Math 511 HW 4. Due Friday December 13, 2002

This is the final version of this homework set. It has 8 problems.

- 1. Determine up to isomorphism all the abelian groups of order 675.
- 2. Find a direct sum of cyclic groups which is isomorphic to the free abelian group generated by four generators u, v, w, x subject to the relations

u	+	v	+	w	_	2x	=	0
u	+	2v	+	w	+	2x	=	0
2u	+	3v	+	2w	+	0	=	0
2u	+	0	+	w	+	2x	=	0

- 3. Given a ring R, suppose M is a right R-module and N is a left R-module. An example of this is the ring of square matrices $R = M_{a \times a}(\mathbb{C})$, and M (resp. N)) is the right (resp. left) R-module of row (resp. column) vectors of size a. The tensor product (over R) of M and N is the abelian group defined as follows.
 - Let F denote the free \mathbb{Z} -module which has a basis $1_{(m,n)}$ indexed by pairs in $M \times N$.
 - Let G be the \mathbb{Z} -module generated by (all) the elements
 - (1) $1_{(m_1+m_2,n)} 1_{(m_1,n)} 1_{(m_2,n)}$, as well as $1_{(m,n_1+n_2)} 1_{(m,n_1)} 1_{(m,n_2)}$
 - (2) $1_{(mr,n)} 1_{(m,rn)}$

Here, $m, m_1, m_2 \in M$, $n, n_1, n_2 \in N$ and $r \in R$.

- The tensor product is defined to be the quotient \mathbb{Z} -module F/G.
- (i) Suppose B is a Z-module and $f: M \times N \longrightarrow B$ with the properties (i1) $f(m_1 + m_2, n) = f(m_1, n) + f(m_2, n)$, (i2) $f(m, n_1 + n_2) = f(m, n_1) + f(m, n_2)$, and (ii) f(mr, n) = f(m, rn). Prove there is a unique Z-module map $\theta: F/G \longrightarrow B$ so that $\theta(1_{(m,n)} + G) = f(m, n)$. Remember, the free Z-module F has a universal property.
- (ii) View the cyclic groups Z/(3) and Z/(6) as right/left Z-modules. Compute their tensor product.
- (iii) **T F** If we think of R^+ , the additive group of R as a left R module, then for any right R-module M, the abelian groups M and the tensor product M with R^+ are isomomorphic. Justify your answer.
- (iv) Prove $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q}$ is isomorphic to \mathbb{Q} .

- (i) If R is a ring, prove $M_{m \times m}(R)^{\text{opp}}$, is isomorphic to $M_{m \times m}(R^{\text{opp}})$.
- (ii) Consider the two subrings of $M_{5\times 5}(\mathbb{C})$ defined as

	/*	*	*	*	* \	(*	*	*	*	* \
	*	*	*	*	*		*	*	*	*	*
$R_1 :=$	0	0	*	*	*	$R_2 :=$	*	*	*	*	*
	0	0	*	*	*		0	0	0	*	*
	$\backslash 0$	0	*	*	*/		0	0	0	*	*/

Verify that

are ideals in R_1 and R_2 respectively.

T F R_1 and R_2 are isomorphic. Justify your answer.

T F R_1^{opp} and R_2 are isomorphic. Justify your answer.

Hint: It is known that if $\theta : R_1 \longrightarrow R_2$ is an isomorphism (or anti-isomorphism), then θ must take I_1 onto I_2 . You may assume this. Properties of the transpose, and the use of the anti-identity matrix are helpful.

