Professor
Hong Kong University of Science and
Technology
Clear Water Bay, Kowloon, Hong
Kong
Office Telephone: (852) 2358-7430, Fax: (852)
2358-1643
Email: maxiang@ust.hk
TEACHING:
MATH
5352 Mathematical Methods in Science and Engineering II
MSDM
5004 Numerical Methods and Modeling in Science
Mathematical Modeling and Simulation in Materials Science
Machine Learning, AI for Science, Image Science
Multiscale and Stochastic Modeling
Partial Differential Equations
1. Y. Wu, L. C. Zhang, Y. Xiang, A Convergent ADMM Algorithm
for Grain Boundary Energy Minimization, arXiv:2412.17058, 2024.
2. L. C. Zhang, X. X. Qin, Y. Xiang, A unified variational model
for grain boundary dynamics incorporating microscopic structure,
arXiv:2411.15747, 2024.
3. M. Hao, J. Yang, W. Yu, B. J. Lawrie, P.
Guo, X. Zhang, T. Duan, T. Xiao, L. Chen, Y. Xiang, P. Guo, M. Ahmadi, Y. Zhou,
Nanoscopic cross-grain
cation homogenization in perovskite solar cells. Nat. Nanotechnol. 2025.
4. X. X. Qin, L. C. Zhang, Y. Xiang, A Three-Dimensional
Continuum Simulation Method for Grain Boundary Motion Incorporating Dislocation
Structure, J. Sci. Comput., 90,3, 2022 (arXiv:2102.00386).
5. X. X. Qin, Y. J. Gu, L. C. Zhang, Y. Xiang, Continuum Model and Numerical Method
for Dislocation Structure and Energy of Grain Boundaries, Multiscale Model.
Simul., 20(1), 323-348, 2022 (arXiv:2101.02596).
6. L. C. Zhang, J. Han, D. J. Srolovitz, Y.
Xiang, Equation of motion
for grain boundaries in
polycrystals, npj Computational Materials, 7, 64, 2021.
7. L. C. Zhang, X. X. Qin, Y. Xiang, Continuum model for
dislocation structures of semicoherent interfaces, Comput. Mater. Sci. 190,
110277, 2021.
8. L. C. Zhang, Y. Xiang, A new formulation of coupling and
sliding motions of grain boundaries based on dislocation structure, SIAM J.
Appl. Math. 80, 2365-2387, 2020. (arXiv:2001.02082)
9. C. Z. Wei, L. C. Zhang, J. Han, D. J.
Srolovitz, Yang Xiang, Grain
boundary triple junction dynamics: A continuum disconnection model, SIAM J.
Appl. Math. 80, 1101-1122, 2020. (arXiv:1907.13469)
10. C. Z. Wei, S. L. Thomas, J. Han, D. J.
Srolovitz, Y. Xiang, A
continuum multi-disconnection-mode model for grain boundary migration, J.
Mech. Phys. Solids, 133, 103731, 2019.
11. S. L. Thomas, C.Z. Wei, J. Han, Y. Xiang, D.
J. Srolovitz, Disconnection
description of triple junction motion, Proc. Natl. Acad. Sci. (PNAS), 116,
8756-8765, 2019.
12. Y.J. Gu, Y. Xiang, D.J. Srolovitz, J.A.
El-Awady, Self-healing
of low angle grain boundaries by vacancy diffusion and dislocation climb,
Scripta Mater., 155, 155-159, 2018.
13. L.C. Zhang and Y. Xiang, Motion of grain boundaries
incorporating dislocation structure, J. Mech. Phys. Solids, 117, 157-178,
2018. (arXiv:1710.01856, 2017)
14. Y.C. Zhu, J. Luo, X. Guo, Y. Xiang, S.J.
Chapman, The role of
grain boundaries under long-time radiation, Phys. Rev. Lett., 120, 222501,
2018.
