Math 511 HW 1. Due Wednesday September 25, 2002

This is the final version of this homework set. It has 7 problems.

1. Suppose m and n are two positive integers.
(i) If m and n are relatively prime, show the direct product $C_{m} \times C_{n}$ of the cyclic groups C_{m} and C_{n} is isomorphic to the cyclic group $C_{m n}$ of order $m n$.
(ii) If m and n are NOT relatively prime, show the direct procduct $C_{m} \times C_{n}$ is NOT a cyclic group.
2. Consider the group $\mathrm{GL}(2)$ of invertible matrices with respect to some field F
(i) Argue by row operations that any element of GL(2) is expressible either as

$$
\left[\begin{array}{ll}
a & b \\
0 & d
\end{array}\right] \quad \text { or } \quad\left[\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
a & b \\
0 & d
\end{array}\right],
$$

and determine if there is any element which is expressible in both ways.
(ii) Given an arbitrary nonzero b, show it is possible to select x, y, and z satisfying

$$
\left[\begin{array}{cc}
0 & \frac{-1}{b} \\
b & 0
\end{array}\right]=\left[\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
y & 1
\end{array}\right]\left[\begin{array}{ll}
1 & z \\
0 & 1
\end{array}\right]
$$

Conclude that if N is a normal subgroup of GL(2), which contains an element of the type

$$
\left[\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right] \quad \text { with } \quad x \neq 0
$$

then N must contain the subgroup $\mathrm{SL}(2)$.
2old. THIS PROBLEM IS POSTPONED TO HW02. Prove or provide a counterexample to the statement that if N is a normal subgroup of G and H a normal subgroup of N, then H is a normal subgroup of G.
3. Let p be a prime integer.
(i) Use the fact that \mathbb{F}_{p}^{\times}is a group to prove that $a^{p-1} \equiv 1 \bmod p$ for every integer a not congruent to zero.
(ii) Prove Fermat's Theorem: For every integer a,

$$
a^{p} \equiv a \bmod p
$$

(iii) Prove Wilson's Theorem:

$$
(p-1)!\equiv-1 \bmod p
$$

4. If $A, B \in \mathrm{GL}(n, \mathbb{R})$, define $A \sim B$ provided $A B^{-1}$ is an orthogonal matrix.
$\mathrm{T} \quad \mathrm{F} \quad \sim$ is an equivalence relation.
Justify your answer.
5. Let

$$
\mathrm{SL}(2, \mathbb{Z})=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in \mathbb{Z} \text { and } a d-b c=1\right\}
$$

(i) Prove the homomorphism $\operatorname{SL}(2, \mathbb{Z}) \longrightarrow \mathrm{SL}\left(2, \mathbb{F}_{p}\right)$ given by reduction modulo p is surjective.
(ii) Determine all possible characteristic polynomials of elements $g \in \mathrm{SL}(2, \mathbb{Z})$ which have finite order. [Hint: The two conditions, $g \in \mathrm{SL}(2, \mathbb{Z})$ and g of finite order place constraints of the coefficients of the characteristic ploynomial.]
(iii) $\mathrm{T} \quad \mathrm{F} \quad$ It is possible to find an element $g \in \mathrm{SL}(2, \mathbb{Z})$ of order 5 .
6. Suppose V is a finite dimensional vector space over a field $F, T: V \longrightarrow V$ is a linear transformation, and $m(x)=p_{1}(x)^{e_{1}} \cdots p_{r}(x)^{e_{r}}$ is a factorization of the minimal polynomial of T into distinct irreducible polynomial factors. Set

$$
q_{i}(x)=\frac{m(x)}{p_{i}(x)^{e_{i}}} .
$$

Then $\operatorname{gcd}\left(q_{1}(x), \ldots, q_{r}(x)\right)=1$, so there exists polynomials $a_{i}(x)$ such that

$$
1=a_{1}(x) q_{1}(x)+\cdots+a_{r}(x) q_{r}(x) .
$$

Set $E_{i}=a_{i}(T) q_{i}(T)$. Notice that $I=E_{1}+\cdots+E_{r}$. Prove:
(i) $E_{i} E_{j}=0$ if $I \neq j$ and $E_{i}=E_{i}{ }^{2}$.
(ii) The image of E_{i}, i.e. $E_{i}(V)$ equals the kernel of $p_{i}(T)^{e_{i}}$.
7. In GL(n), set U to be the subgroup of upper triangular matrices with diagonal entries all 1. Suppose $M \in \mathrm{GL}(\mathrm{n})$ is a permutation matrix. Prove $M U M^{-1}=U$ if and only if M is the identity permutation.

