
MAFS 5030 — Quantitative Modeling of Derivative Securities

Topic 1 – Introduction to Derivative Instruments

1.1 Basic instruments: bonds, forward contracts and futures

1.2 Exotic swap products

1.3 Options: rational boundaries of option values

1.4 American options: Optimal early exercise policies
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1.1 Basic derivative instruments: bonds, forward contracts

and futures

A bond is a debt instrument requiring the issuer to repay to the

lender/investor the amount borrowed (par or face value) plus inter-

ests over a specified period of time.

Specify (i) the maturity date when the principal is repaid;
(ii) the coupon payments over the life of the bond

stream of coupon payments

maturity

P
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• The coupon rate offered by the bond issuer represents the cost

of raising capital. It depends on the prevailing risk free interest

rate and the creditworthiness of the bond issuer. It is also af-

fected by the values of the embedded options in the bond, like

the conversion right in a convertible bond.

• Assume that the bond issuer does not default or redeem the

bond prior to maturity date, an investor holding this bond until

maturity is assured of a known cash flow stream. This explains

why bond products are also called the Fixed Income Product-

s/Derivatives.

Pricing of a bond

Based on the current information of the term structure of interest

rates (yield curve) and the embedded option provisions, find the fair

price that the bond investor should pay at the current time so that

the deal is fair to both counterparties. Also, potential default losses

(probability of default, exposure and recovery value upon default)

should be taken into account in computing the fair bond price.
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Features in bond indenture

1. Floating rate bond

The coupon rates are reset periodically according to some prede-

termined financial benchmark, like LIBOR + spread, where LI-

BOR is the LONDON INTER-BANK OFFERED RATE (phased

out by June 2023). The new benchmark rate is SOFR (Secured

Overnight Funding Rate).

2. Amortization feature – principal repaid over the life of the bond.

3. Callable feature (callable bonds)

The issuer has the right to buy back the bond at a specified

price. Usually this call price falls with time, and often there

is an initial call protection period wherein the bond cannot be

called.
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4. Put provision – grants the bondholder the right to sell back to

the issuer at par value on designated dates.

5. Convertible bond – gives the bondholder the right to exchange

the bond for a specified number of shares of the issuer’s firm.

• Bondholders can take advantage of the future growth of the

issuer’s company.

• Issuer can raise capital at a lower cost.

6. Exchangeable bond – allows the bondholder to exchange the

bond par for a specified number of common stocks of another

corporation.
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Short rate

Let r(t) denote the short rate, which is in general stochastic. This

is the interest rate that is applied over the next infinitesimal ∆t time

interval (t, t + ∆t]. The short rate is a mathematical construction,

not a market reality.

Money market account: M(t)

An investor puts $1 at time t and let it earn interest at the rate

r(t) continuously over the period (t, T ). The governing differential

equation of M(t) is given by

dM(t) = r(t)M(t) dt.

Here, dM(t) represents the interest accrued over (t, t+ dt).
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∫ T
t

dM(u)

M(u)
=
∫ T
t
r(u) du

so that

M(T ) = M(t)e
∫ T
t r(u) du.

Here, e
∫ T
t r(u) du is seen to be the growth factor of the money mar-

ket account over [t, T ] based on continuous compounding. If r is

constant, then

growth factor = erτ , τ = T − t.

If r(t) is stochastic, then M(T ) is also stochastic.

The reciprocal of the growth factor e−
∫ T
t r(u) du is called the discount

factor.
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Discount bond price: B(t, T )

τ = T − t = time to bond’s maturity

The price that an investor on the zero-coupon (discount) bond with

unit par is willing to pay at time t if the bond promises to pay him

back $1 at a later time (maturity date) T .

This fair value is called the discount bond price B(t, T ), which is

given by the expectation of the discount factor based on the cur-

rent information: Et

[
e−
∫ T
t r(u) du

]
. If r is constant, then B(t, T ) =

e−rτ , τ = T − t.
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Forward contract

The buyer of the forward contract agrees to pay the delivery price

K dollars at future time T to purchase a commodity whose value at

time T is ST . The pricing question is how to set K?

How about

E[exp(−rT )(ST −K)] = 0

so that K = E[ST ]?

This is the expectation pricing approach, which cannot enforce a

price. When the expectation calculation E[ST ] is performed, the

distribution of the asset price process comes into play.
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Objective of the buyer:

To hedge against the price fluctuation of the underlying commodity.

• Intension of a purchase to be decided earlier, actual transaction

to be done later.

• The forward contract needs to specify the delivery price, amoun-

t, quality, delivery date, means of delivery, etc.

Potential default of either party (counterparty risk): writer or buy-

er.

Forward contract is the simplest form of a financial derivative. The

exposure to the writer (short position) of the forward can be hedged

by long holding one unit of the underlying asset. In this case, the

hedge ratio is one.
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Terminal payoff from a forward contract

K = delivery price, ST = asset price at maturity

This is a zero-sum game between the writer (short position) and

buyer (long position). For cash settlement of the terminal payoff,

one can sell the underlying asset immediately to realize the cash

value ST upon maturity of the contract.
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Replication enforces forward price

Is the forward price related to the expected price of the commodity

on the delivery date? Provided that the underlying asset can be

held for hedging by the writer, then

forward price

= spot price + cost of fund + storage cost︸ ︷︷ ︸
cost of carry

• Upfront cost (through borrowing) is required to acquire the un-

derlying commodity at the spot price. Cost of fund is the interest

costs accrued over the period of the forward contract.

• Cost of carry is the total cost incurred to acquire and hold the

underlying asset, say, including the cost of fund and storage

cost.

• Dividends paid to the holder of the asset are treated as negative

contribution to the cost of carry.
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Numerical example on arbitrage

– spot price of oil is US$19

– quoted 1-year forward price of oil is US$25

– 1-year US dollar interest rate is 5% pa

– storage cost of oil is 2% per annum, paid at maturity

Any arbitrage opportunity? Yes

Sell the forward and expect to receive US$25 one year later. Borrow

$19 now to acquire oil, pay back $19(1+0.05) = $19.95 a year later.

Also, one needs to spend $0.38 = $19× 2% as the storage cost.

total cost of replication (dollar value at maturity)

= spot price + cost of fund + storage cost

= $20.33 < $25 to be received.

Close out all positions by delivering the oil to honor the forward. At

maturity of the forward contract, guaranteed riskless profit = $4.67.
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How to perform replication when the underlying is a stock index?

• Long a basket of stocks whose composition is the same as the

weights that calculate the stock index. This requires upfront

cash on the seller of the index futures.

• Unlike the delivery of the physical asset in a forward contract

on commodity, upon maturity of the index futures (traded in an

exchange), the cash settlement of the index futures is realized

by the cash received through liquidation of the basket of stocks.

However, since the settlement futures value is the average of the

stock index taken at 5-minute time intervals on the settlement date

of the index futures, liquidation has to be executed at every 5-

minute time interval accordingly. There may be a potential slippage

since the actual implementation of liquidation may take 30 seconds

or more. Also, there are uncertainties with regard to the dividends

received from the basket of stocks.
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Value and price of a forward contract

Let f(S, τ) = value of forward, F (S, τ) = forward price,

τ = time to expiration,

S = spot price of the underlying asset.