15. L.C. Zhang, J. Han, Y. Xiang, and D.J.
Srolovitz, The
equation of motion for a grain boundary, Phys. Rev. Lett. 119, 246101,
2017.
16. Y. Xiang and X.D. Yan, Stability of dislocation networks
on low angle grain boundaries using a continuum energy formulation, Dis.
Cont. Dyn. Sys. B, 23, 2989-3021, 2018.
17. Y.C. Zhu, J. Wang, Y. Xiang, and X. Guo, A three-scale homogenisation
approach to the prediction of long-time absorption of radiation induced
interstitials by nanovoids at interfaces, J. Mech. Phys. Solids, 105,
1-20, 2017.
18. Y.J. Gu, J. Han, S.Y. Dai, Y.C. Zhu, Y.
Xiang, and D. J. Srolovitz, Point defect sink
efficiency of low-angle tilt grain boundaries, J. Mech. Phys. Solids, 101,
166-179, 2017.
19. L.C. Zhang, Y.J. Gu, and Y. Xiang, Energy of low angle
grain boundaries based on continuum dislocation structure, Acta Mater.,
126, 11-24, 2017. (arXiv:1610.04318,
2016)
20. S.Y. Dai, Y. Xiang, and D. J. Srolovitz, Twisted bilayer graphene:
Moire with a twist, Nano Lett. 16, 5923-5927, 2016.
21. S.Y. Dai, Y. Xiang, and D. J. Srolovitz, Structure and energetics of
interlayer dislocations in bilayer graphene, Phys. Rev. B, 93, 085410,
2016.
22. Y.J. Gu, Y. Xiang, and D.J. Srolovitz, Relaxation of low
angle grain boundary structure by climb of the constituent dislocations,
Scripta Mater., 114, 35-40, 2016.
23. X.H. Zhu and Y. Xiang, Continuum framework for
dislocation structure, energy and dynamics of dislocation arrays and low angle
grain boundaries, J. Mech. Phys. Solids, 69, 175-194, 2014.
24. S.Y. Dai, Y. Xiang, and D. J. Srolovitz,
Atomistic, generalized
Peierls-Nabarro, and analytical models for (111) twist boundaries in Al, Cu and
Ni for all twist angles, Acta Mater, 69, 162-174, 2014.
25. S.Y. Dai, Y. Xiang, and D. J. Srolovitz, Structure and energy of
(111) low angle twist boundaries in Al, Cu and Ni, Acta Mater., 61(4),
1327-1337, 2013.
26. X.H. Zhu, S.Y. Dai, and Y. Xiang, Numerical simulation of
dynamics of dislocation arrays and long-range stress fields of nonplanar
dislocation arrays, Int. J. Plasticity, 43, 85-100, 2013.
27. X.H. Zhu and Y. Xiang, A continuum model for the
dynamics of dislocation arrays, Commun. Math. Sci., 10(4), 1081-1103, 2012.
28. S.S. Quek, Y. Xiang, and D. J. Srolovitz, Loss of interface
coherency around a misfitting spherical inclusion, Acta Mater., 59(14),
5398-5410, 2011.
29. S.Y. Dai, Y. Xiang, and T.Y. Zhang, A continuum model for
core relaxation of incoherent twin boundaries based on the Peierls-Nabarro
framework, Scripta Mater., 64(5), 438-441, 2011.
30. X.H. Zhu and Y. Xiang, Stabilizing force on
perturbed grain boundaries using dislocation model, Scripta Mater., 64(1),
5-8, 2011.
1. Y. T. Huang, S. Y. Dai, C. Q. Chen, Y.
Xiang, A phase field model
for deformation-induced amorphization, arXiv:2407.19043, 2024.
2. X. X.
Qin, A. H.W. Ngan, Y. Xiang, A threshold dislocation
dynamics method, Commun. Comput. Phys.35(2), 273-312, 2024.
(arXiv:2307.13653).
3. Y. H. Yang, L. C. Zhang, Y. Xiang, Stochastic continuum models for
high-entropy alloys with short-range order, Multiscale Model. Simul.
