
Advanced Numerical Methods

Topic 2 – Finite difference methods

2.1 Discretization of the Black-Scholes equation

• Explicit schemes
• Crank-Nicolson scheme

2.2 Pricing of American options

• Front fixing method
• Point relaxation method

2.3 Numerical approximation of auxiliary conditions

• Barrier options
• Lookback options

2.4 Properties of numerical solutions

• Truncation errors and order of convergence
• Numerical stability
• Spurious oscillations
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2.1 Discretization of the Black-Scholes equation

Black-Scholes equation:
∂V

∂t
+ rS

∂V

∂S
+

σ2

2
S2∂2V

∂S2
− rV = 0.

Use the transformed variables: τ = T − t, x = lnS,

∂

∂t
= − ∂

∂τ
,

∂

∂S
=

1

S

∂

∂x
or S

∂

∂S
=

∂

∂x
∂2

∂x2
= S

∂

∂S

(
S

∂

∂S

)
= S2 ∂2

∂S2
+ S

∂

∂S
so that S2 ∂2

∂S2
=

∂2

∂x2
− ∂

∂x
.

The transformed Black-Scholes equation now has constant coefficients:

∂V

∂τ
=

σ2

2

∂2V

∂x2
+

(
r − σ2

2

)
∂V

∂x
− rV, τ > 0,−∞ < x < ∞.

To absorb the discount term, we let W = erτV , then

∂W

∂τ
=

σ2

2

∂2W

∂x2
+

(
r − σ2

2

)
∂W

∂x
, τ > 0,−∞ < x < ∞.
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Remark

There has always been a debate on the choice of either S or x = lnS as

the independent state variable.

• If S is used, then the diffusion coefficient
σ2

2
S2 is state dependent.

Its value may become very small when S is close to zero. Small value

of diffusion coefficient may force the use of small time step in explicit

schemes due to numerical stability consideration.

• One may prefer uniform step width in the actual asset price S, like

increment ∆S of $1 rather than uniform step width in lnS. The

increment ∆x corresponds to the proportional jump e∆x in the asset

price. Note that proportional jumps on the asset price are adopted in

the binomial/trinomial tree calculations.
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Discretization of the domain

Transform the domain of the continuous problem

{(x, τ) : −∞ < x < ∞, τ ≥ 0}

into a discretized domain.

Infinite domain of x = lnS is approximated by a finite truncated interval

[−M1, M2], M1 and M2 are sufficiently large. The discretized domain is

overlaid with a uniform system of meshes (j∆x, n∆τ), j = 0,1, · · · , N +

1, n = 0,1,2, · · · with (N + 1)∆x = M1 + M2.

Step width ∆x and time step ∆τ are in general independent. Option

values are computed only at the grid points. To reflect the Brownian

nature of the asset price process, it is common to choose ∆τ = O(∆x2).

While we perform backward induction in trinomial calculations (going

backwards in calendar time), we march forwards in the temporal variable

τ (time to expiry) in the finite difference calculations.

4



x
n = 0

n = 1

n = 2

-M1

j = 0

),( nxj

x

M2

j = N + 1

Finite difference mesh with uniform stepwidth ∆x and time step ∆τ .

Numerical option values are computed at the node points (j∆x, n∆τ), j =

1,2, · · · , N , n = 1,2, · · · . Option values along the boundaries: j = 0 and

j = N +1 are prescribed by the boundary conditions of the option model.

The “initial” values V 0
j along the zeroth time level, n = 0, are given by

the terminal payoff function.
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Respective forward difference, backward difference and centered differ-

ence formula at the (j∆x, n∆τ) node:

V n
j+1 − V n

j

∆S
,
V n

j − V n
j−1

∆S
and

V n
j+1 − V n

j−1

2∆S
.

Approximations to the delta or
∂V

∂S
.
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Why the centered difference achieves higher order of accuracy compared

to the forward difference or backward difference?

Consider the centered difference approximation

f ′(x) ≈ f(x + ∆x) − f(x − ∆x)

2∆x
,

by performing the Taylor expansion of f(x+∆x) and f(x−∆x), we obtain

f(x + ∆x) − f(x −∆x)

2∆x

=

[
f(x) + f ′(x)∆x +

f ′′(x)
2!

∆x2 +
f ′′′(x)

3!
∆x3 +

f ′′′′(x)
4!

∆x4 + · · ·
]

−
[
f(x) − f ′(x)∆x +

f ′′(x)
2!

∆x2 − f ′′′(x)
3!

∆x3 +
f ′′′′(x)

4!
∆x4 + · · ·

]/
(2∆x)

= f ′(x) +
f ′′′(x)

6
∆x2 + · · ·

so that

f(x + ∆x) − f(x − ∆x)

2∆x
= f ′(x) +

f ′′′(x)
6

∆x2 + O(∆x4).
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For the forward difference approximation:

f(x + ∆x) − f(x)

∆x

= f ′(x) +
f ′′(x)

2
∆x + O(∆x)2

so that it approximates f ′(x) only up to O(∆x) accuracy.

In order to achieve O(∆x2) using forward difference, it is necessary to

include 3 points, where

f ′(x) ≈ −f(x + 2∆x) + 4f(x + ∆x) − 3f(x)

2∆x
+ O(∆x2).

The corresponding 3-point backward difference formula can be deduced

to be

f ′(x) ≈ f(x − 2∆x) − 4f(x − ∆x) + 3f(x)

2∆x
+ O(∆x2).
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Difference formula for the second order derivative

To achieve second order accuracy, we need to use 4 points.

f ′′(x) = α0f(x)+α1f(x+∆x)+α2f(x+2∆x)+α3f(x+3∆x)+O(∆x2).

We expand f(x + j∆x), j = 1,2,3, at x, and equate the coefficient of

f(x), f ′(x) and f ′′′(x) to be zero and the coefficient of f ′′(x) to be one.

The leading error term would be O(∆x2) and involving f ′′′′(x).

α0 + α1 + α2 + α3 = 0

α1 + 2α2 + 3α3 = 0

(α1 + 4α2 + 9α3)(∆x2/2) = 1

α1 + 8α2 + 27α3 = 0.

We obtain the forward difference formula:

f ′′(x) ≈ 2f(x0) − 5f(x + ∆x) + 4f(x + 2∆x) − f(x + 3∆x)

∆x2
+ O(∆x2).

