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1. The seller of the forward hedges the risk by borrowing αS(0) dollars at time 0 to buy
α units of the underlying stock and selling out q units of the stock at each period in
order to pay for the carrying charge. After M periods, the number of units of the
stock remaining is α − qM . The goal is to have one unit of the stock available for
delivery at maturity M . This gives

α− qM = 1 or α = 1 + qM.

Let F be the forward price. At maturity M , the seller of the forward receives F but
he has to pay back (1 + qM)S(0)/B(0,M) to the borrower. By netting the cash
flows to be zero at maturity, we obtain

F =
(1 + qM)S(0)

B(0,M)
.

Alternative approach: Recall the forward price formula:

F =
S(0)

B(0,M)
+

M∑
k=1

c(k)

B(0,M)/B(0, k)
,

where c(k) is the carrying charge at time k. Here, c(k) = qS(k). The price of the
forward maturity at k is S(0)/B(0, k). The forward price formula is modified to
become

F =
S(0)

B(0,M)
+

M∑
k=1

qS(0)/B(0, k)

B(0,M)/B(0, k)
=

(1 + qM)S(0)

B(0,M)
.

2. The fixed rate receiver takes the following bonds portfolio:

(i) short holding of the T2-maturity discount bond with par N [1+Kgen(T2 −T1)];

(ii) long holding of the T1-maturity discount bond with par N .

The dollar amount N collected at T1 is deposited in a money market account that
earns the floating LIBOR L(T1, T2). The interest earned can be used to pay the
floating leg payment NL[T1, T2](T2 − T1). In return, the fixed rate receiver receives
NKgen(T2 − T1). Together with cash N left, he is able to honor the par payment of
N [1 +Kgen(T2 − T1)] of the short position of the T2-maturity discount bond.

The net cost of acquiring the long and short positions of the two bonds at the
current time
= N [1 +Kgen(T2 − T1)Bt(T2)−Bt(T1)]
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> N [1 +K(T2 − T1)Bt(T2)−Bt(T1)] = 0.
Here, the fixed rate receiver has upfront positive gain and net offsetting position at
T2. This represents an arbitrage opportunity.

3. Consider the fixed-leg and floating-leg payments of a swap of unit notional. Suppose
the current time is indexed by 0 (i.e. t = 0), and t = 1 means one year away from
now.

Fixed-leg payments

At t =
1

4
, in-flow of

10%

2
= 0.05 of interest.

At t =
3

4
, in-flow of

10%

2
= 0.05 of interest.

Floating-leg payments

At t =
1

4
, in-flow of L 1

2

(
−1

4

)(
3

4
− 1

4

)
=

1

2
L 1

2

(
−1

4

)
.

Here, L 1
2

(
−1

4

)
denotes the half-year LIBOR set at an earlier time t = −1

4
.

At t =
3

4
, receives L 1

2

(
1

4

)(
3

4
− 1

4

)
=

1

2
L 1

2

(
1

4

)
.

Discount bond prices observed at t = 0: B

(
0,

1

4

)
= 0.972, B

(
0,

3

4

)
= 0.918. The

3-month maturity floating rate bond that is entitled to receive 1 +
1

2
L 1

2

(
−1

4

)
at

time
1

4
is now priced at 0.992. Note that one dollar at time

1

4
is worth B

(
0,

1

4

)
at

the current time. This gives the present value of
1

2
L 1

2

(
−1

4

)
to be

0.992−B

(
0,

1

4

)
= 0.992− 0.972 = 0.02.

Also, by paying B

(
0,

1

4

)
at t = 0 to acquire the 3-month maturity discount bond,

we can generate the cash flow of $1 +
1

2
L 1

2

(
1

4

)
at t =

3

4
. This is done by putting

$1 collected at t =
1

4
and depositing in a bank account to earn L 1

2

(
1

4

)
for 6-month

period. Note that the implied present value of $1 at t =
3

4
is B

(
0,

3

4

)
, so the

implied present value of
1

2
L 1

2

(
1

4

)
is

B

(
0,

1

4

)
−B

(
0,

3

4

)
= 0.972− 0.918 = 0.054.
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Therefore, the present value of the two floating-leg payments at t =
1

4
and t =

3

4
is $0.02 + $0.054 = $0.074 per unit notional. The present value of the fixed-leg
payments is

0.05

[
B

(
0,

1

4

)
+B

(
0,

3

4

)]
= ($0.05)(0.972 + 0.918) = $0.0945

per unit notional.