21 (4), 1323-1343, 2023. (arXiv:2205.07186)
4. C. T. Huang, S. Y. Dai, X. H. Niu, T. P.
Jiang, Z. J. Yang, Y. J. Gu, Y. Xiang, A continuum model for
dislocation climb, International Journal of Plasticity, 168, 103700, 2023.
(arXiv:2304.05604).
5. X.H. Niu, Y. Xiang, X.D. Yan, Well-posedness of a
modified degenerate Cahn-Hilliard model for surface diffusion,
Communications in Mathematical Sciences 22 (2), 487-517, 2024. (arXiv:2202.13492).
6. A. Kalaei, Y. Xiang, A. H.W. Ngan, An efficient and minimalist
scheme for continuous dislocation dynamics, International Journal of
Plasticity, 158, 103433, 2022.
7. P. C. Zhu, L. Yu, Y. Xiang, Weak solutions to an
initial-boundary value problem for a continuum equation of motion of grain
boundaries, Discrete and Continuous Dynamical Systems Series B, in press,
2022.
8. T. Luo, Y. Xiang, J. Z. Yang, Finite temperature Cauchy-Born rule
and stability of crystalline solids with point defects, Multiscale Model.
Simul., 19(4), 1710-1735, 2021.
9. Y. H. Yang, T. Luo, and Y. Xiang, Convergence from Atomistic
Model to Peierls-Nabarro Model for Dislocations in Bilayer System with Complex
Lattice, Commun. Math. Sci. 20(4), 947-986, 2022 (arXiv:2103.09412).
10. T. Luo, Y. Xiang, J. Z. Yang, C. Yuan, Cauchy-Born rule and
stability of crystalline solids at finite temperature, Commun. Math. Sci.
19(6), 1461-1490, 2021.
11. X. H. Niu, Y. Xiang, X.D. Yan, Phase field model for
self-climb of prismatic dislocation loops by vacancy pipe diffusion, Int.
J. Plasticity, 141, 102977, 2021.
12. S.Y. Dai, F. R. Wang, Y. Xiang, Z.J Yang,
and C. Yuan, Boundary
Condition for Dislocation Dynamic Simulation in BCC Crystal, CSIAM Trans.
Appl. Math., 2, 175-194, 2021.
13. Y. Gao, J.-G. Liu, T. Luo, and Y. Xiang, Revisit of the Peierls-Nabarro
model for edge dislocations in Hilbert space, Dis. Cont. Dyn. Sys. B, 26, 3177-3207, 2021
(arXiv:1907.07281).
14. T. P. Jiang, Y. Xiang, and L. C. Zhang, Stochastic Peierls-Nabarro model for
dislocations in high entropy alloys, SIAM J. Appl. Math. 80(6), 2496-2517, 2020. (arXiv:2004.09375)
15. Z. C. Zhou, Y. C. Zhu, J. Luo, Y. Xiang, and
X. Guo, Upscaling
dislocation dynamics using machine learning tools guided by a
physically-oriented curriculum devised from asymptotic analysis, Int. J.
Solids Struct. 198, 57-71, 2020.
16. X.H. Niu, Y.J. Gu, and Y. Xiang, Dislocation dynamics
formulation for self-climb of dislocation loops by vacancy pipe diffusion,
Int. J. Plasticity, 120, 262-277, 2019. (arXiv:1901.05174, 2019.)
17. L.C. Zhang, Y. Xiang, J. Han, and D.J.
Srolovitz, The effect
of randomness on the strength of high-entropy alloys, Acta Mater., 166,
424-434, 2019.
18. T. Luo, P. B. Ming, and Y. Xiang, From Atomistic Model to the
Peierls-Nabarro Model with Gamma-surface for Dislocations, Arch. Ration.