Similarly, the backward difference formula is given by

f ′′(x) ≈ 2f(x0) − 5f(x −∆x) + 4f(x − 2∆x) − f(x − 3∆x)

∆x2
+ O(∆x2).
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Explicit schemes

Let V n
j denote the numerical approximation of V (j△x, n△τ). The contin-

uous temporal and spatial derivatives are approximated by the following

finite difference operators

∂V

∂τ
(j△x, n△τ) ≈

V n+1
j − V n

j

△τ
(forward difference)

∂V

∂x
(j△x, n△τ) ≈

V n
j+1 − V n

j−1

2△x
(centered difference)

∂2V

∂x2
(j△x, n△τ) ≈

V n
j+1 − 2V n

j + V n
j−1

△x2
(centered difference)

In terms of Wn
j , by substituting the corresponding difference approxima-

tions into the differential equation for W , we have

Wn+1
j − Wn

j

∆τ
=

σ2

2

Wn
j+1 − 2Wn

j + Wn
j−1

∆x2
+

(
r − σ2

2

)
Wn

j+1 − Wn
j−1

2∆x
.
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By taking

Wn+1
j = er(n+1)∆τV n+1

j and Wn
j = ern∆τV n

j ,

then canceling ern∆τ , we obtain the following explicit Forward-Time-

Centered-Space (FTCS) finite difference scheme:

V n+1
j =

[
V n

j +
σ2

2

△τ

△x2

(
V n

j+1 − 2V n
j + V n

j−1

)

+

(
r − σ2

2

)
△τ

2△x

(
V n

j+1 − V n
j−1

)]
e−r△τ .

• Suppose we are given “initial” values V 0
j , j = 0,1, · · · , N + 1 along

the zeroth time level, we can use the explicit scheme to find values

V 1
j , j = 1,2, · · · , N along the first time level at τ = △τ .

• The values at the two ends V 1
0 and V 1

N+1 are given by the numerical

boundary conditions specified for the option model.
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Two-level four-point explicit schemes

V n+1
j = b1V n

j+1 + b0V n
j + b−1V n

j−1, j = 1,2, · · · , N, n = 0,1,2, · · · .

The above FTCS scheme corresponds to

b1 =

[
σ2

2

△τ

△x2
+

(
r − σ2

2

)
△τ

2△x

]
e−r∆τ ,

b0 =

[
1 − σ2 △τ

△x2

]
e−r∆τ ,

b−1 =

[
σ2

2

△τ

△x2
−
(

r − σ2

2

)
△τ

2△x

]
e−r∆τ .

This resembles the trinomial scheme by observing

1

λ2
=

σ2∆τ

∆x2
.

Both the binomial and trinomial schemes are members of the family when

the reconnecting condition ud = 1 holds.
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The up-jump in x = lnS is given by lnu in the binomial scheme while the

corresponding up-jump in x in the finite difference scheme is ∆x, so that

△x = ln u. Similarly, ln d = −△x. The binomial scheme can be expressed

as

V n+1(x) =
pV n(x + △x) + (1 − p)V n(x −△x)

R
, x = lnS, and R = er△τ ,

where V n+1(x), V n(x + △x) and V n(x − △x) are analogous to c, c∆t
u and

c∆t
d , respectively. This corresponds to

b1 = p/R, b0 = 0 and b−1 = (1 − p)/R.

In the Cox-Ross-Rubinstein scheme, they are related by ∆x = lnu =

σ
√

∆τ or σ2∆τ = ∆x2. In the trinomial scheme, their relation is given

by λ2σ2∆τ = ∆x2, where the free parameter λ can be chosen arbitrarily,

provided λ ≥ 1.
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The lattice tree calculations confine computation of option values within

a triangular domain of dependence. This may be seen to be more efficient

when single option value at given values of S and τ is required.

The domain of dependence of a binomial scheme with n time steps to expiry.

In terms of x, the width of the domain of dependence = 2n∆x = 2n lnu =

2nσ
√

∆τ .
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Negligence of boundary conditions

• With respect to x = lnS, the width of the domain of dependence of a

binomial scheme can be shown to be
√

n, where n is the total number

of time steps. That is, the width is doubled when the number of time

steps is increased by 4-fold.

• However, the width of the domain of the continuous European vanilla

option model is infinite while that of a barrier option is semi-finite

(one-sided barrier) or finite (two-sided barriers).

• For example, an up-and-out put option with an upstream knock-out

barrier B would have its domain of definition defined for −∞ < x <

lnB. In general, a rebate is paid upon knock-out so that the barrier

put option value equals the rebate value upon knock-out. That is,

pbarrier(lnB, τ) = R(τ),

where R(τ) is the time dependent rebate function.
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• Suppose boundary nodes are not included in the domain of depen-

dence, then the boundary conditions of the option model do not have

any effect on the numerical solution of the discrete model. This neg-

ligence of the boundary conditions does not reduce the accuracy of

calculations when the boundary points are at infinity, as in vanilla

option models where the domain of definition for x = lnS is infinite.

• This is no longer true when the domain of definition for x is truncated,

as in the barrier option models. To achieve a high level of numerical

accuracy, it is important that the numerical scheme takes into account

the effect of boundary conditions.
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Final conditions and payoffs

At expiry the option value is just the payoff function, we have

V (S, T) = Payoff(S),

or, in our finite-difference notation,

V 0
j = Payoff(j ∆S).

For example, if we are pricing a call option we put

V 0
j = max(j ∆S − X,0).

Boundary conditions

We must specify the option value along the two boundaries of the com-

putational domain. What we specify will depend on the type of option

we are solving.
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Here, we use S as the independent state variable.

1. To price a call option; at S = 0, V n
0 = 0.

For large S, the call value tends to S − Xe−r(T−t).

V n
M = (N + 1)∆S − Xe−rn∆τ .

2. For a put option, at S = 0, V = Xe−r(T−t) so that

V n
0 = Xe−rn∆τ .

The put option becomes worthless for large S so that

V n
N+1 = 0.

18



3. When the option has a payoff that is at most linear in the underlying

for large values of S then you can use the upper boundary condition

∂2V

∂S2
(S, t) → 0 as S → ∞.

Almost all common contracts have this property. This is particularly

useful because it is independent of the contract being valued. We set
∂2V

∂S2
along the nodes at j = N + 1 to be zero. Using the backward

difference formula:

∂2V

∂S2

∣∣∣∣∣
(N+1,n)

≈
2V n

N+1 − 5V n
N + 4V n

N−1 − V n
N−2

∆S2
= 0

so that

V n
N+1 =

5V n
N − 4V n

N−1 + V n
N−2

2
.

We obtain the boundary value V n
N+1 in terms of interior values V n

N , V n
N−1

and V n
N−2.
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Crank-Nicolson scheme

Suppose the discount term −rV and the spatial derivatives are approxi-

mated by the average of the centered difference operators at the nth and

(n + 1)th time levels

−rV

(
j∆x,

(
n +

1

2

)
∆τ

)
≈ −r

2

(
V n

j + V n+1
j

)

∂V

∂x

(
j∆x,

(
n +

1

2

)
∆τ

)
≈ 1

2




V n
j+1 − V n

j−1

2∆x
+

V n+1
j+1 − V n+1

j−1

2∆x




∂2V

∂x2

(
j∆x,

(
n +

1

2

)
∆τ

)
≈ 1

2

(
V n

j+1 − 2V n
j + V n

j−1

∆x2

+
V n+1

j+1 − 2V n+1
j + V n+1

j−1

∆x2


 .

and the temporal derivative by the centered difference

∂V

∂τ

(
j∆x,

(
n +

1

2

)
∆τ

)
≈

V n+1
j − V n

j

∆τ
,
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we then obtain the following two-level implicit finite difference scheme

V n+1
j = V n

j +
σ2

2

∆τ

∆x2




V n
j+1 − 2V n

j + V n
j−1 + V n+1

j+1 − 2V n+1
j + V n+1

j−1

2




+

(
r − σ2

2

)
∆τ

2∆x




V n
j+1 − V n

j−1 + V n+1
j+1 − V n+1

j−1

2




− r∆τ




V n
j + V n+1

j

2


 ,

which is commonly known as the Crank-Nicolson scheme.

