Math 511 HW 2. Due Monday October 21, 2002

This is the final version of this homework set. It has 7 problems.

1. Prove or provide a counterexample to the statement that if N is a normal subgroup of G and H a normal subgroup of N, then H is a normal subgroup of G.
2. Prove that the ring $M_{n}(\mathbb{C})$ of $\mathrm{n} \times \mathrm{n}$ matrices is a simple r ing. That is the only ideals in $M_{n}(\mathbb{C})$ are either $\{0\}$ or $M_{n}(\mathbb{C})$.
3. If I_{1}, \ldots, I_{n} are ideals in a commutative ring R, the product $I_{1} \cdots I_{n}$ is defined as the set of all finite sums $\sum_{i} a_{i, 1} a_{i, 2} \ldots a_{i, n}$, where $a_{i, j} \in I_{j}$.
(i) Prove the product set is an ideal.
(ii) If R satisfies the hypothesis of the Chinese remainder theorem prove

$$
I_{1} \cap \ldots \cap I_{n}=I_{1} \cdots I_{n}
$$

4. In the polynomial ring $\mathbb{Q}[x, y]$, determine if the ideal $I:=\left(x^{2}+1, y^{2}+1\right)$ generated by $x^{2}+1$ and $y^{2}+1$ is a maximal ideal. Prove your answer.
5. Let $R=\mathbb{Z}[\sqrt{-5}]$ denote the ring of all complex numbers of the form $a+b \sqrt{-5}$ with $a, b \in \mathbb{Z}$. Find an element $r \in R$ which can be written in two distinct ways as a product of (nonassociate) irreducible elements and prove your factors are irreducible.
6. Let $R=\mathbb{Z}[\sqrt{-5}]$ denote the ring of all complex numbers of the form $a+b \sqrt{-5}$ with $a, b \in \mathbb{Z}$. Consider the two principal ideals $I_{1}=2 R$, and $I_{2}=(1+\sqrt{-5}) R$. Set $I:=I_{1}+I_{2}$.
(i) Prove the ideal I is not a principal ideal.
(ii) Compute R / I; in particular, prove I is a maximal ideal.
(iii) Prove the product ideal $I \cdot I$ is a principal ideal $c R$ and find c.
7. Suppose R is a commutative ring. The ring $R[[x]]$ of formal power series is the ring with elements

$$
\sum_{k=0}^{\infty} a_{k} x^{k} \quad a_{k} \in R
$$

and addition, multiplication defined by

$$
\begin{aligned}
\sum_{k=0}^{\infty} a_{k} x^{k}+\sum_{k=0}^{\infty} b_{k} x^{k} & =\sum_{k=0}^{\infty}\left(a_{k}+b_{k}\right) x^{k} \\
\left(\sum_{k=0}^{\infty} a_{k} x^{k}\right) \cdot\left(\sum_{k=0}^{\infty} b_{k} x^{k}\right) & =\sum_{k=0}^{\infty}\left(\sum_{j=0}^{k}\left(a_{j} b_{k-j}\right)\right) x^{k}
\end{aligned}
$$

If $R=K$ is a field, determine all the ideals of $K[[x]]$. [Hint: If the power series $f=\sum_{k=0}^{\infty} a_{k} x^{k}$ has $a_{0} \neq 0$, then f has an inverse in $\left.K[[x]].\right]$

