
1. Optimal investment strategy – log utility criterion

Suppose there is an investment opportunity that the investor will

either double her investment or return nothing. The probability

of the favorable outcome is p. Suppose the investor has an initial

capital of X0, and she can repeat this investment many times. How

much should she invest at each time in order to maximize the growth

of capital?

Statement of the problem

Let α be the proportion of capital invested during each play. The

investor would like to find the optimal value of α which maximizes

growth. The possible proportional changes are given by
{

1 + α if outcome is favorable
1 − α if outcome is unfavorable

, 0 ≤ α ≤ 1.



General formulation:-

Let Xk represent the capital after the kth trial, then

Xk = RkXk−1

where Rk is the random return variable.

We assume that all Rk’s have identical probability distribution and they are mu-
tually independent. The capital at the end of n trials is

Xn = RnRn−1 · · ·R2R1X0.

Taking logarithm on both sides

lnXn = ln X0 +
n∑

k=1

lnRk

or

ln

(
Xn

X0

)1/n

=
1

n

n∑

k=1

ln Rk.

Since the random variables lnRk are independent and have identical probability
distribution, by the law of large numbers, we have

1

n

n∑

k=1

lnRk −→ E[lnR1].



Remark

Since the expected value of lnRk is independent of k, so we simply

consider E[lnR1]. Suppose we write m = E(lnR1), we have

(
Xn

X0

)1/n

−→ em or Xn −→ X0emn.

For large n, the capital grows (roughly) exponentially with n at a

rate m. Here, em is the growth factor for each investment period.

Log utility form

m + lnX0 = E[lnR1] + lnX0 = E[lnR1X0] = E[lnX1].

If we define the log utility form: U(x) = lnx, then the problem

of maximizing the growth rate m is equivalent to maximizing the

expected utility E[U(X1)].



Remark

Essentially, we may treat the investment growth problem as a single-

period model. The single-period maximization guarantees the max-

imum growth rate in the long run.

Back to the investment strategy problem, how to find the optimal

value of α such that the growth factor is maximized:

m = E[lnR1] = p ln(1 + α) + (1 − p) ln(1 − α).

Setting
dm

dα
= 0, we obtain

p(1 − α) − (1 − p)(1 + α) = 0

giving α = 2p − 1.



Suppose we require α ≥ 0, then the existence of the above solution

implicitly requires p ≥ 0.5.

What happen when p < 0.5, the value for α for optimal growth is

given by α = 0?

Lesson learnt If the game is unfavorable to the player, then he

should stay away from the game.

Example (volatility pumping)

Stock: In each period, its value either doubles or reduces by half.

riskless asset: just retain its value.

How to use these two instruments in combination to achieve growth?

Return vector R =

{ (
1
2 1

)
if stock price goes down

(2 1) if stock price goes up
.



Strategy:

Invest one half of the capital in each asset for every period. Do the

rebalancing at the beginning of each period so that one half of the

capital is invested in each asset.

The expected growth rate

m =
1

2
ln
(
1

2
+ 1

)
+

1

2
ln
(
1

2
+

1

4

)
≈ 0.059.

↑ ↑
prob of doubling prob of halving

We obtain em ≈ 1.0607, so the gain on the portfolio is about 6%

per period.

Remark This strategy follows the dictum of “buy low and sell high”

by the process of rebalancing.



Combination of 50-50 portfolio of risky stock and riskless asset

gives an enhanced growth.



Example (pumping two stocks)

Both assets either double or halve in value over each period with probability 1/2;
and the price moves are independent. Suppose we invest one half of the capital
in each asset, and rebalance at the end of each period. The expected growth
rate of the portfolio is found to be

m =
1

4
ln 2 +

1

2
ln

5

4
+

1

4
ln

1

2
=

1

2
ln

5

4
= 0.1116,

so that em =

√
5

4
= 1.118. This gives an 11.8% growth rate for each period.