The value of the swap to the fixed-rate payer with notional one million

= $1, 000, 000× (0.074− 0.0945)

= −$20, 500.

4. Let the initiation date of the swaption be time zero, let TS and T denote the maturity
date of the swaption and the underlying interest rate swap, respectively, where 0 <
TS < T . Recall that the fixed rate K has been structured in the swaption contract,
which should be set to be the time-0 expectation of the swap rate. During the time
period [0, TS], the market swap rate fluctuates due to the stochastic dynamics of the
interest rate. Therefore, one may visualize the market swap rate to be floating.

On the swaption maturity date TS, the fair value of the fixed leg payments to the
fixed rate payer is given by

N(market swap rate at TS −K)A(TS),

where N is the notional and A(TS) is the value of the annuity based on the tenor of
the underlying interest rate swap. It becomes in-the-money when the market swap
rate at TS is higher than K since the fixed rate payer is happy to pay K that is
below the market swap rate.

5. We can rewrite the caplet payoff as

(1 +KR)max

(
RT (T, T + s)−KR

[1 +RT (T, T + s)](1 +KR)
, 0

)
= (1 +KR)max

(
1

1 +KR

− 1

1 +RT (T, T + s)
, 0

)
= (1 +KR)max

(
1

1 +KR

− PT (T + s), 0

)
.

It is the same as the payoff of 1 +KR units of put option on an s-period bond with

strike price
1

1 +KR

.

6. The pricing argument for determining the asset spread sA(t) prevails at any time t,
so the in-progress asset swap spread sA(t) is given by

sA(t) =
C(t)− C(t)

A(t)
,
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where A(t) is the time-t value of annuity associated with the remaining tenor of
the interest rate swap. The net gain in the asset swap spread is sA(0)− sA(t) since
sA(0) has been fixed at initiation. This is translated into net change in value of
A(t)[sA(0)− sA(t)] of the asset swap.

7. Consider the first strategy of entering into the off-market forward swap:

• Gain on refunding (per settlement period): embedded callable right{
[10 percent −(T +BS)] if T +BS < 10 percent,
0 if T +BS ≥ 10 percent.

• Gain (or loss) on the swap forward (per settlement period):{
−[9.50percent− (T + SS)] if T + SS < 9.50percent,

[(T + SS)− 9.50 percent] if T + SS ≥ 9.50percent.

Assuming that BS = 1.00 percent and SS = 0.50 percent, these gains and
losses two years later are:

Gain on the
forward Swap

Gain on
Refunding

9%
T

Gains

Losses

lowering of
refunding
gain if
goes up

BS

If goes downSS

• Refunding payoff resembles a put payoff on T

• Forward swap payoff resembles a forward payoff on T

4



T

Gains

Losses
If goes down
or goes up

SS

BS

9%

Net Gains

Lowering of net gain
to the company if
(i) (bond credit spread)

goes up;
(ii) (swap spread)

goes down.

BS

SS

Since the company stands to gain if rates rise, it has not fully monetized the embed-
ded callable right. This is because a symmetric payoff instrument (a forward swap)
is used to hedge an asymmetric payoff (option).

Next, consider the second strategy of buying a payer swaption expiring in two years
with a strike rate of 9.5%.

Initial cash flow: Pay $1.10 million as the cost of the swaption (the swaption is
out-of-the-money)

• Gain on refunding (per settlement period):{
10 percent − (T +BS) if T +BS < 10 percent,

0 if T +BS ≥ 10 percent.

• Gain (or loss) on unwinding the swap (per settlement period):{
(T + SS)− 9.50 percent if T + SS > 9.50 percent,

0 if T + SS ≤ 9.50 percent..