Mech. Anal, 230, 735-781, 2018. (arXiv:1706.03145, 2017)
19. X. H. Niu, Y. C. Zhu, S. Y. Dai, and Y.
Xiang, A continuum model
for distributions of dislocations
incorporating short-range interactions, Commun. Math. Sci., 16, 491-522, 2018.
20. X. H. Niu, T. Luo, J. F. Lu, and Y. Xiang, Dislocation climb models
from atomistic scheme to dislocation dynamics, J. Mech. Phys. Solids, 99,
242-258, 2017. (arXiv:1607.08734,
2016)
21. S. D. Jiang, M. Rachh, and Y. Xiang, An efficient high order method for
dislocation climb in two dimensions, SIAM Multiscale Model. Simul, 15,
235-253, 2017.
22. Y.C. Zhu, X.H. Niu, and Y. Xiang, Continuum dynamics of the
formation, migration and dissociation of self-locked dislocation structures on
parallel slip planes, J. Mech. Phys. Solids, 96, 369-387, 2016.
23. S. J. Chapman, Y. Xiang, and Y. C. Zhu, Homogenisation of a row of
dislocation dipoles from discrete dislocation dynamics, SIAM J. Appl.
Math., 76(2), 750-775, 2016.
24. Y.C. Zhu, Y. Xiang, and K. Schulz, The role of
dislocation pile-up in flow stress determination and strain hardening,
Scripta Mater., 116, 53-56, 2016.
25. Y.C. Zhu and Y. Xiang, A continuum model for
dislocation dynamics in three dimensions using the dislocation density
potential functions and its application to micro-pillars, J. Mech. Phys.
Solids, 84, 230-253, 2015.
26. Y.J. Gu, Y. Xiang, S.S. Quek, and D.J.
Srolovitz, Three-dimensional
formulation of dislocation climb, J. Mech. Phys. Solids, 83, 319-337, 2015.
27. A.Y. Zhu, C.M. Jin, D.G. Zhao, Y. Xiang, and
J.F. Huang, A numerical
scheme for generalized Peierls-Nabarro model of dislocations based on the fast
multipole method and iterative grid redistribution, Commun. Comput. Phys,
18, 1282-1312, 2015.
28. Y.C. Zhu, H.Q. Wang, X.H. Zhu, and Y. Xiang,
A continuum model for
dislocation dynamics incorporating Frank-Read sources and Hall-Petch relation
in two dimensions, Int. J. Plasticity, 60, 19-39, 2014.
29. H.Q. Wang and Y. Xiang, An adaptive level set method based on
two-level uniform meshes and its application to dislocation dynamics, Int.
J. Numer. Meth. Engng, 94(6), 573-597, 2013.
30. D.G. Zhao. H. Wang, and Y. Xiang, Asymptotic behaviors of
the stress fields in the vicinity of dislocations and dislocation segments,
Phil. Mag., 92(18), 2351-2374, 2012.
31. D.G. Zhao, J.F. Huang, and Y. Xiang, Fast multipole accelerated
boundary integral equation method for evaluating the stress field associated
with dislocations in a finite medium, Commun. Comput. Phys., 12(1),
226-246, 2012.
32. C.M. Jin, Y. Xiang, and G. Lu, Dislocation cross-slip
mechanisms in aluminum, Phil. Mag., 91(32), 4109-4125, 2011.
33. X.H. Zhu and Y. Xiang, Continuum model for
dislocation dynamics in a slip plane, Phil. Mag., 90 (33), 4409-4428, 2010.
34. D.G. Zhao, J.F. Huang, and Y. Xiang, A new version fast
multipole method for evaluating the stress field of dislocation ensembles,
Modelling Simul. Mater. Sci. Eng., 18(4), 045006, 2010.
35. C.M. Jin, W. Ren, and Y. Xiang, Computing transition
rates of thermally activated events in dislocation dynamics, Scripta
Mater., 62(4), 206-209, 2010.
36. S. S. Quek, Y. W. Zhang, Y. Xiang, and D. J.
Srolovitz, Dislocation
cross-slip in heteroepitaxial multilayer films, Acta Mater., 58(1), 226-234, 2010 .