The above Crank-Nicolson scheme is seen to be a member of the general

class of two-level six-point schemes of the form

a1V n+1
j+1 + a0V n+1

j + a−1V n+1
j−1 = b1V n

j+1 + b0V n
j + b−1V n

j−1,

j = 1,2, · · · , N, n = 0,1, · · · .
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n+1

n

x
xj 1 xj 1xj

x
2

1
, nj

(n + 1)th time level

nth time level

The numerical scheme involves 3 option values at each of the nth and

(n + 1)th time level.

22



In order to achieve O(∆τ2) accuracy, we approximate V,
∂V

∂τ
,
∂V

∂x
,
∂2V

∂x2
at

the fictitious intermediate

(
n +

1

2

)th

time level.

∂2V

∂x2

)

j,n+1
2

≈ 1

2


∂2V

∂x2

∣∣∣∣∣
j,n+1

+
∂2V

∂x2

∣∣∣∣∣
j,n




∂V

∂τ

)

j,n+1
2

≈
V

n+1
2+

1
2

j − V
n+1

2−
1
2

j

2
(
∆τ
2

) =
V n+1

j − V n
j

∆τ
.

Relate V n+1
j+1 , V n+1

j and V n+1
j−1 (to be computed at the new time level)

with V n
j+1, V n

j and V n
j−1 (known values at the old time level).
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Suppose the values for V n
j are all known along the nth time level, the solu-

tion for V n+1
j requires the inversion of a tridiagonal system of equations.

The two-level six-point scheme can be represented as




a0 a1 0 · · · · · ·0
a−1 a0 a1 0 · · · 0

· · ·
· · ·

· · ·
0 · · · · · · 0 a−1 a0







V n+1
1

V n+1
2
·
·
·

V n+1
N




=




c1
c2
·
·
·

cN




,

where

c1 = b1V n
2 + b0V n

1 + b−1V n
0 − a−1V n+1

0 ,

cN = b1V n
N+1 + b0V n

N + b−1V n
N−1 − a1V n+1

N+1,

cj = b1V n
j+1 + b0V n

j + b−1V n
j−1, j = 2, · · · , N − 1.

Note that V n+1
0 and V n+1

N+1 are known values available from the boundary

conditons. The solution of the above tridiagonal system can be effected

by the well known Thomas algorithm.
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Thomas algorithm

Consider the solution of the following tridiagonal system of the form

−ajVj−1 + bjVj − cjVj+1 = dj j = 1,2, · · · , N,

with V0 = VN+1 = 0. This form is more general in the sense that the

coefficients can differ among equations. Note that the first and the last

equations have only 2 unknowns.

• In the first step of elimination, we reduce the system to the upper

triangular form by eliminating Vj−1 in each of the equations.

• Starting from the first equation, we can express V1 in terms of V2

and other known quantities. This relation is then substituted into the

second equation giving a new equation involving V2 and V3 only.
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• We express V2 in terms of V3 and some known quantities. We then

substitute into the third equation, . . ., and so on.

• At the end of the elimination procedure, the last but one equation

and the last equation both have only 2 unknowns. They can be solved

easily to obtain VN−1 and VN .

• Once VN−1 is available, since the last but two equation has been

reduced to contain VN−2, VN−1 only, the solution to VN−2 can then

be obtained directly. We proceed to obtain VN−3, VN−4, · · · , V2, V1 by

successive backward substitution.

Suppose the first k equations have been reduced to the form

Vj − ejVj+1 = fj j = 1,2, · · · , k.

We use the kth reduced equation to transform the original (k +1)th equa-

tion to the same form, namely

Vk+1 − ek+1Vk+2 = fk+1.
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We use the reduced form of the kth equation

Vk − ekVk+1 = fk

and the original (k + 1)th equation

−ak+1Vk + bk+1Vk+1 − ck+1Vk+2 = dk+1

to obtain the new (k + 1)th reduced equation

Vk+1 − ek+1Vk+2 = fk+1.

The elimination of Vk from these two equations gives a new equation

involving Vk+1 and Vk+2, namely,

Vk+1 − ck+1

bk+1 − ak+1ek
Vk+2 =

dk+1 + ak+1fk

bk+1 − ak+1ek
.
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We then deduce the following recurrence relations for ej and fj:

ej =
cj

bj − ajej−1
, fj =

dj + ajfj−1

bj − ajej−1
, j = 1,2, · · · , N.

The first equation is

V0 − e0V1 = f0,

and corresponding to the boundary value V0 = 0, we must have

e0 = f0 = 0.

Starting from the above initial values, the recurrence relations can be

used to find all values ej and fj, j = 1,2, · · · , N . Once the system is in an

upper triangular form, we can solve for VN , VN−1, · · ·V1, successively by

backward substitution, starting from VN+1 = 0. That is, VN = fN , and

VN−1 = eN−1VN + fN−1, etc.
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• The Thomas algorithm is a very efficient algorithm where the tridi-

agonal system can be solved with 4 (add/subtract) and 6 (multi-

ply/divide) operations per node point. Compared to the explicit

schemes (which requires 3 multiply/divide and 2 add/subtract), it

takes about twice the number of operations per time step.

• More precisely, we need 2 multiply/divide and 1 add/subtract in cal-

culating ej, 3 multiple/divide and 2 add/subtract in calculating fj, 1

multiply/divide and 1 add/subtract in calculating Vj.

• On the control of the growth of roundoff errors, the calculations would

be numerically stable provided that |ej| < 1 so that error in Vj+1 will

not be magnified and propagated to Vj. This condition would pose

certain constraint on the choice of ∆τ and ∆x in the Crank-Nicolson

scheme.
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Example – Erosion of numerical calculations by roundoff errors

Consider the evaluation of In =
∫ 1

0

xn

x + 5
dx, n = 0,1,2, · · · ,20; using the

property: In + 5In−1 =
∫ 1

0

xn + 5xn−1

x + 5
dx =

∫ 1

0
xn−1 dx =

xn

n

]1

0

=
1

n
, and

∫ 1

0

1

x + 5
dx = ln |x + 5|

∣∣∣∣∣

1

0

= ln
6

5
, we deduce the following relation:

In + 5In−1 =
1

n
, n = 1, · · · ,20; I0 = ln

6

5
.