Further, we let

B(τ) = value of an unit par discount bond with time to maturity τ

• If the interest rate r is constant and interests are compounded

continuously, then B(τ) = e−rτ .

• Assuming no dividend to be paid by the underlying asset and no

storage cost.

We construct a “static” (fix the hedge ratio to be one throughout

the life of the forward contract) replication of the forward contract

by a portfolio of the underlying asset and bond.
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Portfolio A: long one forward and a discount bond with par value K

Portfolio B: one unit of the underlying asset

Both portfolios become one unit of asset at maturity. Let ΠA(t)

denote the value of Portfolio A at time t. Note that ΠA(T ) = ΠB(T ).

By the “law of one price”,∗ we must have ΠA(t) = ΠB(t). The

forward value is given by

f = S −KB(τ).

The forward price is defined to be the delivery price which makes

f = 0, so K = S/B(τ). Hence, the forward price is given by

F (S, τ) = S/B(τ) = spot price + cost of fund.

∗Suppose ΠA(t) > ΠB(t), then an arbitrage can be taken by selling Portfolio A
and buying Portfolio B. An upfront positive cash flow is resulted at time t but
the portfolio values are offset at maturity T . Failure of law of one price implies
the existence of an arbitrage opportunity.
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Failure of the law of one price leads to existence of an arbitrage op-

portunity (an important financial economic concept to be discussed

in Topic 2).

Can you find an example where law of one price is observed while

there exists an arbitrage opportunity?
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Forward price formula with discrete carrying costs

Suppose an asset has a holding cost of c(k) per unit in period k,

k = 1,2, . . . ,M , and the asset can be sold short. Suppose the initial

spot price is S. The theoretical forward price F is

F =
S

B(0,M)
+

M∑
k=1

c(k)

E0[d(k,M)]
,

where the market expectation of the discount factor d(k,M) at time

zero is given by

E0[d(k,M)] = B(0,M)/B(0, k).

Here, B(0, k) denotes the market observable time-0 price of a dis-

count bond that matures at time k.

The terms on the right hand side represent the future value at ma-

turity date M of the total costs required for holding the underlying

asset for hedging. As a fair deal, the buyer has to pay the delivery

price F that is set equal to the sum of the future value at date M

of all costs.
18



Discrete dividend paying asset

We may treat the carrying charges c(k) as negative dividends D(k),

k = 1,2, . . . ,M . Let D be present value of all dividends received

from holding the asset during the life of the forward contract, where

D =
M∑
k=1

B(0, k)D(k), then

F =
S

B(0,M)
−

M∑
k=1

D(k)B(0, k)

B(0,M)
=

S −D
B(0,M)

.

Remark

For a discount bond with unit par and maturity T , we may write

the time-t price as Bt(T ) or Bt,T or B(τ), where τ = T − t. Here,

B(0,M) means t = 0 and T = M .
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Alternative proof

We modify Portfolio B to contain one unit of the asset plus bor-

rowing of D dollars. The loan of D dollars will be repaid by the

dividends received by holding the asset. We then have

f +KB(τ) = S −D

so that

f = S − [D +KB(τ)].

Setting f = 0 to solve for K, we obtain F = (S −D)/B(τ).

The “net” asset value is reduced by the amount D due to the

anticipation of the dividends. Unlike holding the asset, the holder

of the forward will not receive the dividends. As a fair deal, he

should pay a lower delivery price at forward’s maturity.
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Cost of carry

Additional costs to hold the commodities, like storage, insurance,

deterioration, etc. These can be considered as negative dividends.

Treating U as −D, we obtain

F = (S + U)erτ ,

U = present value of total cost incurred during the remaining life of

the forward to hold the asset.

Suppose the costs are proportional and paid continuously, we have

F = Se(r+u)τ ,

where u = cost per annum as a proportion of the spot price. Similar

to interest amount, the holding cost paid over (t, t+ dt) is uS dt.

In general, F = Sebτ , where b is the cost of carry per annum. Let q

denote the continuous dividend yield per annum paid by the asset.

With both continuous holding cost and dividend yield, the cost of

carry b = r + u− q.
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Futures contracts

A futures contract is a legal agreement between a buyer (seller) and

an established exchange or its clearing house in which the buyer

(seller) agrees to take (make) delivery of a financial entity at a

specified price at the end of a designated period of time. Usually

the exchange specifies certain standardized features.

Mark to market the account

Pay or receive from the writer the change in the futures price

through the margin account so that payment required on the ma-

turity date is simply the spot price on that date.

Credit risk is limited to one-day performance period
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Roles of the clearing house and margin account

• Minimize the counterparty risk through the margin account.

• Provide the platform for parties of a futures contract to unwind

their position prior to the settlement date.

Margin requirements

Initial margin – paid at inception as a deposit for the contract.

Maintenance margin – minimum level before the investor is required

to deposit additional margin.
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Example (Margin)

Suppose that Mr. Chan takes a long position of one contract in

corn (5,000 kilograms) for March delivery at a price of $2.10 (per

kilogram). And suppose the broker requires margin of $800 with a

maintenance margin of $600.

• The next day the price of this contract drops to $2.07. This

represents a loss of 0.03 × 5,000 = $150. The broker will take

this amount from the margin account, leaving a balance of $650.

The following day the price drops again to $2.05. This repre-

sents an additional loss of $100, which is again deducted from

the margin account. As this point the margin account is $550,

which is below the maintenance level.

• The broker calls Mr. Chan and tells him that he must deposit at

least $250 in his margin account, or his position will be closed

out.
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Dynamic strategy that replicates the daily margin settlement

in a futures contract

Consider an asset with price S̃T at time T . An investor who pays an

amount Gt,T that equals the futures price of the asset and together

performs the dynamic strategy of long holding futures on successive

dates is equivalent to pay the time-t spot price of a security which

has a payoff

S̃T

Bt,t+1B̃t+1,t+2 · · · B̃T−1,T

at time T . Note that quantities with “tilde” at top indicate stochas-

tic variables. Note that the payoff is seen to be some units of the un-

derlying asset, where the number of units is
1

Bt,t+1B̃t+1,t+2 · · · B̃T−1,T
(this is the same as the value of the money market account starting

at $1 and accumulating over the period [t, T ]).
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The dynamic strategy is presented as follows.

• We start with long holds 1
Bt,t+1

futures contracts at time t. On

day τ , the investor long holds 1
Bt,t+1···Bτ,τ+1

futures contracts.

To reflect the daily settlement feature, the gain/loss from the

futures position on day τ earns/pays the overnight rate 1
Bτ,τ+1

.

Recall that Bτ,τ+1 is known by day τ .

• Also, invest the dollar amount of Gt,T in a one-day risk free bond

and roll the cash position over on each day at the one-day rate.

This is like “rolling over” in a money market account on a daily

basis.

• In other words, paying upfront cash Gt,T plus executing the dy-

namic strategy replicates the payoff of
1

Bt,t+1B̃t+1,t+2 · · · B̃T−1,T
units of the underlying asset. The investment of Gt,T is equiva-

lent to the price paid to acquire this security.
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As an illustrative example, take t = 0 and T = 3.

