MAFS 5030 - Quantitative Modeling of Derivative Securities

Solution to Homework Four

1. When the dividends are taxed at the rate R, the differential of the portfolio value
II =—c+ AS is given by

~ [oe , 0% dc
dll = — [E —S W—F(l —R)qAS} dt + (A— ES‘) ds.

Note that the capital gains on the change in value of ¢ and S are not taxed. Again,

C .. . . .
we set A = — to eliminate the random term. Since interest incomes are taxed

at the rate R, the deterministic rate of return from the money market account is

(1 — R)r. We set dIl = (1 — R)rIl dt to give
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This gives the governing equation for the call price function as follows
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The European call and put price formulas are given by

c(S,7) = Se R N(d) — Xe RN (dy)
p(S,7) = Xe_(l_R)”N(—dg) Se~ (1= RqTN( dy),

where 7 =T — ¢ and
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d1: [ 0_\/? ] ,dgzdl—O'\/;.

2. An investor has two choices at time ¢: (i) holding cash amount of S until 7', (ii)

use the cash amount of S to buy the underlying asset and short one unit of forward

(causes nothing to enter into the short position of the forward). The values of wealth
N

at T for both strategies are Se"™=% and F + ZDieT(T_“). These two strategies
i=1

should have the same value, so we obtain
F(S,t) = Ser™=Y ZDeT(Tt

For the call price function ¢(S,t), the governing differential equation is

where the risk neutral drift rate remains to be r due to the discrete nature of
dividend payments. Consider the rules of differentials
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so that

Oc (r—1) 9¢ , 0%c o? 2 0%c
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Putting all these relations together, we obtain
8CF 2 l r(T—t;) 0201:
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Note that closed form solution to the above differential equation cannot be found.

Remark

Between two consecutive discrete dividend dates, the governing differential equation
for the call price function remains the same. However, the transition density of the
asset price will be affected by the discrete dividend payments since the asset price
drops by the dividend amount on each ex-dividend date.

3. The forward start call option price is given by
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Note that Eg[St,|Fi] = " 9793 50 that the call option price can be expressed
as

where ¢(S, Ty —T7; S) is the value of an at-the-money call with time to expiry To—1T7.

4. The price formula of a European call on a continuous dividend paying asset is given
by R R
c=Se " N(dy) — Xe ""Ndy),
where
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The theta is found to be
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For an in-the-money call, S > X, when ¢ is sufficiently high, the theta may become
positive.



5. Recall M(T) = e" with M(0) = 1. From the numeraire invariance theorem, we

have S
M(T) o2
/ 0 T —TT e(r——)T—l—aZTe—rT 6—7T—|—O’ZT'

Note that

exp (—?T + az> — exp </OT —(~0)dZ — %/j(-@?ds) |

we deduce that Z}, = Zp + fOT —ods = Zp — o7 is a Brownian process under Q* by
virtue of Girsanov’s Theorem. We then obtain

ST O'2 «
IHS—O = (7”4—?) T+UZT.

From the density function of a normal random variable , we deduce that the tran-
sition density function of S; under @) is given by
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Suppose we set In g—z =y, it follows that
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Finally, we consider
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6. The time-t value of the contingent claim is given by
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7. Recall ¥
d (st) =y dt + opdZy,,

t

where = —poxos + 0%, 0% = 0% — 2poxos + 0% and
opZp, = oxdZ%, — 05dZ3,.

Putting all these relations together, we obtain

X
d (§t> = (—poxog+oz)dt+ UXde%t — anth
¢

= 0x(dZ§g’t — pogdt) — ag(ngt — ogdt).
Since th —pogst and th —ogt are Q*-Brownian, so the difference O’X(Zj%t —pogt)—
US(th — ogt) is also Q*-Brownian. Hence, X;/S; is a martingale under Q* since

the dynamics of d <X
St

8. Recall V (S, 5, 7) = SoW(S1, o, T) so that

> has zero drift.
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The governing equation for W = W (S, Sy, 7) is given by
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Next, we let y; =InS1, yo=InS and y =Ilnx =1InS; —In S5 = y; — ys.
Note that
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so the governing equation for W = W (y;, y2, 7) can be expressed as
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We define W = W (y, 7), where y = y; — y» and observe
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10.

we obtain the following equation for W = W (y, 7):

8W_Jf—2p0102+a§82W+(q . Jf—2p010'2+a§> oW LW
s — 1 — — W

or 2 0y? 2 dy
In terms of W = W (x, 1), where x = Iny, we have
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where 0?2 = 07 — 2pa109 + 03. The terminal payoff is max(x — 1,0). Corresponding

to the usual call price formula, we set X = 1, r = ¢ and ¢ = ¢; and obtain the
price formula presented in the question.

The digital quanto option pays one US dollar and it is in-the-money if one Singa-
porean dollar is more than o Hong Kong dollars, or equivalently, Fg\g > «. The
digital quanto option value in Hong Kong is given by

€_TUTFH\UEt U |:1{FS\H>Q}:| = 6_TUTFH\UN(d>,

where
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We write P(t,T") as the time-t value of the unit par discount bond maturing at time
T. Consider the function defined by

9(8r,T) = P(t,T)(S7 — K)T,

and assume that S; follows the Ito process under a risk neutral measure )

ds
= (r = @)t + 0y (i, AW
t
By Ito’s lemma, the differential of ¢ is given by
ag dg 8%g dg
dg = oTr +(rr = qr)Sr 54~ aST _TS% 052 dr + UTSTECZWT

Recall the following identities:
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We then have
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By substituting all the necessary relations and observe E[dWr] = 0, we obtain

de = F[dg]
2
o
= P(,T)E TTK1{5T>K}—qTST1{5T>K}+7TS%5(ST—K) dT.

Furthermore, we observe
P(t,T)E [Stlis;>k}] = ¢+ KP(t,T)E [1{s,>K})

so that

0
a—; = KP(t, T)TTE[1{5T>K}] —dqr {C+ KP(t,T)E [1{5T>K}j|}

+P(t,T)E {C;—%S%é(ST - K)}

Jc 02
= —K(TT—C]T)a—K—qTC-FP(t,T)E 75T5(5T—K) :

The last term can be rewritten as
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= P(t,T)E [? S = K} K2§;(62.

Lastly, we obtain
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. The Black-Scholes call price can be written as
cps(S0, K, X(K,T),T) = Fr[N(d,) — eN(dy)],

where

y = In FET w = X(K,T)*T,
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The other derivatives of cgg with respect to w and y are found to be
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If we write ¢(Sy, K,T') = cps(So, Fre¥, w(0),T), we obtain
Oc
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where a(w,y) = a;—zs, b(w,y) = %, l(y) = g—;u The other derivatives of ¢ are
found to be
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Recall the Dupire equation
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Substituting all the above relations, we obtain
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Solving for vy, we obtain the first identity in the question. For the second identity,
we use an alternative derivation approach to arrive at
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and observe the following relations:
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so that the numerator and denominator can be expressed as
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respectively. After some simplification, we obtain the second identity.

+ K°T




