

[31] F. A. Dahlen, S.-H. Hung, and G. Nolet. Frechet kernels for finite-frequency
traveltimes– I. theory. Geophys. J. Int., 141:157–174, 2000.

[32] F. Delprat-Jannaud and P. Lailly. Reflection tomography: how to handle
multiple arrivals? J. Geophys. Res., 100:703–715, 1995.

[33] K. A. Dines and R. J. Lytle. Computerized geophysical tomography. Proc.
IEEE, 67:1065–1073, 1979.

[34] O. Dorn, H. Bertete-Aguiree, J. G. Berryman, and G. C. Papanicolaou. A
nonlinear inversion method for 3d electromagnetic imagaing using adjoint
fields. Inverse Problems, 15:1523–1558, 1999.

[35] B. Engquist, E. Fatemi, and S. Osher. Numerical resolution of the high
frequency asymptotic expansion of the scalar wave equation. J. Comput.
Phys., 120:145–155, 1995.

[36] B. Engquist and O. Runborg. Multi-phase computations in geometrical
optics. J. Comput. Appl. Math., 74:175–192, 1996.

[37] B. Engquist and O. Runborg. Computational high frequency wave propa-
gation. Acta Numerica, 12:181–266, 2003.

[38] B. Engquist, O. Runborg, and A-K Tornberg. High frequency wave prop-
agation by the segment projection method. J. Comp. Phys., 178:373–390,
2002.

181

[39] S. Esedoḡlu and J. Shen. Digital inpainting based on the Mumford-Shah-
Euler image model. European Journal of Applied Mathematics, 13:353–370,
2002.

[40] L. C. Evans. Towards a quantum analogue of weak KAM theory. Preprint,
2002.

[41] M. Falcone and R. Ferretti. Semi-lagrangian schemes for hamilton-jacobi
equations, discrete representation formulae and godunov methods. J. Com-
put. Phys., 175:559–575, 2002.

[42] R. Fedkiw, T. Aslam, B. Merriman, and S. Osher. A non-oscillatory
eulerian approach to interfaces in multimaterial flows (the ghost fluid
mathod). J. Comput. Phys., 152:457–492, 1999.

[43] S. Fomel and J. Sethian. Fast phase space computation of multiple travel-
times. Proc. Nat. Aca. Sci., 99:7329–7334, 2002.

[44] F. Friedlander. Sound pulses. Cambridge University Press, 1958.

[45] I.M. Gelfand and S.V. Fomin. Calculus of Variation. Prentice-Hall, 1963.

[46] F. Gibou and R. Fedkiw. A fourth order accurate discretization for the
laplace and heat equations on arbitrary domains, with applications to the
stefan problem. J. Comput. Phys., 202:577–601, 2005.

[47] F. Gibou, R. Fedkiw, R. Caflisch, and S. Osher. A level set approach for
the numerical simulation of dendritic growth. J. Sci. Comput., 19:183–199,
2003.

[48] L. Gosse. Using K-branch entropy solutions for multivalued geometric op-
tics computations. J. Comput. Phys., 180:155–182, 2002.

[49] L. Gosse and P. A. Markowich. Multiphase semiclassical approximations
of an electron in a one-dimensional crystalline lattice. J. Comput. Phys.,
197:387–417, 2004.

[50] S. Gray and W. May. Kirchhoff migration using eikonal equation travel-
times. Geophysics, 59:810–817, 1994.

[51] Jerry M. Harris, Richard C. Nolen-Hoeksema, Robert T. Langan, Mark Van
Schaack, Spyros K. Lazaratos, and James W. Rector III. High-resolution
crosswell imaging of a west texas carbonate reservoir: Part I-project sum-
mary and interpretation. Geophysics, 60:667–681, 1995.

182

[52] T. Y. Hou, Z. Li, S. J. Osher, and H.-K. Zhao. A hybrid method for moving
interface problems with applications to the hele-shaw flows. J. Comput.
Phys., 134:236–252, 1997.

[53] W. Huang and R.D. Russell. Moving mesh stragegy based on a gradient flow
equation for two-dimensonal problems. SIAM J. Sci. Comput., 20(3):998–
1015, 1999.

[54] David W. Hyndman and Jerry M. Harris. Traveltime inversion for the
geometry of aquifer lithologies. Geophysics, 61:1728–1737, 1996.