1. Take 1/B0,1 long futures at t = 0;

1/B0,1B1,2 long futures at t = 1;

1/B0,1B1,2B2,3 long futures at t = 2.

Note that B1,2 and B2,3 are market observable bond prices at t =

1 and t = 2, respectively. The holder holds extra
1

B0,1B1,2
−

1

B0,1
units of futures when the calendar time advances from t = 0 to

t = 1. However, it costs nothing to change the holding of units

of futures on successive dates.
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2. Invest the dollar amount of G0,3 in one-day risk free bond and
roll over the net cash position

Time Profits from futures Bond position Net position
0 — G0,3 G0,3

1 1
B0,1

(G1,3 −G0,3) G0,3

B0,1

G1,3

B0,1

2 1
B0,1B1,2

(G2,3 −G1,3) G1,3

B0,1B1,2

G2,3

B0,1B1,2

3 1
B0,1B1,2B2,3

(G3,3 −G2,3) G2,3

B0,1B1,2B2,3

G3,3

B0,1B1,2B2,3
= S3

B0,1B1,2B2,3

The net profit for one unit of the index futures with price G0,3

at t = 0 after one day when the new index futures price becomes

G1,3 at t = 1 is G1,3 −G0,3. Note that G3,3 = S3.

• The key point is the combination of cash
G3,3

B0,1B1,2B2,3
and

1

B0,1B1,2B2,3
units of futures. Upon exercising at time 3, they

are converted into
1

B0,1B1,2B2,3
units of asset, each unit valued

at S3.
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Pricing issues

We consider the discrete-time model and assume the existence of

a risk neutral pricing measure Q. We have demonstrated the con-

struction of the dynamic replication strategy. The fair time-t price

of
S̃T

Bt,t+1 · · · B̃T−1,T
is the cost of setting up the replicating port-

folio, which is Gt,T . On the other hand, based on the risk neutral

valuation principle, the time-t price of a security is given by the

Q-expectation of the discounted terminal payoff at T , where

Gt,T = EQ

Bt,t+1B̃t+1,t+2 . . . B̃T−1,T
S̃T

Bt,t+1B̃t,t+1B̃t+1,t+2 · · · B̃T−1,T


= EQ[S̃T ].

The result remains valid for the continuous-time counterpart. Under

the continuous-time model, the risk neutral valuation principle gives

the time-t price of a contingent claim as follows:

Vt = EQ

[
e−
∫ T
t r(u) duVT

]
.
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Difference in futures price Gt and forward price Ft

Difference in payment schedules may lead to difference in futures

and forward prices since different interest rates are applied on in-

termediate payments. When the interest rates are deterministic,

we have Gt,T = Ft,T . This is a sufficient condition for equality of

the two prices. The necessary and sufficient condition is that the

discount process and the terminal value of the underlying asset are

uncorrelated under the risk neutral measure Q.

• When physical holding of the underlying index (say, snow fall

amount in a ski resort) for hedging is infeasible, then the buyer

sets

forward price = EP [ST ],

where P is the subjective probability measure of the buyer.
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• When the physical holding of the asset is subject to daily set-

tlement through the margin requirement (dynamic rebalancing)

futures price = EQ[ST ],

where Q is the risk neutral measure that uses the money market

account as the numeraire. As a remark, 1
Bt,t+1B̃t+1,t+2···B̃T−1,T

is

seen as the money market account rolling daily over the period

[t, T ]. The asset S̃T
Bt,t+1B̃t+1,t+2···B̃T−1,T

when normalized by the

money market account becomes S̃T .
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Recall that the forward price (without daily settlement) is Ft =
St

B(t, T )
. By the risk neutral valuation principle, we have

B(t, T ) = EtQ

[
e−
∫ T
t r(u)du

]
and St = EtQ

[
e−
∫ T
t r(u) duST

]
.

The difference between the futures price and forward price is

Gt − Ft = EQ [ST ]−
St

B(t, T )

=
EQ[ST ]EQ

[
e−
∫ T
t r(u) du

]
− EQ

[
e−
∫ T
t r(u) duST

]
B(t, T )

= −
covQ

[
e−
∫ T
t r(u) du, ST

]
B(t, T )

.

The spread between Gt and Ft becomes zero when the discount pro-

cess and the terminal value of the underlying asset are uncorrelated

under the risk neutral measure Q. In the special case where the

interest rates are deterministic, we have equality of Gt and Ft.
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Currency forward

The underlying is the exchange rate X, which is the domestic cur-

rency price of one unit of foreign currency.

rd = constant domestic interest rate

rf = constant foreign interest rate

Portfolio A: Hold one currency forward with delivery price K

and a domestic bond of par K maturing on the

delivery date of forward.

Portfolio B: Hold a foreign bond of unit par maturing on the

delivery date of forward.

Holding of the domestic and foreign bonds allow the bonds to earn

the interest rate in the respective currency.
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Remark

The underlying asset of a foreign currency forward is one unit of

foreign currency (in the form of market account) that pays dividend

yield rf .

Let ΠA(t) and ΠA(T ) denote the value of Portfolio A at time t and

T , respectively. On the delivery date, the holder of the currency

forward has to pay K domestic dollars to buy one unit of foreign

currency. Hence, ΠA(T ) = ΠB(T ), where T is the delivery date.

Using the law of one price, ΠA(t) = ΠB(t) must be observed at the

current time t, t < T .
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Interest rate parity relation

Under the assumption of constant interest rates, we have

Bd(τ) = e−rdτ , Bf(τ) = e−rfτ ,

where τ = T − t is the time to expiry. Let f be the time-t value of

the currency forward in domestic currency,

f +KBd(τ) = XBf(τ),

where XBf(τ) is the value of the foreign bond in domestic currency.

By setting f = 0 at initiation of the forward contract, the forward

price of the currency forward is

K =
XBf(τ)

Bd(τ)
= Xe(rd−rf)τ .

We may recognize rd as the cost of fund and rf as the dividend

yield. This result is the well known Interest Rate Parity Relation.
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Flexible notional currency forward

Consider a 6-month forward contract. The exchange rate over each

one-month period is preset to assume some constant value.

The holder can exercise certain percentage of the notional at any

preset time point during the life of the forward, but she has to

exercise the whole notional by the maturity date of the currency

forward. Without such flexibility, we observe Fj = Xe(rd−rf)tj, j =

1,2, . . . ,6, so that Fj = F1e
(rd−rf)(tj−t1), j = 2,3, . . . ,6. Market

conventions set the same relation under this flexible forward.

How to set F1 so that it is fair to both parties? We expect F1 >

Xe(rd−rf)t1 since the buyer needs to pay more domestic currency to

buy one unit of foreign currency. The extra amount represents the

premium of this flexibility.
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How to determine the optimal policy of the percentage of the no-

tional to be exercised at each time instant? Since the optimal policy

is independent of the notional, we argue that the holder chooses

either no action or exercise the full notional (partial exercise is non-

optimal). This is called the bang-bang strategy. If otherwise, for

any optimal proportion of exercise, α < 1, the remaining 1 − α is

also subject to an optimal exercise of α portion, and so forth. It

ends up with the exercise of the full notional.