Since In < In−1 and In > 0, so 5In−1 < I + 5In−1︸ ︷︷ ︸
1
n

< 5In−1. We then have

1

6n
< In−1 <

1

5n
.

Forward Iteration: Starting with I0 = ln
6

5
, compute

I1 =
1

1
− 5I0, I2 =

1

2
− 5I1, etc.
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Implementation of the Forward Iteration Calculations on a computer with

8 significant figures leads to the results tabulated in Column A. The

values alternate sign and increase in magnitude.
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Propagation of roundoff error

Exact relation: I1 = −5I0 + 1. Taking an approximate initial value Î0,

the calculated value of the first iterate Î1 = −5Î0 + 1.

Here, we assume no further errors subsequent calculations except that

I0 = ln6/5 cannot be represented exactly on a computer. Note that

I1 − Î1 = (−5)(I0 − Î0),

so that the initial error I0 − Î0 is magnified by a factor of −5 after each

iteration. Deductively,

In − În = (−5)n(I0 − Î0).

Backward iteration: Taking I20 ≈ 1

2

(
1

6 × 21
+

1

5 × 21

)
= 0.0087301587.

Implementation: In−1 = −In

5
+

1

5n
, n = 20,19, · · · ,1; I20 = 0.0087301587.

We obtain I0 − Î0 =

(
−1

5

)n
(In − În) (see results shown in column B).
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Skew computational scheme with one-sided difference formulas

Computational domain = {(xj, τn) : j = 0,1, · · · , N + 1, n = 0,1,2, · · · , }.

Domain of definition of the continuous option model = {(x, τ) : −∞ <

x < ∞,0 ≤ τ ≤ T}

1

1

n

NV

n

NV 1

n

NV
n

NV 1
n

NV 2

j = N + 1 cor-

responds to the

boundary nodes

along the right

boundary of the

computational

domain.
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• The option values at j = N + 1 are not prescribed by any boundary

conditions arising from the continuous option model.

• It would create unnecessary errors if we arbitrarily set inappropriate

boundary values.

• Rather, we enforces that the option values at j = N +1 remain to be

governed by the Black-Scholes equation.
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We discretize the Black-Schole equation using one-sided backward differ-

ence:

∂V

∂x

∣∣∣∣∣
j=N+1

≈ VN−1 − 4VN + 3VN+1

2∆x
;

∂2V

∂x2

∣∣∣∣∣
j=N+1

≈ VN+1 − 5VN + 4VN−1 − VN−2

∆x2

so that

V n+1
N+1 − V n

N+1

∆τ
=

(
r − σ2

2

)
V n

N−1 − 4V n
n + 3V n

N+1

2∆x

+
σ2

2

V n
N+1 − 5V n

N + 4V n
N−1 − V n

N−2

∆x2
.

V n+1
N+1 can be determined from known values of V n

N−2, V n
N−1, V n

N and V n
N+1

at the nth time level.
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Advantages of explicit schemes

• It is very easy to program and hard to make mistakes.

• When it does go unstable it is usually obvious.

• It copes well with coefficients that are asset and/or time dependent.

• It is easy to incorporate accurate one-sided differences.

Disadvantage of explicit schemes

• There are restrictions on the time step due to numerical stability con-

sideration so the method would be less efficient than other schemes.
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2.2 Pricing of American options

• The difficulties in the construction of numerical algorithms for solving

American style option models arise from the unknown optimal exercise

boundary (which has to be obtained as part of the solution).

• In the binomial/trinomial algorithm for pricing an American option,

a dynamic programming procedure is applied at each node to deter-

mine whether the continuation value is less than the intrinsic value or

otherwise. If this is the case, the intrinsic value is taken as the option

value (signifying the early exercise of the American option).

• Difficulties in implementing the above dynamic programming proce-

dure are encountered when an implicit scheme is employed since op-

tion values are obtained implicitly.
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S*( ) S*(0) = X
S

continuation

region
exercise

region

S*( )

Characterization of the continuation region and exercise region of an

American put on a non-dividend paying asset. The optimal exercise price

S∗(τ) is a free boundary that separates the continuation and exercise

regions.
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• The optimal exercise boundary S∗(τ) separates the continuation re-

gion (the American put remains alive) and the exercise region (the

American put should be optimally exercised).

• The regret of early exercise becomes lower when the stock price falls

to a lower value since the chance that the put expires in-the-money

is higher.

• When the stock price falls to the optimal exercise price S∗(τ) (note

the time dependence), the loss in insurance value associated with

holding the American option is compensated by the gain in the time

value of the strike price received earlier.
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For simplicity, we take the strike price to be unity. In the continuation

region, the put value P (S, τ) satisfies the Black-Scholes equation

∂P

∂τ
− σ2

2
S2∂2P

∂S2
− rS

∂P

∂S
+ rP = 0, τ > 0, S∗(τ) < S < ∞,

subject to the boundary conditions:

P (S∗(τ), τ) = 1 − S∗(τ),
∂P

∂S
(S∗(τ), τ) = −1, lim

S→∞
P (S, τ) = 0,

and initial condition:

P (S,0) = 0 for S∗(0) < S < ∞, with S∗(0) = 1.

The difficulty lies in the discretization of the computational domain since

the domain of definition of the continuous model has the unknown free

boundary S∗(τ) at its left end.
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• The smooth pasting condition

∂P

∂S
(S∗(τ), τ) = −1

represents the optimality of early exercise at S = S∗(τ). This op-

timality condition provides an additional auxiliary condition for the

determination of the free boundary S∗(τ) (not known aprior).

• The zero terminal payoff condition indicates that the American put

(underlying asset is non-dividend paying) is worthless if it is held op-

timally until expiry.
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Front fixing method

We apply the transformation of the state variable: y = ln
S

S∗(τ)
so that

y = 0 at S = S∗(τ). Now, the free boundary S = S∗(τ) becomes the fixed

boundary y = 0, hence the name of this method. Recall that S∗(τ) is not

known aprior but it has to be determined as part of the solution.

In terms of the new independent variable y, and observing
∂P

∂τ
=

∂P

∂τ

∣∣∣∣∣
y

+
∂P

∂y

∂y

∂τ
=

∂P

∂τ
− S∗′(τ)

S∗(τ)
∂P

∂y
, the above governing equation becomes

∂P

∂τ
− σ2

2

∂2P

∂y2
−
(

r − σ2

2

)
∂P

∂y
+ rP =

S∗′(τ)
S∗(τ)

∂P

∂y
,

Note that

∂P

∂S
=

1

S

∂P

∂y
so that

∂P

∂S
(S∗(τ), τ) = −1 becomes

∂P

∂y
(0, τ) = −S∗(τ).

42



The new set of auxiliary conditions are given by

P (0, τ) = 1 − S∗(τ),
∂P

∂y
(0, τ) = −S∗(τ), P (∞, τ) = 0,

P (y,0) = 0 for 0 < y < ∞.