[55] G. S. Jiang and D. Peng. Weighted ENO schemes for Hamilton-Jacobi
equations. SIAM J. Sci. Comput., 21:2126–2143, 2000.

[56] S. Jin and X. Li. Multi-phase computations of the semi-classical limit of the
Schrodinger equation and related problems. Physica D, 182:46–85, 2003.

[57] S. Jin and S. Osher. A level set method for the computation of multivalued
solutions to quasi-linear hyperbolic PDEs and Hamilton-Jacobi equations.
Commun. Math. Sci., 1:575–591, 2003.

[58] B.R. Julian and D. Gubbins. Three-dimensional seismic ray tracing. J.
Geophys., 43:95–113, 1977.

[59] C. Y. Kao, S. J. Osher, and Y.-H. Tsai. Fast sweeping method for static
Hamilton-Jacobi equations. SIAM J. Num. Anal., 42:2612–2632, 2005.

[60] C.Y. Kao, S.J. Osher, and J. Qian. Lax-Friedrichs sweeping schemes for
static Hamilton-Jacobi equations. J. Comp. Phys., 196:367–391, 2004.

[61] J. B. Keller and R. M. Lewis. Asymptotic methods for partial differential
equations: the reduced wave equation and Maxwell’s equations. Surveys in
Applied Mathematics, 1:1–82, 1995.

[62] Y.T. Kim, N. Goldenfeld, and J. Dantzig. Computation of dentritic mi-
crostructures using a level set method. Physical Review E, 62:2471–2474,
2000.

[63] S. N. Kruzkov. Generalized solutions of nonlinear first order equations with
several independent variables. II. Math. USSR-Sb., 1:93–116, 1967.

[64] P. Kumpp and S. Steinberg. Fundamentals of Grid Generation. CRC Press,
1993.

183

[65] S. Leung and S. Osher. Fast global minimization of the active contour
model with tv-inpainting and two-phase denoising. Proceeding of the 3rd
IEEE Workshop on Variational, Geometric and Level Set Methods in Com-
puter Vision, pages 149–160, 2005.

[66] S. Leung and J. Qian. A transmission tomography problem based on mul-
tiple arrivals from paraxial liouville equations. Expanded Abstract for the
SEG 75th Annual Meeting, 2005.

[67] S. Leung and J. Qian. An adjoint state method for 3d transmission trav-
eltime tomography using first arrival. Commun. Math. Sci., 4:249–266,
2006.

[68] S. Leung and J. Qian. Transmission traveltime tomography based on parax-
ial liouville equations and level set formulations. 2006.

[69] S. Leung, J. Qian, and S. Osher. A level set method for three-dimensional
paraxial geometrical optics with multiple sources. Commun. Math. Sci.,
2(4):643–672, 2004.

[70] P. L. Lions. Generalized solutions of Hamilton-Jacobi equations. Pitman
Advanced Publishing Program, 1982.

[71] X. Liu, S. Osher, and T. Chan. Weighted essentially non-oscillatory
schemes. J. Comput. Phys., 115:200–212, 1994.

[72] D. Ludwig. Uniform asymptotic expansions at a caustic. Comm. Pure
Appl. Math., XIX:215–250, 1966.

[73] V. P. Maslov and M. V. Fedoriuk. Semi-classical approximation in quantum
mechanics. D. Reidel Publishing Company, 1981.

[74] S. M. Minkoff. A computationally feasible approximate resolution matrix
for seismic inverse problems. Geophys. J. Internat., 126:345–359, 1996.

[75] R. Montelli, G. Nolet, F. A. Dahlen, G. Masters, E. R. Engdahl, and S.-
H. Hung. Finite-frequency tomography reveals a variety of plumes in the
mantle. Science, 303:338–343, 2004.

[76] R. Montelli, G. Nolet, G. Masters, F. A. Dahlen, and S.-H. Hung. Global
P and PP traveltime tomography: rays versus waves. Geophys. J. Int.,
158:637–654, 2004.

[77] D. Mumford and J. Shah. Optimal approximation by piecewise smooth
functions and associated variational problems. Comm. Pure Appl. Math.,
42:577–685, 1998.

184

[78] M. J. P. Musgrave. Crystal acoustics. Holden-Day, 1970.