Remark

Suppose differential transaction costs are charged according to the

notional amount, say 0.1% on the first $10,000 and 0.08% on the

next $10,000,etc., then the property of independence of the notional

fails. However, if the transaction cost is proportional to the notional,

then the independence property remains.

As part of the pricing issue, besides F1, one has to determine the

threshold exchange rate above which it is optimal to exercise the

whole notional.
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Bond forward

The underlying asset is a zero-coupon bond of maturity T2 with the

settlement date T1, where t < T1 < T2.

The holder pays the delivery price F of the bond forward on the

forward maturity date T1 to receive a bond with par value P on the

maturity date T2, where T2 > T1.
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Bond forward price in terms of traded bond prices

Let Bt(T ) denote the traded price of unit par discount bond at

current time t with maturity date T .

Present value of the two net future cashflows

= −FBt(T1) + PBt(T2).

To determine the forward price F , we set the above value zero and

obtain

F = PBt(T2)/Bt(T1).

Here, PBt(T2) can be visualized as the spot price of the discount

bond. The forward price is given in terms of the known market

bond prices observed at time t with maturity dates T1 and T2.
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Forward on a coupon-paying bond

The underlying is a coupon-paying bond with maturity date TB.

Note that the bond is a traded security whose value changes with

respect to time.

Let TF be the delivery date of the bond forward, where TF < TB. Let

ti be the coupon payment date of the bond on which deterministic

coupon ci is paid. Let t be the current time, where t < TF < TB.

Some of the coupons have been paid at earlier times. Let F be the

forward price, the amount paid by the forward contract holder at

time TF to buy the bond.
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At TB, the bondholder receives par plus the last coupon.
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Based on the forward price formula: F = S−D
B(τ), we deduce that

F =
spot price of bond

Bt(TF )
−
c4Bt(t4)

Bt(TF )
−
c5Bt(t5)

Bt(TF )
.

Let P be the par value of the bond. After receiving the bond at

TF , the bond forward holder is entitled to receive c6, c7 and P once

he has received the underlying bond. By considering the cash flows

after TF , he pays F at TF and receives c6 at t6, c7 + P at TB.

Present value of cash flows at time t

= −FBt(TF ) + c6Bt(t6) + c7Bt(TB) + PBt(TB).

Hence, the bond forward price is given by

F =
c6Bt(t6) + c7Bt(TB) + PBt(TB)

Bt(TF )
.

Remark

Equating the two expressions gives the spot price of the bond in

terms of the cash flows.
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Example — Bond forward

• A 10-year bond is currently selling for $920.

• Currently, hold a forward contract on this bond that has a de-

livery date in 1 year and a delivery price of $940.

• The bond pays coupons of $80 every 6 months, with one due

6 months from now and another just before maturity of the

forward.

• The current interest rates for 6 months and 1 year (compound-

ed semi-annually) are 7% and 8%, respectively (annual rates

compounded every 6 months).

• The bond forward is in-progress, so its value is not zero. This

is unlike the case at initiation where the value of the forward is

zero. What is the current value of the forward?
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Let d(0, k) denote the discount factor over the (0, k) semi-annual

period. We have d(0,2) =
1

(1.04)2
and d(0,1) =

1

1.035
. Consider

the future value of the cash flows associated with holding the bond

one year later and payment of F0 under the forward contract. The

current forward price of the bond

F0 =
spot price

d(0,2)
−
c(1)d(0,1)

d(0,2)
−
c(2)d(0,2)

d(0,2)

= 920(1.04)2 −
80(1.04)2

1.035
−

80(1.04)2

(1.04)2
= 831.47.

Note that the future value at time 2 of coupon amount c(1) is given

by

c(1) / expected discount factor over (1,2)

The expected discount factor over (1,2) is d(0,2)/d(0,1). The

difference in the forward prices is discounted to the present value.

The current value of the forward contract = 831.47−940
(1.04)2 = −100.34.
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Implied forward interest rate

The forward price of a forward on a discount bond should be related

to the implied forward interest rate R(t;T1, T2). The implied forward

rate is the interest rate over the future time period [T1, T2] as implied

by time-t discount bond prices. The bond forward buyer pays F at

T1 and receives P at T2 and she is expected to earn R(t;T1, T2) over

[T1, T2], so

F [1 +R(t;T1, T2)(T2 − T1)] = P.

Together with

F = PBt(T2)/Bt(T1),

we obtain

R(t;T1, T2) =
1

T2 − T1

[
Bt(T1)

Bt(T2)
− 1

]
.
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Forward rate agreement (FRA)

The FRA is an agreement between two counterparties to exchange

floating and fixed interest payments on the future settlement date

T2.

• The floating rate will be the LIBOR L[T1, T2] as observed on

the future reset date T1.

Question

Should the fixed rate be set equal to the implied forward interest

rate over the same period (determined based on traded bond prices

as observed today)?

46



Determination of the forward price of LIBOR

L[T1, T2] = LIBOR to be observed at future time T1

for the accrual period [T1, T2]

K = fixed rate

N = notional of the FRA

Cash flows of the fixed rate receiver

47



Replication argument

We add N to both the cash flows of the fixed rate receiver (see the

diagram on the next page). These cash flows can be replicated by

the following portfolio of bonds:

(i) long holding of the T2-maturity discount bond with par N [1 +

K(T2 − T1)];

(ii) short holding of the T1-maturity discount bond with par N .
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Cash flow of the fixed rate receiver
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Value of the portfolio of bonds that replicate

the cash flow of the fixed rate receiver at the current time

= net cost of acquiring the long and short positions of the two bonds

at the current time

= N{[1 +K(T2 − T1)]Bt(T2)−Bt(T1)}.

We find K such that the above value is zero.

K =
1

T2 − T1

[
Bt(T1)

Bt(T2)
− 1

]
︸ ︷︷ ︸
forward rate over [T1, T2]

.

The fair fixed rate K is visualized as the forward price of the LIBOR

L[T1, T2] over the time period [T1, T2].
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1.2 Swap products

Interest rate swaps

Company A Company B

10%

6-month LIBOR

Direct swap agreement

The two parties agree to exchange periodic interest payments.

• The interest payments exchanged are calculated based on some

predetermined dollar principal, called the notional amount.

• One party is the fixed-rate payer and the other party is the

floating-rate payer. The floating interest rate is based on some

reference rate (the most common index is the LONDON IN-

TERBANK OFFERED RATE, LIBOR).
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Example

Notional amount = $50 million
fixed rate = 10%
floating rate = 6-month LIBOR

Tenor = 3 years, semi-annual payments

6-month period Cash flows
Net (float − fix) floating rate bond fixed rate bond

0 0 −50 50
1 LIBOR1/2× 50− 2.5 LIBOR1/2× 50 −2.5
2 LIBOR2/2× 50− 2.5 LIBOR2/2× 50 −2.5
3 LIBOR3/2× 50− 2.5 LIBOR3/2× 50 −2.5
4 LIBOR4/2× 50− 2.5 LIBOR4/2× 50 −2.5
5 LIBOR5/2× 50− 2.5 LIBOR5/2× 50 −2.5
6 LIBOR6/2× 50− 2.5 LIBOR6/2× 50 −2.5

• One interest rate swap contract can effectively establish a payoff

equivalent to a package of forward contracts.
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A swap can be interpreted as a package of cash market instruments

– a portfolio of forward rate agreements.