37. H. Wei and Y. Xiang, A generalized
Peierls-Nabarro model for kinked dislocations, Phil. Mag., 89(27),
2333-2354, 2009.
38. Y. Xiang, Continuum
approximation of the Peach-Koehler force on dislocations in a slip plane,
J. Mech. Phys. Solids, 57(4), 728-743, 2009.
39. H. Wei, Y. Xiang, and P.B. Ming, A
generalized Peierls-Nabarro model for curved dislocations using discrete
Fourier transform, Commun. Comput. Phys., 4(2), 275-293, 2008.
40. Y. Xiang, H. Wei, P.B. Ming, and W. E, A generalized
Peierls-Nabarro model for curved dislocations and core structures of
dislocation loops in Al and Cu, Acta Mater., 56(7), 1447-1460, 2008.
41. S.S. Quek, Z. Wu, Y.W. Zhang, Y. Xiang, and
D.J. Srolovitz, Dislocation
junctions as barriers to threading dislocation migration, Appl. Phys.
Lett., 90, 011905, 2007.
42. Y. Xiang and D.J. Srolovitz, Dislocation climb
effects on particle bypass mechanisms, Phil. Mag., 86, 3937-3957, 2006.
43. Y. Xiang, Modeling
dislocations at different scales, Commun. Comput. Phys., 1(3), 383-424,
2006.
44. S.S. Quek, Y. Xiang, Y.W. Zhang, D.J.
Srolovitz, and C. Lu, Level set simulation
of dislocation dynamics in thin films, Acta Mater., 54(9), 2371-2381, 2006.
45. Y. Xiang, D.J. Srolovitz, L.T. Cheng, and W.
E, Level set
simulations of dislocation-particle bypass mechanisms, Acta Mater., 52 (7),
1745-1760 , 2004.
46. Y. Xiang, L.T. Cheng, D.J. Srolovitz, and W.
E, A level set
method for dislocation dynamics, Acta Mater., 51(18), 5499-5518, 2003.
1. G. H. Fan, T. Luo, and Y. Xiang, Existence and energy
scaling of 2+1 dimensional continuum model for stepped epitaxial surfaces with
elastic effects, CSIAM Trans. Appl. Math., 4(3), 419-450, 2023 (arXiv:2103.09157).
2. T. Luo, Y. Xiang, and N. K. Yip, Bunching instability and
asymptotic properties in epitaxial growth with elasticity effects: Continuum
model, arXiv:2204.10051, 2022.
3. T. Luo, Y. Xiang, and N. K. Yip, Energy scaling and asymptotic
properties of one-dimensional discrete system with generalized Lennard--Jones (m,n) interaction, J. Nonlinear Sci.
31, 43, 2021. (arXiv:2004.12279)
4. T. Luo, Y. Xiang, and N. K. Yip, Energy scaling and asymptotic
properties of step bunching in epitaxial growth with elastic effects,
Multiscale Model. Simul., 44(2),
737-771, 2016.
5. X.H. Zhu, H.Y. Xu and Y. Xiang, Continuum
model for the long-range elastic interaction on stepped epitaxial surfaces in
2+1 dimensions, Phys. Rev. B, 79(12), 125413, 2009.
6. H.Y. Xu and Y. Xiang, Derivation of a continuum model for
the long-range elastic interaction on stepped epitaxial surfaces in 2+1
dimensions, SIAM J. Appl. Math., 69(5), 1393-1414, 2009.
7. J.F. Huang, M.C. Lai, and Y. Xiang, An integral equation
method for epitaxial step-flow growth simulations, J. Comput. Phys.,
216(2), 724-743, 2006.
8. Y. Xiang and W. E, Misfit elastic energy and a
continuum model for epitaxial growth with elasticity, Phys. Rev. B, 69,
035409, 2004.