With BS = 1.00 percent and SS = 0.50 percent, these gains and losses are:

This strategy is too conservative. The company will benefit from Treasury rates
being either higher or lower than 9%. However, the treasurer had to spend $1.1
million to lock in this straddle.

5



Lastly, consider the third strategy of selling a receiver swaption at a strike rate of
9.5% expiring in two years.

Initial cash flow: Receive $2.50 million (in-the-money swaption)

• Gain on refunding (per settlement period):{
[10 percent − (T +BS)] if T +BS < 10 percent,

0 if T +BS ≥ 10 percent.

• Loss on unwinding the swap (per settlement period):{
[9.50 percent −(T + SS)] if T + SS < 9.50 percent,

0 if T + SS ≥ 9.50 percent.

With BS = 1.00 percent and SS = 0.50 percent, these gains and losses are:

By selling the receiver swaption, the company has been able to simulate the sale of
the embedded call feature of the bond, thus fully monetizing the callable right. The
only remaining uncertainty is the basis risk associated with unanticipated changes
in swap and bond spreads.

8. Payoff streams of a total return swap (TRS) to the total return receiver B (the
payoffs to the total return payer A are the converse of these).

Time Defaultable bond TRS payments

Funding Returns Marking to market

t = 0 −C(0) 0 0 0

t = Ti c −C(0)(Li−1 + sTRS) +c +C(Ti) − C(Ti−1)

t = TN C(TN ) + c −C(0)(LN−1 + sTRS) +c +C(TN ) − C(TN−1)

Default Recovery −C(0)(Li−1 + sTRS) 0 −(C(Ti−1) − Recovery)

The TRS is unwound upon default of the underlying bond. Day count fractions are
set to one, δi = 1, for convenience.

The source of value difference lies in the marking-to-market of the TRS at the
intermediate intervals.
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Final payoff of the strategy

B sells the bond in the market for C(TN), and has to pay back his debt which costs

him C(0). (The LIBOR coupon payment is already cancelled with the TRS.) This
yields:

C(TN)− C(0),

which is the amount that B receives at time TN by following strategy (a). This is
the netting of intermediate interest and coupon payments.

We decompose this total price difference between t = 0 and t = TN into the smaller
and incremental differences that occur between the individual times Ti:

C(TN)− C(0) =
N∑
i=1

C(Ti)− C(Ti−1).

This representation allows us to distribute the final payoff of the strategy over the
intermediate time intervals and to compare them to the payout of the TRS position
(b).

• Each time interval [Ti−1, Ti] contributes an amount of

C(Ti)− C(Ti−1)

to the final payoff, and this amount is directly observable at time Ti.

• This payoff contribution can be converted into a payoff that occurs at time Ti

by discounting it back from TN to Ti, giving

[C(Ti)− C(Ti−1)]B(Ti, TN).

Conversely, if we paid B the amount given in the above equation at each Ti, and
assume that B reinvested this money at the default-free interest rate until TN , then
B would have exactly the same final payoff as in strategy (a).

From the TRS position in strategy (b), B has a slightly different payoff:

C(Ti)− C(Ti−1)

at all times Ti > T0 net of his funding expenses.

Time value of intermediate payments

• The difference (b) − (a) is:

[C(Ti)− C(Ti−1)][1−B(Ti, TN)] = ∆C(Ti)[1−B(Ti, TN)].

The above gives the excess payoff at time Ti of the TRS position over the
outright purchase of the bond.

• This term will be positive if the change in value of the underlying bond ∆C(Ti)
is positive. It will be negative if the change in value of the underlying bond is
negative, and zero if ∆C(Ti) is zero.
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• If the underlying asset is a bond, the likely sign of its change in value ∆C(Ti)

can be inferred from the deviation of its initial value C(0) from par. For

example, if C(0) is above par, the price changes will have to be negative on
average.

• The most extreme example of this kind would be a TRS on a default-free
zero-coupon bond with maturity TN .

• If we assume constant interest rates of R, this bond will always increase in
value because it was issued at such a deep discount.

• A direct investment in the bond will only realise this increase in value at
maturity of the bond, while the TRS receiver effectively receives prepayments.
He can reinvest these prepayments and earn an additional return.