Remarks

1. What would result if the two stocks happen to be HSBC and PCCW? One
stock continues to perform well while the other stock continues to deterio-
rate.

2. Advantage of the index tracking fund, say, Dow Jones Industrial Average.
The index automatically

(i) exercises some form of volatility pumping due to stock splitting,
(ii) get rids of the weaker performers periodically.



Investment wheel

The numbers shown are the

payoffs for one-dollar invest-

ment on that sector.

1. Top sector: paying 3 to 1, though the area is 1/2 of the whole

wheel (favorable odds).

2. Lower left sector: paying only 2 to 1 for an area of 1/3 of wheel

(unfavorable odds).

3. Lower right sector: paying 6 to 1 for an area of 1/6 of the wheel

(even odds).



Aggressive strategy

Invest all money in the top sector. This produces the highest single-

period expected return. This is too risky for long-term investment!

Why? The investor goes broke half of the time and cannot continue

with other spins.

Fixed proportion strategy

Prescribe wealth proportions to each sector; apportion current wealth

among the sectors as bets at each spin.

(α1, α2, α3) where αi ≥ 0 and α1 + α2 + α3 ≤ 1.

α1: top sector

α2: lower left sector

α3: lower right sector



If “top” occurs, R(ω1) = 1 + 2α1 − α2 − α3.

If “bottom left” occurs, R(ω2) = 1 − α1 + α2 − α3.

If “bottom right” occurs, R(ω3) = 1 − α1 − α2 + 5α3.

We have

m =
1

2
ln(1+2α1−α2−α3)+

1

3
ln(1−α1+α2−α3)+

1

6
ln(1−α1−α2+5α3).

To maximize m, we compute
∂m

∂αi
, i = 1,2,3 and set them be zero:

2

2(1 + 2α1 − α2 − α3)
−

1

3(1 − α1 + α2 − α3)
−

1

6(1 − α1 − α2 + 5α3)
= 0

−1

2(1 + 2α1 − α2 − α3)
+

1

3(1 − α1 + α2 − α3)
−

1

6(1 − α1 − α2 + 5α3)
= 0

−1

2(1 + 2α1 − α2 − α3)
−

1

3(1 − α1 + α2 − α3)
+

5

6(1 − α1 − α2 + 5α3)
= 0.



There is a whole family of optimal solutions, and it can be shown

that they all give the same value for m.

(i) α1 = 1/2, α2 = 1/3, α3 = 1/6

One should invest in every sector of the wheel, and the bet

proportions are equal to the probabilities of occurrence.

m =
1

2
ln

3

2
+

1

3
ln

2

3
+

1

6
ln1 =

1

6
ln

3

2

so em ≈ 1.06991 (a growth rate of about 7%).

Remark: Betting on the unfavorable sector is like buying insur-

ance.
(ii) α1 = 5/18, α2 = 0 and α3 = 1/18.

Nothing is invested on the unfavorable sector.



Log utility and growth function

Let wi = (wi1 · · ·win) be the weight vector of holding n risky secu-

rities at the ith period, where weight is defined in terms of wealth.

Write the random return vector at the ith period as Ri = (Ri1 · · ·Rin).

Here, Rij is the random return of holding the jth security after the

ith play.

Write Sn as the total return of the portfolio after n periods:

Sn =
n∏

i=1

wi · Ri.

Define B = {w ∈ Rn : 1 · w = 1 and w ≥ 0}, where 1 = (1 · · ·1).

This represents a trading strategy that does not allow short sell-

ing. When the successive games are identical, we may drop the

dependence on i.



Based on the log-utility criterion, we define the growth function by

W (w;F) = E[ln(w · R)] =
∫

ln(w · R) dF(R),

where F(R) is the distribution function of the stochastic return

vector R. The growth function is seen to be a function of the

trading strategy ω together with dependence on F . The optimal

growth function is defined by

W ∗(F) = max
w∈B

W (w;F).