[79] S. Osher, L.-T. Cheng, M. Kang, H. Shim, and Y-H Tsai. Geometric optics
in a phase space based level set and Eulerian framework. J. Comput. Phys.,
179:622–648, 2002.

[80] S. Osher and R. P. Fedkiw. Level Set Methods and Dynamic Implicit Sur-
faces. Springer-Verlag, New York, 2003.

[81] S. J. Osher and J. A. Sethian. Fronts propagating with curvature dependent
speed: algorithms based on Hamilton-Jacobi formulations. J. Comput.
Phys., 79:12–49, 1988.

[82] S. J. Osher and C. W. Shu. High-order Essentially NonOscillatory schemes
for Hamilton-Jacobi equations. SIAM J. Num. Anal., 28:907–922, 1991.

[83] D. Peng, B. Merriman, S. Osher, H. K. Zhao, and M. Kang. A pde-based
fast local level set method. J. Comput. Phys., 155:410–438, 1999.

[84] F. Poupaud and C. Ringhofer. Semi-classical limits in a crystal with ex-
ternal potentials and effective mass theorems. Commun. Partial Diff. Eq.,
21:1897–1918, 1996.

[85] J. Qian, L.-T. Cheng, and S.J. Osher. A level set based Eulerian approach
for anisotropic wave propagations. Wave Motion, 37:365–379, 2003.

[86] J. Qian and S. Leung. A level set method for paraxial multivalued travel-
times. J. Comput. Phys., 197:711–736, 2004.

[87] J. Qian and S. Leung. A local level set method for paraxial multivalued
geometric optics. SIAM J. Sci. Comput., 28:206–223, 2006.

[88] J. Qian and W. W. Symes. Adaptive finite difference method for traveltime
and amplitude. Geophysics, 67:167–176, 2002.

[89] J. Qian and W. W. Symes. Finite-difference quasi-P traveltimes for
anisotropic media. Geophysics, 67:147–155, 2002.

[90] J. Qian, Y-T Zhang, and H-K. Zhao. Fast sweeping methods for eikonal
equations on triangulated domains. Submitted to SIAM J. Numer. Analy.,
2004.

[91] E. Rouy and A. Tourin. A viscosity solutions approach to shape-from-
shading. SIAM J. Num. Anal., 29:867–884, 1992.

185

[92] L. Rudin, S.J. Osher, and E. Fatemi. Nonlinear total variation based noise
removal algorithms. Physica D, 60:259–268, 1992.

[93] S. J. Ruuth, B. Merriman, and S. J. Osher. A fixed grid method for captur-
ing the motion of self-intersecting interfaces and related PDEs. J. Comput.
Phys., 151:836–861, 1999.

[94] A. Sei and W. W. Symes. Gradient calculation of the traveltime cost func-
tion without ray tracing. In 65th Ann. Internat. Mtg., Soc. Expl. Geo-
phys., Expanded Abstracts, pages 1351–1354. Soc. Expl. Geophys., Tulsa,
OK, 1994.

[95] A. Sei and W. W. Symes. Convergent finite-difference traveltime gradient
for tomography. In 66th Ann. Internat. Mtg., Soc. Expl. Geophys., Ex-
panded Abstracts, pages 1258–1261. Soc. Expl. Geophys., Tulsa, OK, 1995.

[96] J. Sethian and J. Strain. Crystal growth and dendritic solidification. J.
Comput. Phys., 98:231–253, 1992.

[97] J. A. Sethian. Level set methods. Cambridge Univ. Press, second edition,
1999.

[98] C. W. Shu. Essentially non-oscillatory and weighted essentially non-
oscillatory schemes for hyperbolic conservation laws. In B. Cockburn,
C. Johnson, C.W. Shu, and E. Tadmor, editors, Advanced Numerical Ap-
proximation of Nonlinear Hyperbolic Equations, volume 1697, pages 325–
432. Springer, 1998. Lecture Notes in Mathematics.

[99] C. W. Shu and S. J. Osher. Efficient implementation of essentially non-
oscillatory shock capturing schemes. J. Comput. Phys., 77:439–471, 1988.

[100] J. Steinhoff, M. Fan, and L. Wang. A new Eulerian method for the compu-
tation of propagating short acoustic and electromagnetic pulses. J. Comput.
Phys., 157:683–706, 2000.