10. Y. Xiang, and W. E, Nonlinear evolution equation of the
stress-driven morphological instability, J. Appl. Phys.,
91, 9414-9422, 2002.
1. T. P. Jiang and Y.
Xiang, Computation
of transverse-electric polarized optical eigenstates in dielectric systems
based on perfectly matched layer, Phys. Rev. E 105, 045309, 2022
2. T. P. Jiang and Y.
Xiang, Perfectly matched
layer method for optical modes in dielectric cavities, Phys. Rev. A 102,
053704, 2020.
3. T. P. Jiang and Y.
Xiang, Perturbation method
for optical modes in deformed disks, Phys. Rev. A 99, 023847, 2019.
1. C. Q. Chen, Y. H. Yang, Y. Xiang, W. R. Hao,
Learn Sharp Interface
Solution by Homotopy Dynamics, arXiv:2502.00488, 2025.
2. K. B. Wang, X. W. Fu, Y. X. Han, Y. Xiang, DiffHammer: Rethinking the
Robustness of Diffusion-based Adversarial Purification, Conference on
Neural Information Processing Systems (NeurIPS) 2024.
3. C.Q. Chen, Q.X. Zhou, Y.H. Yang, Y. Xiang,
T. Luo, Quantifying
Training Difficulty and Accelerating Convergence in Neural Network-Based PDE
Solvers, arXiv:2410.06308, 2024.
4. X. W. Fu, B. X. Wang, X. Z. Guo, G. Q. Liu,
Y. Xiang, Differentially
Private Multimodal Laplacian Dropout (DP-MLD) for EEG Representative Learning,
arXiv:2409.13440, 2024.
5. T. Y. Jin, G. Maierhofer, K. Schratz, Y.
Xiang, A fast neural hybrid
Newton solver adapted to implicit methods for nonlinear dynamics, Journal
of Computational Physics, 529, 113869, 2025 (arXiv:2407.03945).
6. C.Q. Chen, Y.H. Yang, Y. Xiang, W.R. Hao, Automatic Differentiation is
Essential in Training Neural Networks for Solving Differential Equations,
arXiv:2405.14099, 2024
7. J. An, J. Lu, Y. Wu, Y. Xiang, Why does the two-timescale
Q-learning converge to different mean field solutions? A unified convergence
analysis, arXiv:2404.04357, 2024.
8. J.Y. Fan, Y.X Han, J.L Zeng, J.-F. Cai, Y.
Wang, Y. Xiang, J.H. Zhang, RL
in Markov Games with Independent Function Approximation: Improved Sample
Complexity Bound under the Local Access Model, International Conference on
Artificial Intelligence and Statistics (AISTATS) 2024, PMLR, 238: 2035-2043, 2024 (arXiv:2403.11544).
9. Y. Wu, T.Y. Jin, C.Q. Chen, G.H. Fan, Y.
Lan, L.C. Zhang, Y. Xiang, Energy
stable neural network for gradient flow equations, arXiv:2309.10002, 2023.
10. Y.X. Feng, Y. Lan, L.C. Zhang, Y.
Xiang. ElasticLaneNet: A
Geometry-Flexible Approach for Lane Detection, IEEE/CVF Winter Conference on
Applications of Computer Vision (WACV) 2025. (arXiv:2312.10389, 2023).
11. Y.X. Feng, Y. Lan, L.C. Zhang, Y. Xiang. Elastic Interaction Energy
Loss for Traffic Image Segmentation, arXiv:2310.01449, 2023.
12. Y.H. Yang, Y. Wu, H.Z. Yang, Y. Xiang, Nearly Optimal Approximation
Rates for Deep Super ReLU Networks on Sobolev Spaces, arXiv:2310.10766,
2023.
13. B.X. Wang, X.W. Fu, Y. Lan, L.C. Zhang, Y.
Xiang, Large Transformers
are Better EEG Learners, arXiv:2308.11654, 2023.