• The non-linearity in the American put model is revealed by the non-

linear term
S∗′(τ)
S∗(τ)

∂P

∂y
. If both S∗ and P are to be determined at the

new time level, then we are required to solve a non-linear algebraic

equation involving S∗(τn+1) and P (yj, τn+1).

• We derive a relation between S∗(τ) and
∂2P

∂y2
(0+, τ). Along the bound-

ary y = 0, we apply the continuity properties of P,
∂P

∂y
and

∂P

∂τ
so that

∂2P

∂y2
(0+, τ) observes the relation
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σ2

2

∂2P

∂y2
(0+, τ) =

∂

∂τ
[1 − S∗(τ)]−

(
r − σ2

2

)
[−S∗(τ)]

+ r[1 − S∗(τ)]− S∗′(τ)
S∗(τ)

[−S∗(τ)]

= r − σ2

2
S∗(τ). (i)

This derived relation is used to determine S∗(τ) once we have obtained

∂2P

∂y2
(0+, τ).

• The direct Crank-Nicolson discretization of the differential equation

would result in a non-linear algebraic system of equations for the

determination of Pn+1
j due to the presence of the non-linear term

S∗′(τ)
S∗(τ)

∂P

∂y
.
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To circumvent the difficulties while maintain the same order of accuracy

as that of the Crank-Nicholson scheme, we adopt a three-level scheme of

the form

Pn+1
j − Pn−1

j

2∆τ
−
[
σ2

2
D+D− +

(
r − σ2

2

)
D0 − r

]
Pn+1

j + Pn−1
j

2

=
S∗

n+1 − S∗
n−1

2∆τS∗
n

D0Pn
j ,

where S∗
n denotes the numerical approximation to S∗(n∆τ), while D+, D−,

and D0 are discrete difference operators defined by

D+ =
1

∆y
(E1 − I), D− =

1

∆y
(I − E−1), D0 =

1

2∆y
(E1 − E−1).

Here, I denotes the identity operator and Ei, i = −1,1, denotes the spatial

shifting operator on a discrete function Pj, defined by EiPj = Pj+1. Say,

D+D−Pn
j =

1
∆y

(
Pn

j+1 − Pn
j

)
− 1

∆y

(
Pn

j − Pn
j−1

)

∆y
=

Pn
j+1 − 2Pn

j + Pn
j−1

∆y2
.
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Remarks

• We choose the discretization of
∂P

∂y
and

∂2P

∂y2
to be the average at the

(n − 1)th and (n + 1)th time level due to numerical stability consider-

ation.

• In order to maintain O(∆τ2) accuracy in a two-level implicit scheme,

we are then forced to discretize the non-linear term
S∗′(τ)
S∗(τ)

∂P

∂y
as

S∗
n+1 − S∗

n−1

∆τ

(
S∗

n+1+S∗
n

2

)D0




Pn+1
j + Pn

j

2


 .

This leads to various products of unknowns involving S∗
n+1, Pn+1

j−1 , pn+1
j

and Pn+1
j+1 , and a system of non-linear algebraic equations would be

resulted.
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The discretization of the value matching condition, smooth pasting con-

dition and the boundary equation (i) lead to the following system of

equations that relate Pn
−1, pn

0, Pn
1 , and S∗

n:

Pn
0 = 1 − S∗

n (ii)

Pn
1 − Pn

−1

2∆y
= −S∗

n

σ2

2

[
Pn
1 − 2Pn

0 + Pn
−1

∆y2

]
+

σ2

2
S∗

n − r = 0.

Here, Pn
−1 is a fictitious value outside the computational domain. By

eliminating Pn
−1 and Pn

0 from the above 3 equations, we obtain

Pn
1 = α − βS∗

n, n ≥ 1, (iii)

where

α = 1 +
∆y2

σ2
r and β =

1 + (1 + ∆y)2

2
.
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• Once Pn
1 is known, we can find S∗

n using (iii) and Pn
0 using (ii).

• For the boundary condition at the right end of the computational

domain, we observe that the American put value tends to zero when

S is sufficiently large. Therefore, we choose M to be sufficiently large

such that we set Pn
M+1 = 0 with sufficient accuracy.

• Let P n = (Pn
1 Pn

2 · · · Pn
M)T and e1 = (1 0 · · · , 0)T . By

putting all the auxiliary conditions into the finite difference scheme,

we would like to show how to calculate P n+1 from known values of

P n and P n−1.
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• We define the following parameters

a = µσ2 + r∆τ, b =
µ

2

[
σ2 − ∆y

(
r − σ2

2

)]
,

c =
µ

2

[
σ2 + ∆y

(
r − σ2

2

)]
,

where µ =
∆τ

∆y2
, and the tridiagonal matrix

A =




a −c 0 · · · · · · 0
−b a −c 0 · · · 0
0 −b a −c 0 · · ·
... . . . . . . . . . . . . ...
0 · · · · · · −b a −c
0 0 · · · 0 −b a




.
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In terms of A, the finite difference scheme can be expressed as

(I + A)P n+1 = (I − A)P n−1 + bPn−1
0 e1

+ bPn+1
0 e1 + gnD0P n, n > 1,

where gn =
S∗

n+1 − S∗
n−1

S∗
n

. By inverting the matrix (I + A), we obtain

P n+1 = f1 + bPn+1
0 f2 + gnf3

where

f1 = (I + A)−1[(I − A)P n−1 + bPn−1
0 e1],

f2 = (I + A)−1e1,

f3 = (I + A)−1D0P n.

Note that Pn+1
0 and S∗

n+1 can be expressed in terms of Pn+1
1 , where

S∗
n+1 =

α − Pn+1
1

β
and Pn+1

0 = 1 − S∗
n+1.
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Initialization at the first time level

For the three-level scheme, we need P 1 in addition to P 0 to initialize the

computation. To maintain an overall second order accuracy, we employ

the following two-step predictor-corrector technique to obtain P 1:
(
I +

A

2

)
P̃ =

(
I − A

2

)
P 0 +

b

2
P̃0e1 + g̃D0P 0,

(
I +

A

2

)
P 1 =

(
I − A

2

)
P 0 +

b

2
P1
0e1 + g1D0


P̃ + P 0

2


 ,

where the first equation gives the predictor value P̃ and the corrector

value P 1 is finally obtained using the second equation. The predictor-

corrector approach avoids the occurrence of product of unknown values

of S∗
1 and D0

(
P 1 + P 0

2

)
. The provisional values and g1 are given by

P̃0 = 1 − S̃∗
0, S̃∗

0 =
α − P̃1

β
,

g̃ =
S̃∗
0 − S∗

0

S∗
0

and g1 =
S∗
1 − S∗

0

S̃∗
0+S∗

0
2

.
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Front fixing method versus explicit scheme

• Resolution of the optimal exercise boundary S∗(τ)

The explicit scheme determines whether a node lies inside or outside

the exercise region by the dynamic programming procedure. The FSG

method solves for S∗(τ) directly as part of the solution procedure.

