Math 313 exam for honors linear algebra.

1. Suppose V is a vector space over the field F and $v_{1}, v_{2}, \ldots, v_{r}$ are nonzero eigenvectors associated to distinct eigenvalues $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}$ of $T \in L(V, V)$. Prove the vectors $v_{1}, v_{2}, \ldots, v_{r}$ are linearly independent.
2. Let $V=\mathbb{R}^{2}$ be the plane and let $\mathcal{F}=\mathcal{F}(V)$ be the vector space of (continuous) functions. A vector $f \in \mathcal{F}$ is a function $f: V \longrightarrow \mathbb{R}$.
(i) If $T \in L(V, V)$, prove the transformation M_{T} of \mathcal{F} which transforms the function $f \in \mathcal{F}$ to the function $\left(M_{T}(f)\right)(x)=f(T(x))$ is a linear transformation. In other words show $M_{T} \in L(\mathcal{F}, \mathcal{F})$.
$\mathbf{T} \quad \mathbf{F} \quad$ The condition that $T \in L(V, V)$ is not really necessary. The result is also true if $T: V \longrightarrow V$ is a (continuous) function.
(ii) Prove $M_{T} \circ M_{S}=M_{S T}$. Note the reversed order. Determine when M_{T} is invertible.
(iii) Suppose R_{L} is the reflection across a 1-dimensional subspace L of V. Describe in terms of their graphs, the vectors $f \in \mathcal{F}$ with the property $M_{R_{L}}(f)=f$. Similarly, describe $f \in \mathcal{F}$ with the property $M_{R_{L}}(f)=-f$.
3. Let $V=\mathbb{R}^{n}$, with inner/dot product \langle,$\rangle . If W$ is a subspace of V, recall the definition

$$
W^{\perp}:=\{v \in V \mid\langle v, w\rangle=0 \text { for all } w \in W\} .
$$

(i) Recall $T \in L(V, V)$ is self adjoint if $\langle T(v), w\rangle=\langle v, T(w)\rangle$ for every $v, w \in V$. If T is self adjoint, and $v_{1}, v_{2}, \ldots, v_{n}$ is an orthonormal basis of V, prove the matrix of T in this basis is symmetric.
(ii) If $T \in L(V, V)$ is self adjoint, and W is a T-invariant subspace of V, prove the subspace W^{\perp} is also T-invariant.
(iii) If $T \in L\left(\mathbb{R}^{2}, \mathbb{R}^{2}\right)$ is a self adjoint transformation of the plane, prove it is possible to find an orthonormal eigenbasis w_{1}, w_{2} of \mathbb{R}^{2}.
[Hint. Regardless of whether you answered part (i), you may assume that, in the usual orthonormal basis, the matrix of T is symmetric. Explain why: (1) the roots of characteristic polynomial are real, (2) there is an eigenbasis, and (3) if w_{1}, w_{2} are eigenvectors of T with distinct eigenvalues λ_{1}, λ_{2}, then justify $\lambda_{1}\left\langle w_{1}, w_{2}\right\rangle=\left\langle T\left(w_{1}\right), w_{2}\right\rangle=\left\langle w_{1}, T\left(w_{2}\right)\right\rangle=\lambda_{2}\left\langle w_{1}, w_{2}\right\rangle$ and use it to say $w_{1} \perp w_{2}$.]
4. Suppose F is a field, and V is a finite dimensional vector space over F.
(i) If $T \in L(V, V)$, explain the meaning of the term minimal polynomial of T. If $m(x)$ is a minimal polynomial of T, and $f(x)$ is a polynomial with $f(T)=0$, prove $m(x)$ divides $f(x)$.
(ii) If $m(x)$ is a minimal polynomial of T and $m(x)$ factors as $m(x)=f(x) g(x)$ with $\operatorname{gcd}(f(x), g(x))=1$, so there are polynomials $a(x)$ and $b(x)$ satisfying $1=$
$a(x) f(x)+b(x) g(x)$, prove the linear transformations $E_{1}=a(T) f(T), E_{2}=$ $b(T) g(T)$ have the property that $I=E_{1}+E_{2}, E_{1} E_{2}=0=E_{2} E_{1}$.

5. Calculations I

(i) Express the greatest common divisor of 39 and 65 as an integer linear combination of 39 and 65 .
(ii) Let $\mathbb{F}_{2}=\{0,1\}$ be the binary field. Explain how you would construct a field with $8=2^{3}$ elements using a polynomial in $\mathbb{F}_{2}[x]$. Find such a polynomial. Do not spend your time writing out the addition and multiplication tables. Instead compute an example as follows: (1) Write out the 8 elements, (2) pick two elements a, b of degree 2 , and determine which of your 8 elements equals the product $a b$.
(iii) Consider the three vectors

$$
f_{1}=\frac{1}{3}\left[\begin{array}{l}
1 \\
2 \\
2
\end{array}\right] \quad, \quad f_{2}=\frac{1}{3}\left[\begin{array}{c}
2 \\
-2 \\
1
\end{array}\right] \quad, \quad v=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]
$$

Find the (usual x, y, z coordinates of the) vector $w \in \operatorname{Span}\left(f_{1}, f_{2}\right)$ which is as close as possible to the vector v.

6. Calculations II

(i) Take \mathcal{F} to be subspace of $\mathbb{R}[x]$ spanned by the polynomials $1, x, x^{2}$. The function $T: \mathcal{F} \longrightarrow \mathcal{F}$ defined as $T(f(x)):=x^{2} f^{\prime \prime}(x)$ (the notation $f^{\prime \prime}(x)$ means the 2nd derivative) is a linear transformation. Determine the minimal polynomial of T.
(ii) Given the information:

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
3 & 7 & -5 \\
-2 & -5 & 4 \\
-1 & -3 & 3
\end{array}\right] \\
& \operatorname{rref}(A)=\left[\begin{array}{ccc}
1 & 0 & 3 \\
0 & 1 & -2 \\
0 & 0 & 0
\end{array}\right] \text { and } \operatorname{rref}\left(A^{k}\right)=\left[\begin{array}{ccc}
0 & 1 & -2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \text { for } k \geq 2 \\
& \operatorname{rref}\left((A-I)^{k}\right)=\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right] \text { for } k \geq 1
\end{aligned}
$$

Determine a basis which exhibits the Jordan canonical form of A and find the Jordan canonical form. Determine the minimal and characteristic polynomials of A.