• Buy $50 million par of a 3-year floating rate bond that pays

6-month LIBOR semi-annually.

• Finance the purchase by borrowing $50 million for 3 years at

10% interest rate paid semi-annually.

The fixed-rate payer has a cash market position equivalent to a

long position in a floating-rate bond and a short position in a fixed

rate bond (borrowing through issuance of a fixed rate bond). The

floating rate bond is a par bond (the present value is equal to the

par value) since it pays LIBOR exactly. Suppose the interest rate

swap costs nothing to either party, then the present value of the

fixed rate bond is also par. Both bonds have values that are equal

to the par value.
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Application to asset/liability management

• Holding a 5-year term commercial loans of $50 million with a

fixed interest rate of 10%, that is, interest of $2.5 million re-

ceived semi-annually and par received at the end of 5 years.

• To fund its loan portfolio, the bank issues 6-month certificates

of deposit with floating interest rate of LIBOR + 40 bps (100

bps = 1%). This may be a response to the market demand

from investors for floating rate certificates of deposit.

Risk 6-month LIBOR may be 9.6% or greater.

Possible strategy Swap the fixed rate income into a floating
rate cash stream to hedge against uncertainty
in floating rate.
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Choice of swap for the bank

• Every six months, the bank will pay 8.45% (annualized rate).

• Every six month, the bank will receive LIBOR.

Outcome

To be received 10.00%+ 6-month LIBOR
To be paid 8.45% + 0.4%+ 6-month LIBOR
spread income 1.15% or 115 basis points

The bank faces potential default risk of loans.
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Life insurance company’s position

• Has committed to pay a 9% rate for the next 5 years on a

guaranteed investment contract (GIC) of amount $50 million.

• Can invest $50 million in an attractive 5-year floating-rate in-

strument with floating interest rate of 6-month LIBOR +160

bps.

Risk 6-month LIBOR may fall to 7.4%.

Possible strategy Swap the floating rate income into a
fixed rate cash stream.
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Choice of swap for the insurance company

• Every six months, the insurance company will pay LIBOR.

• Every six months, the insurance company will receive 8.45%.

Outcome

To be received 8.45% + 1.6%+ 6-month LIBOR
To be paid 9.00%+ 6-month LIBOR
spread income 1.05% or 105 basis points
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Valuation of interest rate swaps

• At initiation of the interest rate swap, it typically has zero value.

• Valuation involves finding the fixed swap rate K such that the

fixed and floating legs have equal value at inception.

• Consider a swap with payment dates t1, t2, · · · , tn (tenor struc-

ture) set in the term of the swap. Li−1 is the LIBOR observed

at ti−1 but payment is made at ti. Write δi ≈ ti− ti−1 as the ac-

crual period over [ti−1, ti]. Note that δi is in general not exactly

the same as ti − ti−1 since some form of day count convention

is used to compute δi (see below).

• The fixed payment at ti is KNδi while the floating payment at

ti is Li−1Nδi, i = 1,2, · · ·n. Here, N is the notional.
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Day count convention

For the 30/360 day count convention of the time period (D1, D2]

with D1 excluded but D2 included, the year fraction is

max(30− d1,0) + min(d2,30) + 360× (y2 − y1) + 30× (m2 −m1 − 1)

360
where di,mi and yi represent the day, month and year of date Di, i =

1,2.

For example, the year fraction between Feb 27, 2006 and July 31,

2008

=
30− 27 + 30 + 360× (2008− 2006) + 30× (7− 2− 1)

360

=
33

360
+ 2 +

4

12
.
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Replication of cash flows

The fixed payment at Ti is KNδi. The fixed payments are packages

of discount bonds with par KNδi at maturity date Ti, i = 1,2, · · · , n.

To replicate the floating leg payments at current time t, t < T0, we

long T0-maturity discount bond with par N and short Tn-maturity

discount bond with par N . The N dollars collected at T0 can gen-

erate the floating leg payments Li−1Nδi at all Ti by rolling over N

dollars in a deposit bank account earning interest rate Li−1 over

[Ti−1, Ti], i = 1,2, · · · , n. Note that we always have N dollars at the

beginning of each accrual period since the interests earned are used

to honor the floating leg payments. The remaining N dollars at Tn
is used to pay the par of the Tn-maturity bond.

By paying NB(t, T0) at time t to acquire the T0-maturity discount

bond, we can generate these floating leg payments at all time points

and the par N at tn.
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• Let B(t, T ) be the time-t value of the discount bond with ma-

turity t.

Present value of floating leg payments = N [B(t, T0)−B(t, Tn)]

Sum of present value of fixed leg payments = NK
n∑
i=1

δiB(t, Ti).

The swap rate K is given by equating the present values of the two

sets of payments:

K =
B(t, T0)−B(t, Tn)∑n

i=1 δiB(t, Ti)
.

The interest rate swap reduces to a FRA when n = 1. As a check,

we obtain

K =
B(t, T0)−B(t, T1)

(T1 − T0)B(t, T1)
,

just the same formula as shown on p.50.
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Asset swap

• Combination of a defaultable bond with an interest rate swap.

B pays the notional amount upfront to acquire the asset swap

package.

1. A fixed defaultable coupon bond issued by C with coupon c

payable on coupon dates.

2. A fixed-for-floating swap.
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Remarks

1. Asset swap transactions are driven by the desire to replace the

fixed coupons by floating coupons. Asset swaps are more liquid

than the underlying defaultable bond.

2. By market convention, the whole package is sold at par. The

asset swap spread sA is adjusted to ensure that the asset swap

package has an initial value equal to the par value of the de-

faultable bond.

For convenience of our discussion, we set the par to be unity.
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Default free bond price

C(t) = time-t price of default-free bond with fixed-coupon c

B(t, T ) = time-t price of default-free zero-coupon bond with unit par

Defaultable bond price

C(t) = time-t price of defaultable bond with fixed-coupon c

The difference C(t)−C(t) represents the credit risk premium of the

defaultable bond. Investors pay a lesser amount of C(t)− C(t) due

to potential losses arising from bond default.
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Forward swap rate

Recall that the swap rate is the fixed rate in an interest rate swap

where the floating rate payer pays LIBOR and receives the swap

rate (fixed). There is always a tenor structure that underlies an

interest rate swap.

s(t) = forward swap rate at time t of a standard fixed-for-floating

over the tenor [tn, tn+1, . . . , tN ], t ≤ tn.

The first swap payment starts on tn+1 (based on the accrual period

[tn, tn+1]) and the last payment date is tN .

The theoretical forward swap rate can be determined in terms of

discount bond prices based on replication. Interest rate swaps are

highly liquid instruments and the forward swap rates are market

observable. It may occur that the market swap rate may not agree

exactly with the above theoretical formula based on traded bond

prices. Arbitrage forces the market rates not to deviate too far

from the theoretical prices.