• Order of accuracy

The adoption of the three-level discretization guarantees second order

in temporal accuracy.

• Ease of implementation

The implicit FSG scheme requires the solution of a tridiagonal system

of equations at every time step. Also, the three-level discretization

requires initialization at the first time level using a separate predictor-

corrector scheme.

52



Projected successive-over-relaxation method

The application of the dynamic programming procedure is not quite

straightforward in implicit schemes. This is because the continuation

value is not explicitly known from the implicit finite difference formula,

so it cannot be used to compare with the intrinsic value directly.

The naive approach of computing V n+1
j from the tridiagonal system of

equations derived from the Crank-Nicolson scheme, then followed by com-

paring V n+1
j with the intrinsic value is NOT acceptable since we do not

known in advance whether V n+1
j−1 assumes the intrinsic value or the corre-

sponding continuation value
(
same for V n+1

j+1

)
. In other words, the original

tridiagonal system of equations for V n+1 = (V n+1
1 · · · V n+1

N ) is not the

appropriate system of equations for the computation of the continuation

values. This is because the system of equation has no information on

whether the option values at neighboring nodes assume the continuation

value or exercise value.
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Consider an implicit finite difference scheme in the form

a−1Vj−1 + a0Vj + a1Vj+1 = dj, j = 1,2, · · · , N,

where the superscript “n+1” is omitted for brevity, and dj represents the

known quantities. The Gauss-Seidel iterative procedure produces the kth

iterate of Vj by

V
(k)
j =

1

a0

(
dj − a−1V

(k)
j−1 − a1V

(k−1)
j+1

)

= V
(k−1)
j +

1

a0

(
dj − a−1V

(k)
j−1 − a0V

(k−1)
j − a1V

(k−1)
j+1

)
,

where the last term in the above equation represents the correction made

on the (k − 1)th iterate of Vj.
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• We start from j = 1 and proceed sequentially with increasing value

of j. Hence, when we compute V
(k)
j in the kth iteration, the new kth

iterate V
(k)
j−1 is already available while only the old (k − 1)th iterate

V
(k−1)
j+1 is known.

• To accelerate the rate of convergence of the iteration, we multiply

the correction term by a relaxation parameter ω.

The corresponding iterative procedure becomes

V
(k)
j = V

(k−1)
j +

ω

a0

(
dj − a−1V

(k)
j−1 − a0V

(k−1)
j − a1V

(k−1)
j+1

)
, 0 < ω < 2.

This procedure is called the successive-over-relaxation. As a necessary

condition for convergence, the relaxation parameter ω must be chosen

between 0 and 2.
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Let hj denote the intrinsic value of the American option at the jth node.

To incorporate the constraint that the option value must be above the

intrinsic value, the dynamic programming procedure in combination with

the above relaxation procedure is given by

V
(k)
j

= max

(
V

(k−1)
j +

ω

a0

(
dj − a−1V

(k)
j−1 − a0V

(k−1)
j − a1V

(k−1)
j+1

)
, hj

)
.

The successive iterates on option values contain the information on whether

they assume the continuation value or exercise value.

A sufficient number of iterations are performed until the following termi-

nation criterion is met:
√√√√√

N∑

j=1

(
V

(k)
j − V

(k−1)
j

)2
< ǫ, ǫ is some small tolerance value.

The convergent value V
(k)
j is taken to be the numerical solution for Vj.
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2.3 Numerical approximation of auxiliary conditions

Sources of errors

• The truncation error, which stems from the difference approximation

of the differential operators.

• The numerical approximation of the auxiliary conditions in the option

models.

Auxiliary conditions refer to the terminal payoff function plus (possibly)

additional boundary conditions due to the embedded path dependent fea-

tures in the option contract.
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Smoothing of discontinuities in the terminal payoff functions

• Most terminal payoff function of options have some form of disconti-

nuity (like binary payoff) or non-differentiability (like call or put pay-

off). Quantization error arises since the payoff function is sampled at

discrete node points.

• Set the payoff value at a node point in the computational mesh by the

average of the payoff function over the surrounding node cells rather

than sampled at the node point.

• Let VT (S) denote the terminal payoff function. The payoff value at

node Sj is given by

V 0
j =

1

∆S

∫ Sj+
∆S
2

Sj−∆S
2

VT (S) dS

instead of simply taking the value VT (Sj).
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• Take the call payoff max(S−X,0) as an example. If the strike price X

falls exactly on a node point, then VT (Sj) = 0 while the cell-averaged

value is ∆S/8.

• Averaging the terminal payoff for vanilla European and American calls

provide a more smooth convergence. The smoothed numerical so-

lutions then allow the application of extrapolation for convergence

enhancement.

Black-Scholes approximation

• Useful for pricing American options and exotic options for which the

Black-Scholes solution is a good approximation at time close to expiry.

• Use the Black-Scholes values along the first time level and proceed

with usual finite difference calculations for subsequent time levels.
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Lookback options

For floating strike lookback options, by applying appropriate choices of

similarity variables, the pricing formulation reduces to the form similar to

that of usual one-asset option models, except that the Neumann boundary

condition appears at one end of the domain of the lookback option model.

Let c(S, m, t) denote the price of a continuously monitored European float-

ing strike lookback call option, where m is the realized minimum asset

price from T0 to t, T0 < t. The terminal payoff at time T of the lookback

call is given by

c(S, m, T) = S − m.

Recall that S ≥ m and the boundary condition at S = m is given by

∂c

∂m
= 0 at S = m.
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1. How to justify the boundary condition at S = m, where
∂c

∂m

∣∣∣∣∣
s=m

= 0?

When s = m, the future updating of the realized minimum value does

not require the current realized minimum value m. Hence, the call

value is insensitive to the current realized minimum value.

2. Why the differential equation for the call value does not contain terms

involving m?

We expect that over the infinitesimal time interval dt. the contribution

to the change in call value is given by
∂c

∂m
dm. We observe that

(i) when S > m,dm = 0.

(ii) when S = m,
∂c

∂m
= 0.

Combining the above results, we conclude that
∂c

∂m
dm = 0.
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Governing differential equation:

∂c

∂τ
=

σ2

2
S2 ∂2c

∂S2
+ (r − q)S

∂c

∂S
− rc, S ≥ m, τ > 0, τ = T − t

with

∂c

∂m

∣∣∣∣∣
S=m

= 0 and c(S, m,0) = S − m.

Here, m is a parameter that appears in the auxiliary conditions only
m

S

no change 

in call value

S = m

m m + dm

For each m, we solve the differential equation. However, the lookback call

values among different values of m, are connected through the boundary

condition:
∂c

∂m

∣∣∣∣∣
S=m

= 0.
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We choose the following set of similarity variables:

x = ln
S

m
and V (x, τ) =

c(S, m, t)

S
e−qτ ,

where τ = T − t, then the Black-Scholes equation for c(S, m, t) is trans-

formed into the following equation for V .