[101] J. Strain. Semi-lagrangian methods for level set equations. J. Comput.
Phys., 151:498–533, 1999.

[102] M. Sussman, P. Smereka, and S. J. Osher. A level set approach for comput-
ing solutions to incompressible two-phase flows. J. Comput. Phys., 114:146–
159, 1994.

[103] W. W. Symes. Mathematics of reflection seismology. In Annual Report,
The Rice Inversion Project, (http://www.trip.caam.rice.edu/). Rice Uni-
versity, 1995.

186

[104] W. W. Symes. A slowness matching finite difference method for traveltimes
beyond transmission caustics. In 68th Ann. Internat. Mtg., Soc. Expl. Geo-
phys., Expanded Abstracts, pages 1945–1948. Soc. Expl. Geophys., 1998.

[105] W. W. Symes and J. Qian. A slowness matching Eulerian method for
multivalued solutions of eikonal equations. J. Sci. Comp., 19:501–526, 2003.

[106] W. W. Symes, R. Versteeg, A. Sei, and Q. H. Tran. Kirch-
hoff simulation, migration and inversion using finite difference travel-
times and amplitudes. In Annual Report, The Rice Inversion Project,
(http://www.trip.caam.rice.edu/). Rice University, 1994.

[107] H.K. Tang, T. Tang, and Zhang P. An adaptive mesh redistribution method
for nonlinear hamilton-jacobi equations in two- and three-dimensions. J.
Comput. Phys., 188, 2003.

[108] J.F. Thompson, B.K. Soni, and N.P. Weatherill. Handbook of Grid Gener-
ation. CRC Press, 1999.

[109] L. Thomsen. Weak elastic anisotropy. Geophysics, 51:1954–1966, 1986.

[110] A. N. Tikhonov and V. Y. Arsenin. On the solution of ill-posed problems.
John Wiley and Sons, New York, 1977.

[111] R. Tsai, L.-T. Cheng, S. J. Osher, and H. K. Zhao. Fast sweeping method
for a class of Hamilton-Jacobi equations. SIAM J. Numer. Anal., 41:673–
694, 2003.

[112] G. Uhlmann. Travel-time tomography. J. Korean Math. Soc., 38:711–722,
2001.

[113] G. Uhlmann and S. Hansen. Recovering acoustic and elastic parameters
from travel-times. In International Mechanical Engineering Congress and
Exhibition, Proceedings, page 32149. ASME, 2002.

[114] J. van Trier and W. W. Symes. Upwind finite-difference calculation of
traveltimes. Geophysics, 56:812–821, 1991.

[115] J. Vidale. Finite-difference calculation of travel times. Bull., Seis. Soc.
Am., 78:2062–2076, 1988.

[116] J. E. Vidale and H. Houston. Rapid calculation of seismic amplitudes.
Geophysics, 55:1504–1507, 1990.

187

[117] V. Vinje, E. Iversen, K. Åstebøl, and H. Gjøystdal. Estimation of multival-
ued arrivals in 3d models using wavefront construction - part 1. Geophys.
Prosp., 44:819–842, 1996.

[118] V. Vinje, E. Iversen, and H. Gjoystdal. Traveltime and amplitude estima-
tion using wavefront construction. Geophysics, 58:1157–1166, 1993.

[119] John K. Washbourne, James W. Rector, and Kenneth P. Bube. Crosswell
traveltime tomography in three dimensions. Geophysics, 67:853–871, 2002.

[120] B. S. White. The stochastic caustic. SIAM J. Appl. Math., 44:127–149,
1984.

[121] L. Zhang. Imaging by the wavefront propagation method. PhD thesis, Stan-
ford University, Stanford, CA94305, 1993.

[122] H. K. Zhao. Fast sweeping method for eikonal equations. Math. Comp.,
74:603–627, 2005.

[123] H.-K. Zhao, T. Chan, B. Merriman, and S. J. Osher. A variational level
set approach for multiphase motion. J. Comput. Phys., 127:179–195, 1996.

[124] H.K. Zhao, S. Osher, B. Merriman, and M. Kang. Implicit and non-
parametric shape reconstruction from unorganized points using variational
level set method. Computer Vision and Image Understanding, 80:295–319,
2000.

188