65



Asset swap packages

An asset swap package consists of a defaultable coupon bond C

with coupon c and an interest rate swap. The bond’s coupon is

swapped into LIBOR plus the asset swap rate sA.

Payoff streams to the buyer of the asset swap package

time defaultable bond interest rate swap net
t = 0† −C(0) −1 + C(0) −1
t = ti c∗ −c+ Li−1 + sA Li−1 + sA + (c∗ − c)
t = tN (1 + c)∗ −c+ LN−1 + sA 1∗+ LN−1 + sA + (c∗ − c)
default recovery unaffected∗∗ recovery

? denotes payment contingent on survival.

† The value of the interest rate swap at t = 0 is not zero. The sum of the
values of the interest rate swap and defaultable bond is set to be equal to
par at t = 0 since the whole package is sold at par.

∗∗ The interest rate swap continues even after the bond defaults.
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Remarks

• We do not need to model uncertainties in the coupons paid by

the defaultable bond since the market has evaluated the expec-

tation of the potential losses to the holder through the market

price C(t) of the defaultable bond. Luckily, we are able to put

all dusts (uncertainties of the time of arrival of default and re-

covery value) under the carpet (market price of the defaultable

bond).

• However, if the interest rate swap discontinues after default of

the underlying bond, we need to model the random time of

arrival of default in the pricing procedure since there will be no

exchange of interest payments after bond default.
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The additional asset spread sA above LIBOR serves as the compen-

sation to the buyer for bearing the potential loss upon default.

s(0) = fixed-for-floating swap rate (market quote)

A(0) = value of an annuity paying at $1 per annum over the same

tenor as the interest rate swap (calculated based on observable

default free bond prices)

Suppose the annuity stream of $1 per annum makes payments quar-

terly, this would mean $0.25 to be paid in each quarterly payment,

making a total of $0.25 × 4 = $1 per annum. Once the tenor is

known, we can find the value of the annuity for a given tenor as

sum of present values of the cash flows generated from the annuity.

Now, suppose the fixed coupon per annum is 3%, paid quarterly.

Since the par is assumed to be unity, then each coupon payment is

$0.03/4 = $0.0075. The value of the stream of the fixed coupons

for the given tenor is 0.03A(0).
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The value of the asset swap package is set at par at t = 0, so that

C(0) +A(0)s(0) +A(0)sA(0)−A(0)c︸ ︷︷ ︸
swap arrangement

= 1. (A)

The present value of the floating coupons is given by A(0)s(0). This

is because the value of the floating leg payments at LIBOR is the

same as the value of the fixed leg payments at the market swap rate

s(0) under the market interest rate swap.

It has been assumed that the interest rate swap continues even after

default so that A(0) appears in all terms associated with the swap

arrangement.

Solving for sA(0), we obtain the asset spread

sA(0) =
1

A(0)
[1− C(0)] + c− s(0).
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Rearranging the terms in eq.(A), we obtain

C(0) +A(0)sA(0) = [1−A(0)s(0)] +A(0)c︸ ︷︷ ︸
default-free bond

≡ C(0)

where the right-hand side gives the value of a default-free bond

with coupon c. A default free bond that pays LIBOR is called a

par floater since its fair value at initiation equals par. Stripping all

floating leg payments that pay LIBOR reduces the par floater to

single payment of $1 at maturity tN . Therefore, 1−A(0)s(0) is the

present value of receiving $1 at maturity tN . We obtain

sA(0) =
1

A(0)
[C(0)− C(0)].

The extra asset swap sA accounts for the potential loss upon default.

This is quantified as C(0) − C(0) based on market bond prices at

t = 0. For a fair deal between the two parties, the difference in

the bond prices should be set equal to the present value of annuity

stream at the fixed rate sA(0).
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Alternative proof

A combination of the non-defaultable counterpart (bond with coupon

rate c) plus an interest rate swap (whose floating leg is LIBOR while

the fixed leg is c) becomes a par floater. Hence, the new asset pack-

age should also be sold at par.

The buyer is guaranteed to receive LIBOR floating rate interests

plus par.
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The two interest swaps with floating leg at LIBOR + sA(0) and

LIBOR, respectively, differ in values by sA(0)A(0).

Comparing the two asset swaps on P.62 and P.71, the earlier one

has defaultable bond while the later one has default free bond. Both

asset swaps have the same value as the par. The price difference

is C(0) − C(0). This is compensated by the present value of the

annuity at the rate sA(0) per annum. Therefore,

C(0)− C(0) = sA(0)A(0).
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Total return swap

• Exchange the total economic performance of a specific asset for

another cash flow.
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Total return comprises the sum of interests, fees and any change-

in-value payments with respect to the reference asset.

A commercial bank can hedge all credit risk on a bond/loan it has

originated. The counterparty can gain access to the bond/loan on

an off-balance sheet basis, without bearing the cost of originating,

buying and administering the loan. The TRS terminates upon the

default of the underlying asset.
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Some essential features

1. The receiver is synthetically long the reference asset without

having to fund the investment up front. He has almost the

same payoff stream as if he had invested in risky bond directly

and funded this investment at LIBOR + sTRS.

2. The TRS is marked to market at regular intervals, similar to a

futures contract on the risky bond. The reference asset should

be liquidly traded to ensure objective market prices for marking

to market (determined using a dealer poll mechanism).

3. The TRS allows the receiver to leverage his position much higher

than he would otherwise be able to (may require collateral). The

TRS spread should not only be driven by the default risk of the

underlying asset but also by the credit quality of the receiver.
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The payments received by the total return receiver are:

1. The coupon c of the bond (if there were one since the last

payment date Ti−1).

2. The price appreciation (C(Ti)−C(Ti−1))+ of the underlying bond

C since the last payment (if there were any).

3. The recovery value of the bond (if there were default).
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The payments made by the total return receiver are:

1. A regular fee of LIBOR +sTRS.

2. The price depreciation (C(Ti−1)− C(Ti))+ of bond C since the

last payment (if there were any).

3. The par value of the bond C (if there were a default in the

meantime).

The coupon payments are netted and swap’s termination date is

earlier than bond’s maturity.
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Motivation of the receiver

1. Investors can create new assets with a specific maturity not

currently available in the market.

2. Investors gain efficient off-balance sheet exposure to a desired

asset class to which they otherwise would not have access.

3. Investors may achieve a higher leverage on capital – ideal for

hedge funds. Otherwise, direct asset ownership is on on-balance

sheet funded investment.

4. Investors can reduce administrative costs via an off-balance sheet

purchase.

5. Investors can access entire asset classes by receiving the total

return on an index.
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Motivation of the payer

• A long-term investor, who feels that a reference asset in the

portfolio may widen in spread in the short term but will recover

later, may enter into a total return swap that is shorter than the

maturity of the asset. She can gain from the price depreciation.