Lemmas

1. For a given w, W (w;F) is a linear function of the distribution

function F . This follows directly from the linearity property of

the expectation integral.

2. For a given function F, W (w;F) is a concave function on w; and

W ∗(F) is a convex function on F .

Proof

From the concave property of the logarithmic function, we have

ln(λw1 + (1 − λ)w2) · R ≥ λ lnw1 · R + (1 − λ) lnw2 · R.

We then take the expectation on both side and obtain the concave

property on w.

To show the convexity property of w∗, we consider two distribution

functions F1 and F2. Let the corresponding optimal weights be

denoted by w∗(F1) and w∗(F2).



Write w∗(λF1+(1−λ)F2) as the optimal weight vector corresponding

to λF1 + (1 − λ)F2. Now, we consider

W ∗(λF1 + (1 − λ)F2)

= W (w∗(λF1 + (1 − λ)F2);λF1 + (1 − λ)F2)

= λW (w∗(λF1 + (1 − λ)F2);F1) + (1 − λ)W (w∗(λF1 + (1 − λ)F2;F2)

≤ λW (w∗(F1);F1) + (1 − λ)W (w∗(F2);F2)

= λW ∗(F1) + (1 − λ)W ∗(F2).

The inequality holds since w∗(F1) and w∗(F2) are the weights that

lead to the maximization of W (w;F1) and W (w;F2), respectively.



Lemma

The log-utility optimal portfolio w∗ that maximizes the growth func-

tion W (w;F) satisfies

E

(
Rj

w∗ · R

)
≤ 1.

Proof

Note that W (w;F) is a concave function on w, and the domain of

definition of w is a simplex. The necessary and sufficient condition

for w∗ to be an optimal solution is that the directional derivative of

W (w) at w∗ along any path must be non-positive.

Let wλ = (1−λ)w∗+λw,0 ≤ λ ≤ 1, where wλ represents an element

in B that moves from w∗ to an arbitrary vector w in B.



The above necessary and sufficent condition can be represented by

d

dλ
W (wλ)

∣∣∣
λ=0+≤ 0 for all w ∈ B.

Consider

d

dλ
E[ln(w · R)]

∣∣∣
λ=0+

= lim
∆λ→0+

1

∆λ
E

[
ln

(
(1 − ∆λ)w∗ · R + ∆λw · R

w∗ · R

)]

= E

[
lim

∆λ→0+

1

∆λ
ln

(
1 + ∆λ

(
w · R
w∗ · R

− 1

))]

= E

[
w · R
w∗ · R

]
− 1 ≤ 0.

In particular, when w∗ is an interior point of B, then

E

[
w · R
w∗ · R

]
= 1 for all w ∈ B.



Suppose we take w = ej, we then deduce that

E

[
Rj

w∗ · R

]
= 1, j = 1,2, · · · , n.

Let P0
j be the price of security j at time 0 and Pj be the random

payout of security j. The return of security j is

Rj = Pj/P0
j

so that

P0
j = E

[
Pj

w∗ · R

]
.

Note that w∗ · R is the return on the log-optimal portfolio. Here,

P0
j can be interpreted as the fair price of security j based on the

knowledge of F .



Remark

Let w∗
j be the optimal weight invested on asset j, and Rj is its

return per unit dollar betted. The random weight of asset j after

one investment period is

w∗
jRj

w∗
1R1 + · · · + w∗

nRn
.

Taking the expectation

E

[
w∗

jRj

w∗ · R

]
= w∗

jE

[
Rj

w∗ · R

]
= w∗

j .

when w∗ is an interior point of B. The expected weight of asset

j after the game under the optimal trading strategy is simply the

original optimal weight.



Betting wheel revisited

Let the payoff upon the occurrence of the ith event (pointer landing

on the ith sector) be (0 · · · ai ·0) with probability pi. That is, R(ωi) =

(0 · · · ai · 0). Take the earlier example, when the pointer lands on

the bottom left sector, the return vector is given by

R(ω1) = (3 0 0)

R(ω2) = (0 2 0)

R(ω3) = (0 0 6).

