Math 511 HW 3. Due Monday November 18, 2002

This is the final version of this homework set. It has 7 problems.

- 1. Consider the ring $R := \mathbb{Z}/6\mathbb{Z}$. The ring is not an integral domain since $(2+6\mathbb{Z}) \cdot (3+6\mathbb{Z}) = (0+6\mathbb{Z})$. The set $S := \{1+6\mathbb{Z}, 2+6\mathbb{Z}, 4+6\mathbb{Z}\}$ is a multiplicative subset of R. Determine the ring $S^{-1}R$ obtained by applying the localization procedure to $R \times S$. Note: By definition, $(a,b) \sim (c,d)$ means there is $s \in S$ such that s(ad-bc) = 0.
- 2. Determine how many 3×3 nilpotent matrices there are in $M_3(\mathbb{F}_q)$. A matrix is nilpotent if its characteristic polynomial p(t) is a power of t.
- 3. If the group G acts as automorphisms on the set X, we say the action is doubly transitive if given $x_1 \neq x_2$ and $y_1 \neq y_2$ there is an element $g \in G$ so that $g \cdot x_1 = y_1$ and $g \cdot x_2 = y_2$. Let G be a group that acts doubly transitively on a finite set X and fix $x \in X$.
 - (i) Prove that the stabilizer subgroup $\operatorname{Stab}(x) = \{g \in G \mid g \cdot x = x\}$ is a maximal subgroup of G.
 - (ii) Consider the special case of the action of the group of invertible linear transformations $GL(2,\mathbb{R})$ on one-dimensional subspaces of \mathbb{R}^2 . Prove this action is doubly transitive. By (i), the stabilizer of a line is a maximal subgroup of G. Compute the stabilizer of the span of the usual (column) basis vector e_1 .
- 4. There are $70 = \binom{8}{4}$ ways to color the edges of a regular octagon, coloring four edges red and four edges yellow. The group D_8 of rotation and reflectional symmetries of the octagon has order 16 and acts on the 70 colorings. Determine the number and sizes of the orbits.
- 5. Determine, up to isomorphism, all the nonabelian subgroups of order 12.
- 6. The group $GL(2, \mathbb{F}_3)$ of 2×2 invertible matrices has order $(3^2 1)(3^2 3) = 48$. Determine a composition series for this group. [Hint. How many 1-dimensional subspaces are there in \mathbb{F}_3^2 ? This yields a homomorphism of $GL(2, \mathbb{F}_3)$ to the permutation group of the set of 1-dimensional subspaces and therefore a reduction in the problem.]
- 7. Suppose A is a finite abelian group whose order |A| has prime factorization $p_1^{r_1} \cdots p_s^{r_s}$. Denote by P_i , the p_i -Sylow subgroup of order $p_i^{r_i}$. Prove every element of $a \in A$ is expressible uniquely as $a = a_1 + \cdots + a_s$ ($a_i \in P_i$). This says A is the direct sum of its Sylow subgroups.