14. Y.H. Yang, H.Z. Yang, Y. Xiang, Nearly Optimal VC-Dimension
and Pseudo-Dimension Bounds for Deep Neural Network Derivatives, Conference
on Neural Information Processing Systems (NeurIPS) 2023. (arXiv:2305.08466,
2023).
15. J.F. Lu, Y. Wu, Y. Xiang, Score-based Transport Modeling
for Mean-Field Fokker-Planck Equations, Journal of Computational Physics,
503, 112859, 2024. (arXiv:2305.03729)
16. C.Q. Chen, Y. Wu, Y. Xiang, Stability Analysis Framework
for Particle-based Distance GANs with Wasserstein Gradient Flow,
arXiv:2307.01879, 2023.
17. C.Q. Chen, Y. Wu, Y. Xiang, Elastic Interaction
Energy-Based Generative Model: Approximation in Feature Space,
arXiv:2303.10553, 2023.
18. Y. Lan, Z. Li, J. Sun, Y. Xiang, DOSnet as a Non-Black-Box PDE
Solver: When Deep Learning Meets Operator Splitting, Journal of
Computational Physics, 491, 112343, 2023. (arXiv:2212.05571, 2022)
19. C. T. Huang, Z. J. Liu, S. Y. Bai, L. W.
Zhang, C. C. Xu, Y. Xiang, Y. P. Xiong, PF-ABGen:
A Reliable and Efficient Antibody Generator via Poisson Flow, ICLR 2023
Machine Learning for Drug Discovery (MLDD) Workshop, 2023.
20. Y. X. Han, J. L. Zeng, Y. Wang, Y. Xiang, J.
H. Zhang, Optimal
Contextual Bandits with Knapsacks under Realizibility via Regression Oracles,
International Conference on Artificial Intelligence and
Statistics (AISTATS) 2023, PMLR 206:5011-5035, 2023. (arXiv:2210.11834)
21. X. W. Fu, Y. Xiang, X. Z. Guo, Differentially private
confidence interval on extreme of parameters, arXiv:2303.02892, 2023.
22. Y. Lan, L. Qin, Z.Y. Sun, Y. Xiang, J. Sun, GOLLIC: Learning global
context beyond patches for lossless high-resolution image compression,
arXiv:2210.03301, 2022.
23. Y. H. Yang and Y. Xiang, Approximation of Functionals by
Neural Network without Curse of Dimensionality, J. Mach. Learn., 1(4),
342-372, 2022 (arXiv:2205.14421).
24. Y. Wu, Y. Lan, L. Zhang, Y. Xiang, Feature Flow
Regularization: Improving Structured Sparsity in Deep Neural Networks,
Neural Networks, 161, 598-613, 2023 (arXiv:2106.02914).
25. Y. Lan, Y. Xiang, L. C. Zhang, An elastic interaction
based loss function for medical image segmentation, The 23rd International
Conference on Medical Image Computing and Computer Assisted Intervention
(MICCAI 2020), Lima, Peru, October 4-8, 2020. MICCAI 2020. Lecture Notes in
Computer Science, vol 12265, pp 755-764. (arXiv: 2007.02663)
.
26. Y. Xiang, A.C.S. Chung, and J. Ye, An active contour model
for image segmentation based on elastic interaction, J. Comput. Phys.,
219(1), 455-476, 2006.
27. A.C.S. Chung, Y. Xiang, J. Ye, and W.K. Law,
Elastic interaction models for
active contours and surfaces, The International Workshop on Computer Vision
for Biomedical Image Applications: Current Techniques and Future Trends, The
Tenth IEEE International Conference on Computer Vision (CVBIA 2005), Beijing,
China, Oct, 2005, LNCS 3765, pp. 314-323.
28. Y. Xiang, A.C.S. Chung, and J. Ye, A new active contour method based
on elastic interaction, IEEE International Conference on Computer Vision
and Pattern Recognition 2005 (CVPR 2005), San Diego, CA, USA, June 20-26, 2005,
Vol. 1, 452-457.