In general, for this betting wheel game, the gambler betting on the

ith sector (equivalent to investment on security i) is paid ai if the

pointer lands on the ith sector and loses the whole bet if otherwise.



Suppose the gambler chooses w = (w1 · · ·wn) as the betting strategy

with
n∑

i=1

wi = 1, then

W (w;F) =
n∑

i=1

pi ln(w · R(ωi)) =
n∑

i=1

pi lnwiai

=
n∑

i=1

pi ln
wi

pi
+

n∑

i=1

pi ln pi +
n∑

i=1

pi lnai,

where the last two terms are known quantities.

Using the inequality: ln x ≤ x−1 for x ≥ 0, with equality holds when

x = 1, we have

n∑

i=1

pi ln
wi

pi
≤

n∑

i=1

pi

(
wi

pi
− 1

)
=

n∑

i=1

wi −
n∑

i=1

pi = 0

with equality holds if and only if wi = pi. Hence, an optimal portfolio

is w∗
i = pi, for all i.



Continuous-time version

Let Si denote the price of the ith asset, i = 1,2, · · · , n, which is

governed by the stochastic differential equation

dSi

Si
= µi dt + σi dZi.

Let the correlation structure be defined by

cov(dZi, dZj) = E[dZi dZj] = ρij dt, where E[dZi] = 0.

The mean and variance of the log return of asset i are

E

[
ln

Si(t)

Si(0)

]
=

(
µi −

σ2
i

2

)
t and var

[
ln

Si(t)

Si(0)

]
= σ2

i t.

Portfolio dynamics

Let wi denote the weight of asset i with
n∑

i=1

wi = 1. Let V be the

value of the portfolio, where V =
n∑

i=1

niSi. Note that the number of

units ni of asset i is changing at all the times due to rebalancing.



Consider the differential dV , where

dV =
n∑

i=1

ni dSi +
n∑

i=1

Si dni.

We assume self-financing strategy where there is no additional fund

added or withdrawn so that the purchase of new units of one asset

is financed by the sale of other assets. Under self-financing strategy,

we have
n∑

i=1

Si dni = 0.

Now

dV

V
=

n∑

i=1

ni dSi

V
=

n∑

i=1

wi
dSi

Si
=

n∑

i=1

[wiµi dt + wiσi dZi],

where the weight wi is given by
niSi

V
.



Volatility pumping – the weights are fixed at all times

For fixed value of wi, the variance of the stochastic term is

E







n∑

i=1

wiσi dZi




2

 =

n∑

i,j=1

wiwjρijσiσj dt.

Hence, V (t) is lognormal with

E

[
ln

V (t)

V (0)

]
=

n∑

i=1

wiµit −
1

2

n∑

i,j=1

wiwjρijσiσjt.

Note that
1

t
E

[
ln

V (t)

V (0)

]
gives the growth rate of the portfolio.

Consider the simpler case where all n assets have the same mean µ

and variance σ and they are all uncorrelated so that ρij = 0, i 6= j.

The expected growth rate of each stock is µ −
σ2

2
.



Suppose these n stocks are each included in a portfolio with weight

1/n. In this case, −
1

2

n∑

ij=1

wiwjρijσiσj = −
σ2

2n
since wi =

1

n
, ρij = 1

and ρij = 0 for i 6= j. Hence, the expected growth rate of the

portfolio is µ −
σ2

2n
. By pumping, the growth rate has increased over

that of a single stock by
(

µ −
σ2

2n

)
−
(

µ −
σ2

2

)
=

1

2

(
1 −

1

n

)
σ2 =

1

2

n − 1

n
σ2.

Remark

The pumping effect is obviously most dramatic when the original

variance is high. Under this scenario, volatility is not the same as

risk, rather it represents opportunity.