∂V

∂τ
=

σ2

2

∂2V

∂x2
+

(
r − q +

σ2

2

)
∂V

∂x
, x > 0, τ > 0.

Note that S > m corresponds to x > 0. The terminal payoff condition

becomes the following initial condition

V (x,0) = 1 − e−x, x > 0.

The boundary condition at S = m becomes the Neumann condition

∂V

∂x
(0, τ) = 0.
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Using the explicit FTCS scheme, we obtain

V n+1
j − V n

j

∆τ
=

σ2

2

V n
j+1 − 2V n

j + V n
j−1

∆x2
+

(
r − q − σ2

2

)
V n

j+1 − V n
j−1

2∆x

V n+1
j =

[
α + µ

2
V n

j+1 + (1 − α)V n
j +

α − µ

2
V n

j−1

]
, j = 1,2, · · · ,

where µ =

(
r − q +

σ2

2

)
∆τ

∆x
and α = σ2 ∆τ

∆x2
.

Consider the continuously monitored lookback option model, we place

the reflecting boundary x = 0 (corresponding to the Neumann boundary

condition) along a layer of nodes, where the node j = 0 corresponds to

x = 0.
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• To approximate the Neumann boundary condition at x = 0, we use

the centered difference

∂V

∂x

∣∣∣∣∣
x=0

≈
V n
1 − V n

−1

2∆x
,

where V n
−1 is the option value at a fictitious node one cell to the left

of node j = 0.

• By setting j = 0 and applying the approximation of the Neumann

condition: V n
1 = V n

−1, we obtain

V n+1
0 = αV n

1 + (1 − α)V n
0 .

• Numerical results obtained from the above scheme demonstrate O(∆t)

rate of convergence.
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Discretely monitored floating strike lookback call option

The realized minimum is updated only on a monitoring instant.

• For numerical calculations, the usual finite difference calculations are

performed as that of a vanilla option at those time levels not corre-

sponding to a monitoring instant.

• Suppoe the nth time level happens to be a monitoring instant, the

boundary condition
∂V

∂x
(0, τ) = 0, x ≤ 0, is implemented by setting the

numerical option values to the left of x = 0 to be

V n
j = V n

0 , j = −1,−2 · · · .
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2.4 Properties of numerical solutions

Numerical stability and oscillation phenomena

• A numerical scheme must be consistent in order that the numerical

solution converges to the exact solution of the underlying differential

equation. However, consistency is only a necessary but not sufficient

condition for convergence.

• The roundoff errors incurred during numerical calculations may lead

to the blow up of the solution and erode the whole computation.
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Truncation errors and order of convergence

The local truncation error of a given numerical scheme is obtained by sub-

stituting the exact solution of the continuous problem into the numerical

scheme. Let V (j∆x, n∆τ) denote the exact solution of the continuous

Black-Scholes equation. The local truncation error at the node point

(j∆x, n∆τ) of the explict FTCS scheme is given by

T(j∆x, n∆τ)

=
V (j∆x, (n + 1)∆τ)− V (j∆x, n∆τ)

∆τ

− σ2

2

V ((j + 1)∆x, n∆τ) − 2V (j∆x, n∆τ) + V ((j − 1)∆x, n∆τ)

∆x2

−
(

r − σ2

2

)
V ((j + 1)∆x, n∆τ) − V ((j − 1)∆x, n∆τ)

2∆x
+ rV (j∆x, n∆τ).
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We then expand each term by performing the Taylor expansion at the

node point (j∆x, n∆τ).

T(j∆x, n∆τ)

=
∂V

∂τ
(j∆x, n∆τ) +

∆τ

2

∂2V

∂τ2
(j∆x, n∆τ) + O

(
∆τ2

)

− σ2

2

[
∂2V

∂x2
(j∆x, n∆τ) +

∆x2

12

∂4V

∂x4
(j∆x, n∆τ) + O(∆x4)

]

−
(

r − σ2

2

)[
∂V

∂x
(j∆x, n∆τ) +

∆x2

3

∂3V

∂x3
(j∆x, n∆τ) + O(∆x4)

]

+ rV (j∆x, n∆τ).

Since V (j∆x, n∆τ) satisfies the Black-Scholes equation, this leads to

T(j∆x, n∆τ) =
∆τ

2

∂2V

∂τ2
(j∆x, n∆τ)− σ2

24
∆x2∂4V

∂x4
(j∆x, n∆τ)

−
(

r − σ2

2

)
∆x2

3

∂3V

∂x3
(j∆x, n∆τ) + O(∆τ2)

+ O(∆x4).
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• A necessary condition for the convergence of the numerical solution

to the continuous solution is that the local truncation error of the

numerical scheme must tend to zero for vanishing stepwidth and time

step. In this case, the numerical scheme is said to be consistent.

• The order of accuracy of a scheme is defined to be the order in

powers of ∆x and ∆τ in the leading truncation error terms. Suppose

the leading truncation terms are O(∆τk,∆xm), then the numerical

scheme is said to be kth order time accurate and mth order space

accurate.

• The explicit FTCS scheme is first order time accurate and second

order space accurate.
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• Suppose we choose ∆τ to be the same order as ∆x2, that is, ∆x2 =

λ2∆τ for some finite constant λ, then the leading truncation error

terms become O(∆τ).

• Using a similar technique of performing Taylor expansion, one can

show that all versions of the binomial scheme are first order time

accurate (recall that ∆τ and ∆x are dependent in binomial schemes).

• For the implicit Crank-Nicolson scheme, it is second order time accu-

rate and second order space accurate.

• The highest order of accuracy that can be achieved for a two-level

six-point scheme is known to be O(∆τ2,∆x4).
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Extrapolation techniques

The numerical solution V n
j (∆τ) using time step ∆τ has the asymptotic

expansion of the form

V n
j (∆τ) = V n

j (0) + K∆τm + O(∆τm+1),

where V n
j (0) is visualized as the exact continuous solution obtained in

the limit ∆τ → 0, and K is some constant independent of ∆τ . Sup-

pose we perform two numerical calculations using time step ∆τ and
∆τ

2
successively,

V n
j (0)− V n

j (∆τ) ≈ 2m
[
V n

j (0) − V n
j

(
∆τ

2

)]
.

Hence, V n
j (0) can be estimated using V n

j (∆τ) and V n
j

(
∆τ

2

)
via

V n
j (0) ≈

2mV n
j

(
∆τ
2

)
− V n

j (∆τ)

2m − 1
.
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Comparison of finite difference methods

An at-the-money European call option with strike 20, 3 months to expiry,

volatility of 20% and interest rate of 5%.

Spatial order of convergence:-

– error in the 3 methods (explicit, fully implicit and Crank–Nicolson)

decreases like ∆S2.