This structure is flexible and does not require a sale of the asset

(thus accommodates a temporary short-term negative view on

an asset).
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IBM/World Bank – first currency swap structured in 1981

• IBM had existing debts in DM and Swiss francs. This had creat-

ed a foreign exchange exposure since IBM had to convert USD

into DM and Swiss Francs regularly to make the coupon pay-

ments. Due to a depreciation of the DM and Swiss franc against

the dollar, IBM could realize a large foreign exchange gain, but

only if it could eliminate its DM and Swiss franc liabilities and

“lock in” the gain and remove any future exposure.

• The World Bank was raising most of its funds in DM (interest

rate = 12%) and Swiss francs (interest rate = 8%). It did not

borrow in dollars, for which the interest rate cost was about

17%. Though it wanted to lend out in DM and Swiss francs,

the bank was concerned that saturation in the bond markets

could make it difficult to borrow more in these two currencies

at a favorable rate. Its objective, as always, was to raise cheap

funds.
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• IBM was willing to take on dollar liabilities and made dollar

payments (periodic coupons and principal at maturity) to the

World Bank since it could generate dollar income from its normal

trading activities.

• The World Bank could borrow dollars, convert them into DM

and SFr in FX market, and through the swap take on payment

obligations in DM and SFr.

1. The foreign exchange gain on dollar appreciation is realized by

IBM through the negotiation of a favorable swap rate in the

currency swap contract.

2. The swap payments by the World Bank to IBM were scheduled

so as to allow IBM to meet its debt obligations in DM and SFr.
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Under the currency swap

• IBM pays regular US coupons and US principal at maturity.

• World Bank pays regular DM and SFr coupons together with

DM and SFr principal at maturity.

Now IBM converted its DM and SFr liabilities into USD and pay

these USD liabilities via US trading activities. The World Bank

effectively raised DM and SFr at a cheap rate. Both parties achieved

their objectives!
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1.3 Options: Rational boundaries of option values

Financial options

• A call (or put) option is a contract which gives the holder the

right to buy (or sell) a prescribed asset, known as the underlying

asset, by a certain date (expiration date) for a predetermined

price (commonly called the strike price or exercise price).

• The option is said to be exercised when the holder chooses to

buy or sell the asset.

• If the option can only be exercised on the expiration date, then

the option is called a European option.

• If the exercise is allowed at any time prior to the expiration date,

then it is called an American option
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Terminal payoff

• Let ST denote the asset price at maturity date T and X be the

strike price.

• The terminal payoff from the long position (holder’s position)

of a European call is then

max(ST −X,0).

• The terminal payoff from the long position in a European put

can be shown to be

max(X − ST ,0),

since the put will be exercised at expiry only if ST < X, whereby

the asset worth ST is sold at a higher price of X.
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Note that call’s terminal payoff minus put’s terminal payoff equals

the terminal payoff of a forward contract: ST −X.
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Questions and observations

What should be the fair option premium (usually called option price

or option value) so that the deal is fair to both writer and holder?

What should be the optimal strategy to exercise prior to the expi-

ration date for an American option?

At least, the option price is easily seen to depend on the strike price,

time to expiry and current asset price. The less obvious factors for

the pricing models are the prevailing interest rate and the degree of

randomness of the asset price, commonly called the volatility .

87



Hedging a short position in a call

• If the writer of a call does not simultaneously own any amount

of the underlying asset, then he is said to be in a naked position.

• Suppose the call writer owns some amount of the underlying

asset, the loss in the short position of the call when asset price

rises can be compensated by the gain in the long position of the

underlying asset.

• This strategy is called hedging, where the risk in a portfolio is

monitored by taking opposite directions in two securities which

are highly negatively correlated.

• In a perfect hedge situation, the hedger combines a risky op-

tion and the corresponding underlying asset in an appropriate

proportion to form a riskless portfolio.
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Swaptions – Product nature

• The buyer of a swaption has the right to enter into an interest

rate swap by some specified date. The swaption also specifies

the maturity date of the swap. The buyer of the swaption pays

the premium upfront.

• The buyer can be the fixed-rate receiver or the fixed-rate payer.

The writer becomes the counterparty to the swap if the buyer

exercises. The strike rate indicates the fixed rate that will be

swapped versus the floating rate.

• Suppose the buyer of the swaption is the fixed rate payer in the

underlying swap, she chooses to exercise the swaption when the

prevailing swap rate on swaption’s maturity date is higher than

the strike rate. This is because the swaption buyer would pay

a lower fixed rate in the interest rate swap under the swaption

contract when compared with the higher prevailing fixed rate

in a newly negotiated interest rate swap. This swaption is in-

the-money when the market swap rate is higher than the strike

rate.
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• To the buyer (fixed rate payer), the exercise of the swaption is

shorting the fixed rate bond and longing the floating rate bond.

• The value of the floating rate bond equals the par at initiation

of the swap, so it may be viewed as having fixed value (visual-

ized as the strike price of the swaption). This swaption is thus

seen as a put swaption since the holder sells a fixed rate bond

with floating value to receive a floating rate bond with fixed

value upon exercise. Recall that the holder of a put option has

the right to forfeit an asset with floating value to receive fixed

amount of dollars.

• Note that the value of the fixed rate bond with coupon rate same

as the prevailing swap rate would be equal to the par value.

Obviously, the value of the fixed rate bond with coupon rate

lower than the prevailing swap rate would be below par. When

the swaption (fixed rate payer) holder exercises the swaption,

the floating value asset (fixed rate bond) is below the strike

price (par value of the floating rate bond) of the put swaption.
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Uses of swaptions

Used to hedge a portfolio strategy that involves the use of an interest

rate swap while the cash flow of the underlying asset or liability is

uncertain. Uncertainties come from (i) early termination of cash

flows due to callability in a callable bond or prepayment of mortgage

loans, (ii) exposure to default risk.

Example

Consider a Savings & Loans Association entering into a 4-year swap

in which it agrees to pay 9% fixed and receive LIBOR.

• The fixed rate payments come from a portfolio of mortgage

pass-through securities with a coupon rate of 9%. One year

later, mortgage rates decline, resulting in large prepayments.

• The purchase of a call swaption with a strike rate of 9% would

be useful to offset the original swap position.
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Due to decline in the interest rate, large prepayments are resulted

in the mortgage pass-through securities. The source of 9% fixed

payment dissipates.

The call swaption is in-the-money since the interest rate declines,

so does the swap rate.
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Hedging by call swaption

By exercising the call swaption, the Savings & Loans Association

receives a fixed rate of 9%. The exposure to prepayment risk due

to decline in interest rates is hedged via the purchase of a swaption.

• Treating the fixed rate bond as the underlying asset in the swap-

tion and the floating rate bond as the fixed par value, the “pay-

float” swaption is visualized as a call swaption since the holder

pays the fixed value (floating rate bond exhibits fixed value) to

receive the fixed rate bond with floating value.
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Management of callable debts

Three years ago, XYZ issued 15-year fixed rate callable debt with a

coupon rate of 12%.

Strategy

The bond issuer XYZ sells a two-year fixed rate receiver option on a

10-year swap that gives the holder the right but not the obligation to

receive the fixed rate of 12%. By selling the European call swaption

with two-year maturity today, the company has committed itself to

paying fixed 12% coupon for the remaining life of the original bond.
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Call monetization

The callable right has intrinsic value. However, the callable right

can be exercised only two years later. How to cash in the intrinsic

value at the current time?