- (iii) Extra credit Prove the hint.
- 5. In this problem you will show the group $\operatorname{SL}(2, \mathbb{F}_5)/\{\pm I\}$ is isomorphic to the group A5. Recall the order of $\operatorname{GL}(2, \mathbb{F}_p)$ is $(p^2 1)(p^2 p)$ and that of $\operatorname{SL}(2, \mathbb{F}_p) = \operatorname{ker}(\operatorname{det})$ is $(p^2 1)p$, so the order of $\operatorname{SL}(2, \mathbb{F}_5)$ is $120 = 2^3 \cdot 3 \cdot 5$.
 - (i) By the Sylow Theorem, $SL(2, \mathbb{F}_5)$ contains a subgroup of order 2^3 . Find one. Remember all ℓ -Sylow subgroup are conjugate. [Hint. What is the order of the subgroup of diagonal matrices?]
 - (ii) Determine the structure of your answer in part (i). In particular, list the number of elements of order 2 and 4.
- (iii) Use properties of characteristic polynomials and your answer to part (ii) to prove $SL(2, \mathbb{F}_5)$ contain a subgroup H of size $2^3 \cdot 3$. Hence, H has index 5 in $SL(2, \mathbb{F}_5)$. Use this to exhibit an homomorphism $\theta : SL(2, \mathbb{F}_5) \longrightarrow S5$. Prove the image has size 60, and conclude $SL(2, \mathbb{F}_5)/\{\pm I\}$ is isomorphic to the group A5.

4.

- 6. Suppose R is a possibly non-commutative ring. An R-module is called simple if it is not the zero module and it has no proper R-submodule.
 - (i) Prove that any simple module is isomorphic to R/I where I is a maximal left ideal.
 - (ii) Prove Schur's Lemma: Let $\phi : S \longrightarrow S'$ be a homorphism of simple modules. Then either ϕ is zero, or else it is an isomorphism.
- 7. (Artin §12.8 #2 page 489) Let $R = \mathbb{C}[x, y]$, and let M be the finitely generated R-module which is generated by elements a, b, c and d subject to the two relations

This means M is the quotient of a free R-module \tilde{M} with basis \tilde{a} , \tilde{b} , \tilde{c} , \tilde{d} , by the R-submodule \tilde{K} generated by the two elements

$$\tilde{a} + y\tilde{b} + x\tilde{c} + x^2\tilde{d}$$
 and $x\tilde{a} + (x+3)\tilde{b} + y\tilde{c} + y^2\tilde{d}$.

- (i) Prove M is a free R-module.
- (ii) Prove that for any α , $\beta \in \mathbb{C}$, the matrix

$$\begin{bmatrix} 1 & \beta & \alpha & \alpha^2 \\ \alpha & (\alpha+3) & \beta & \beta^2 \end{bmatrix}$$

has rank 2. [Hint. Your solution part (i) should yield an easy solution to part (ii)]. It is rather amazing that there is a general but difficult result that says the truth of (ii) implies that of (i). See Artin §12.8.]

- 8. Let $R = \mathbb{Z}[\sqrt{-5}]$. Remember that R is not a unique factorization domain. $2 \cdot 3 = (1 + \sqrt{-5}) \cdot (1 \sqrt{-5})$.
 - (i) Prove the ideal $I := 2R + (1 + \sqrt{-5})R$ is not a free module.
 - (ii) Let R^2 be the free *R*-module of size 2 row vectors over *R*, and let $\theta : R^2 \longrightarrow I$ be the *R*-homomorphism

$$\theta[r_1, r_2] = 2r_1 + (1 + \sqrt{-5})r_2$$

Prove the *R*-submodule ker (θ) is not a free *R*-submodule of R^2 . [Hint. Note that both $[3, -(1 + \sqrt{-5})]$ and $[(1 + \sqrt{-5}), -2]$ both belong to the kernel.]

(iii) Prove there is an *R*-monomorphism $\sigma: I \longrightarrow R^2$ so that the composite map $\theta \circ \sigma$ is the identity map of *I*. Since σ is a monomorphism, *I* and $\sigma(I)$ are isomorphic *R*-modules. In your answer specify $\sigma(2)$ and $\sigma(1 + \sqrt{-5})$. Conclude that the free *R*-module R^2 of rank 2 is the direct sum of the two submodules ker(θ) and $\sigma(I)$, each of which is NOT a free *R*-module of rank 1. Recall that a submodule of a free finite rank *d* module over a PID is free of rank at most *d*. This unusual but interesting phenomenon exhibited by the non-PID $\mathbb{Z}[\sqrt{-5}]$, leads to interesting studies. The two modules ker(θ) and $\sigma(I) \cong I$ are called projective modules. Projective modules are generalizations of free modules.