Temporal order of convergence:-

– explicit and fully implicit schemes have an error that decreases like ∆t

– Crank–Nicolson’s error decreases like ∆t2.
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Log(Error) as a function of log(δS) for the three finite-difference schemes.
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Log(Error) as a function of log(δt) for the three finite-difference schemes.
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Numerical stability

• Consistency is only a necessary but not sufficient condition for con-

vergence.

• The roundoff errors incurred during numerical calculations may lead

to the blow up of the solution and erode the whole computation.

• A scheme is said to be stable if roundoff errors are not amplified in

numerical computation. For a linear evolutionary differential equation,

like the Black-Scholes equation, the Lax Equivalence Theorem states

that numerical stability is the necessary and sufficient condition for

the convergence of a consistent difference scheme.
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Fourier method of stability analysis

The Fourier method is based on the assumption that the numerical

scheme admits a solution of the form

V n
j = An(k)eikj∆x,

where k is the wavenumber and i =
√
−1. Here, eikj∆x = eikx

∣∣∣∣∣
x=j∆x

represents the Fourier mode with wavenumber k, An(k) represents the

amplitude of the kth mode at the nth time level. The von Neumann

stability criterion examines the growth of the above Fourier component.
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Substituting the Fourier representation into the two-level six-point scheme,

a1V n+1
j+1 + a0V n+1

j + a−1V n+1
j−1 = b1V n

j+1 + b0V n
j + b−1V n

j−1,

we obtain

G(k) =
An+1(k)

An(k)
=

b1eik∆x + b0 + b1e−ik∆x

a1eik∆x + a0 + a−1e−ik∆x
,

where G(k) is the amplification factor which governs the growth of the

Fourier component over one time period. The strict von Neumann sta-

bility condition is given by

|G(k)| ≤ 1,

for 0 ≤ k∆x ≤ π. Henceforth, we write β = k∆x.
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Stability of the Cox-Ross-Rubinstein binomial scheme

V n+1
j = [pV n

j + (1 − p)V n
j−1]e

−r∆τ

• The corresponding amplification factor of the Cox-Ross-Rubinstein

binomial scheme is

G(β) = peiβ + (1 − p)e−iβ

= p(cosβ + i sinβ) + (1 − p)(cosβ − i sinβ)

= (cosβ + iq sinβ)e−r∆τ , q = 2p − 1.

The von Neumann stability condition requires

|G(β)|2 =
[
1 + (q2 − 1) sin2β

]
e−2r∆τ ≤ 1, 0 ≤ β ≤ π.
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• When 0 ≤ p ≤ 1, we have |q| ≤ 1 so that |G(β)| ≤ 1 for all β.

• Under this condition, the scheme is guaranteed to be stable in the

von Neumann sense.

• Sufficient condition for von Neumann stability of the Cox-Ross-Rubinstein

scheme: non-occurrence of negative probability values in the binomial

scheme. This required conditin coincides with the intuition that prob-

abilities of up jump and down jump cannot be negative.
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Stability of the Crank-Nicolson scheme

The corresponding amplification factor of the Crank-Nicolson scheme is

G(β) =
1 − σ2 ∆τ

∆x2 sin2 β
2 +

(
r − σ2

2

)
∆τ
2∆xi sinβ − r

2∆τ

1 + σ2 ∆τ
∆x2 sin2 β

2 −
(
r − σ2

2

)
∆τ
2∆xi sinβ + r

2∆τ
.

The von Neumann stability condition requires

|G(β)|2 =

(
1 − σ2 ∆τ

∆x2 sin2 β
2 − r

2∆τ
)2

+

(
r − σ2

2

)2
∆τ2

4∆x2 sin2 β

(
1 + σ2 ∆τ

∆x2 sin2 β
2 + r

2∆τ
)2

+
(
r − σ2

2

)2 ∆τ2

4∆x2 sin2 β
≤ 1,

0 ≤ β ≤ π.

The above condition is satisfied for any choices of ∆τ and ∆x. Hence,

the Crank-Nicolson scheme is unconditionally stable.
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Order of accuracy and stability of Crank-Nicolson scheme

• The implicit Crank-Nicolson scheme is observed to have second order

temporal accuracy and unconditional stability. Also, the implementa-

tion of the numerical computation can be quite efficient with the use

of the Thomas algorithm.

• Apparently, practitioners should favor the Crank-Nicolson scheme over

other conditionally stable and first order time accurate explicit schemes.

• Unfortunately, the numerical accuracy of the Crank-Nicholson solution

can be much deteriorated due to non-smooth property of the terminal

payoff function in most option models.
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Spurious Oscillations

Spurious oscillations in numerical solution of an option price.

Another undesirable feature in the behavior of the finite difference solu-

tion is the occurrence of spurious oscillations. It is possible to generate

negative option values even if the scheme is stable.
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Theorem

Suppose the coefficients in the two-level explicit scheme are all non-

negative, and the initial values are bounded, that is, max
j

|V 0
j | ≤ M for

some constant M ; then

max
j

|V n
j | ≤ M for all n ≥ 1.

Proof

Consider the explicit scheme

V n+1
j = b−1V n

j−1 + b0V n
j + b1V n

j+1,

we deduce that

|V n+1
j | ≤ |b−1| |V n

j−1| + |b0| |V n
j | + |b1| |V n

j+1|,
so

max
j

|V n+1
j | ≤ b−1 max

j
|V n

j−1| + b0 max
j

|V n
j | + b1 max

j
|V n

j+1|

since b−1, b0 and b1 are non-negative.
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Let En denote max
j

|V n
j |, the above inequality can be expressed as

En+1 ≤ b−1En + b0En + b1En = En

since b−1 + b0 + b1 = 1. Deductively, we obtain

En ≤ En−1 ≤ · · · ≤ E0 = max
j

|V 0
j | = M.

What happens when one or more of the coefficients of the explicit scheme

become negative?

For example, we take b0 < 0, b−1 > 0 and b1 > 0, and let V 0
0 = ε > 0 and

V 0
j = 0, j 6= 0. At the next time level, V 1

−1 = b1ε, V 1
0 = b0ε and V 1

1 = b−1ε,

where the sign of V 1
j alternates with j. This alternating sign property can

be shown to persist at all later time levels.

86



In this way, we deduce that

|V n+1
j | = b−1|V n

j−1| − b0|V n
j | + b1|V n

j+1|.

We sum over all values of j of the above equation and let Sn =
∑

j

|V n
j |.

As a result, we obtain

Sn+1 = (b−1 − b0 + b1)Sn = (1 − 2b0)Sn.

Note that 1 − 2b0 > 1 since b0 < 0. Deductively, we obtain

Sn = (1 − 2b0)
nS0 = (1 − 2b0)

nε,

and as n → ∞,Sn → ∞. The solution values oscillate in signs at neigh-

boring nodes. The oscillation amplitudes grow with an increasing number

of time steps.
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