Bonds that initially trade at a discount to par should command a positive TRS
spread sTRS, while bonds that trade above par should have a negative TRS spread
sTRS.

9. Consider a portfolio consisting of a call of strike X1 and a discount bond with par
X1, both have the same date of maturity. The terminal payoff of the portfolio is
max(ST , X1). We compare this portfolio with another similar portfolio, except that
X1 is replaced by X2, where X2 > X1. Since

max(ST , X1) ≤ max(ST , X2),

so the second portfolio dominates over the first portfolio. By no arbitrage principle,
the present value of the second portfolio is greater than or equal to that of the first
portfolio. We then have

value of the first portfolio = c(S, τ ;X1) +B(τ)X1

≤ c(S, τ ;X2) +B(τ)X2 = value of the second portfolio

so
c(S, τ ;X1)− c(S, τ ;X2) ≤ B(τ)(X2 −X1)

B(τ) ≥ −c(S, τ ;X2)− c(S, τ ;X1)

X2 −X1

.

By taking the limit X1 → X2, we then obtain

B(τ) ≥ − ∂c

∂X
(S, τ ;X2) or

∂c

∂X
(S, τ ;X) ≥ −B(τ).

Also, the call price function is a decreasing function of the strike price, so it is
obvious that

∂c

∂X
(S, τ ;X) ≤ 0.

The above result holds for European options on a dividend paying asset since the
holder of a European option is not entitled to receive the dividends. The terminal
payoffs of the two portfolios remain the same even the underlying asset is dividend
paying.
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10. The put price function is homogeneous of degree one, that is,

p(λS;λX) = λp(S;X).

Let h1 > h2 so that h1 ≥ λh1 + (1− λ)h2 and λh1 + (1− λ)h2 ≥ h2,∀λ ∈ [0, 1].

Let µ =
λh1

λh1 + (1− λ)h2

, and observe
X

h1

≤ X

λh1 + (1− λ)h2

≤ X

h2

, we obtain from

the convexity properties of the option price functions with respect to the strike price:

p

(
X;

X

λh1 + (1− λ)h2

)
≤ µp

(
X;

X

h1

)
+ (1− µ)p

(
X;

X

h2

)

⇔ [λh1+(1−λ)h2]p

(
X;

X

λh1 + (1− λ)h2

)
≤ λh1p

(
X;

X

h1

)
+(1−λ)h2p

(
X;

X

h2

)
.

Using the homogeneous property of the price function, we obtain

p(λh1X + (1− λ)h2X;X) ≤ λp(h1X;X) + (1− λ)p(h2X;X).

Lastly, by setting S1 = h1X and S2 = h2X, we deduce that

p(λS1 + (1− λ)S2;X) ≤ λp(S1;X) + (1− λ)p(S2;X), where λ ∈ [0, 1].

11. When the strike price is growing at the riskless interest rate, there will be no gain
on the time value of the strike price upon early exercise of the American put. In
this case, the American early exercise right is rendered worthless, so the price of the
American put is the same as that of its European counterpart.

(i) When X = 0, the American put becomes worthless since the exercise of the
American put always gives zero value.

(ii) Once S = 0, the asset price stays at zero value forever. There will be no loss
in dividends from the asset and insurance value associated with the holding
of the American put. The American put should be exercised immediately to
receive the strike price X. Hence, the value of the American put is equal to X.

12. Consider the following payoff table:

Transactions time t time T
ST ≤ QT ST > QT

buy call −c(St, Qt, t) 0 ST −QT

sell put p(St, Qt, t) ST −QT 0
sell forward on A F P

t,T (S) −ST −ST

buy forward on B −F P
t,T (Q) QT QT

total −c(St, Qt, t) 0 0
+ p(St, Qt, t)
+ F P

t,T (S)− F P
t,T (Q)

Since the time-T portfolio value is always zero under all scenarios, by virtue of the
law of one price, the time-t portfolio value must also be zero. If otherwise, then
arbitrage opportunity arises. We then have the put-call parity relation.
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