• The call swaption was sold by XYZ in exchange for an upfront

swaption premium received at date 0. The monetization of the

callable right is realized via the swaption premium received.
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Call-Monetization cash flow: Swaption expiration date

Interest rate (swap rate) ≥ 12%

Continue to pay
12% coupon

• The call swaption holder (fixed rate receiver) does not exercise

the European swaption on expiration date since receiving the

prevailing swap rate is better than strike rate of 12%.

• XYZ earns the full proceed of the swaption premium. The swap-

tion premium serves as the upfront (today) monetization of the

callable right (exercisable 2 years later) held by XYZ in the

callable bond.
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Interest rate (swap rate) < 12%

• Counterparty of the European swaption exercises the swaption

• XYZ calls the bond since the prevailing swap rate is below the

promised 12% coupon rate in the bond. Once the old bond is

retired, XYZ issues a new floating rate bond that pays floating

rate LIBOR (funding rate would also depend on the creditwor-

thiness of XYZ at that time). The cash required to retire the old

fixed rate bond is financed by the issuance of the new floating

rate bond.
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Rational boundaries for option values

• Mathematical properties of the option values as functions of the

strike price X, asset price S and time to expiry τ are derived. We

do not specify the probability distribution of the movement of

the asset price so that the fair option value cannot be derived.

We study the impact of dividends on these rational boundaries.

• The optimal early exercise policy of American options on a non-

dividend paying asset can be inferred from the analysis of these

bounds on option values.

• The relations between put and call prices (called the put-call

parity relations) are also deduced. These relations are distribu-

tion free.
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Non-negativity of option prices

All option prices are non-negative, that is,

C ≥ 0, P ≥ 0, c ≥ 0, p ≥ 0,

as derived from the non-negativity of the payoff structure of option

contracts.

If the price of an option were negative, this would mean an option

buyer receives cash up-front. In addition, he is guaranteed to have

a non-negative terminal payoff. In this way, he can always lock in a

riskless profit.
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Intrinsic values of American options

• max(S−X,0) and max(X−S,0) are commonly called the intrinsic

value of a call and a put, respectively.

• Since American options can be exercised at any time before

expiration, their values must be worth at least their intrinsic

values, that is,

C(S, τ ;X) ≥ max(S −X,0)

P (S, τ ;X) ≥ max(X − S,0).

• Suppose C is less than S−X when S ≥ X, then an arbitrageur can

lock in a riskless profit by borrowing C + X dollars to purchase

the call and exercise it immediately to receive the asset worth

S. The riskless profit would be S −X − C > 0. Market frictions

may lead to violation of the lower bound on call value (like near-

maturity warrants).
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American options are worth at least their European counterparts

An American option confers all the rights of its European coun-

terpart plus the privilege of early exercise. The additional privilege

cannot have negative value.

C(S, τ ;X) ≥ c(S, τ ;X)

P (S, τ ;X) ≥ p(S, τ ;X).

• The European put value can be below the intrinsic value X − S
at sufficiently low asset value. In this case, the European put is

almost sure to expire in-the-money. However, the par is received

only at maturity for the European put.

• The value of a European call on a dividend paying asset can be

below the intrinsic value S −X at sufficiently high asset value.

This is because holding of the European call does not entitle

the holder to receive the dividends while the asset price drops in

value when sizable dividends are paid during the life of the call.
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Values of options with different dates of expiration

Consider two American options with different times to expiration τ2

and τ1 (τ2 > τ1), the one with the longer time to expiration must

be worth at least that of the shorter-lived counterpart since the

longer-lived option has the additional right to exercise between the

two expiration dates.

C(S, τ2;X) > C(S, τ1;X), τ2 > τ1,

P (S, τ2;X) > P (S, τ1;X), τ2 > τ1.

The above argument cannot be applied to European options due to

lack of the early exercise privilege.
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Values of options with different strike prices

c(S, τ ;X2) < c(S, τ ;X1), X1 < X2,

C(S, τ ;X2) < C(S, τ ;X1), X1 < X2.

and

p(S, τ ;X2) > p(S, τ ;X1), X1 < X2,

P (S, τ ;X2) > P (S, τ ;X1), X1 < X2.

Values of options at varying asset value levels

c(S2, τ ;X) > c(S1, τ ;X), S2 > S1,

C(S2, τ ;X) > C(S1, τ ;X), S2 > S1;

and

p(S2, τ ;X) < p(S1, τ ;X), S2 > S1,

P (S2, τ ;X) < P (S1, τ ;X), S2 > S1.
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Upper bounds on call and put values

• A call option is said to be a perpetual call if its date of expiration

is infinitely far away. The asset itself can be considered as an

American perpetual call with zero strike price plus additional

privileges such as voting rights and receipt of dividends, so we

deduce that S ≥ C(S,∞; 0).

S ≥ C(S,∞; 0) ≥ C(S, τ ;X) ≥ c(S, τ ;X).

• The price of an American put equals the strike value when the

asset value is zero; otherwise, it is bounded above by the strike

price.

X ≥ P (S, τ ;X) ≥ p(S, τ ;X).
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Lower bounds on the values of call options on a non-dividend paying

asset

Portfolio A consists of a European call on a non-dividend paying

asset plus a discount bond with a par value of X whose date of

maturity coincides with the expiration date of the call. Portfolio B

contains one unit of the underlying asset.

Asset value at expiry ST < X ST ≥ X
Portfolio A X (ST −X) +X = ST
Portfolio B ST ST

Result of comparison VA > VB VA = VB

The present value of Portfolio A (dominant portfolio) must be equal

to or greater than that of Portfolio B (dominated portfolio). If oth-

erwise, an arbitrage opportunity can be secured by buying Portfolio

A and selling Portfolio B. This is called the principle of dominance

(generalization of the law of one price).
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Write B(τ) as the price of the unit-par discount bond with time to

expiry τ . Then

c(S, τ ;X) +XB(τ) ≥ S.

Together with the non-negativity property of option value.

c(S, τ ;X) ≥ max(S −XB(τ),0).

The upper and lower bounds of the value of a European call on a

non-dividend paying asset are given by (see Figure)

S ≥ c(S, τ ;X) ≥ max(S −XB(τ),0).

Remark

Earlier, we have established C(S, τ ;X) ≥ max(S−X,0) for an Amer-

ican call option. Note that C(S, τ ;X) ≥ c(S, τ ;X) and max(S −
XB(τ),0) ≥ max(S −X,0), so the lower bound for a European call

max(S −XB(τ),0) is even sharper.
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max(S−XB(τ),0) is the sharper lower bound of the call price func-

tion compared to max(S −X,0).

107



Convexity properties of the option price functions

The call prices are convex functions of the strike price. Write X2 =

λX3 + (1 − λ)X1, where 0 ≤ λ ≤ 1, X1 ≤ X2 ≤ X3, the convexity

property gives

c(S, τ ;X2) ≤ λc(S, τ ;X3) + (1− λ)c(S, τ ;X1)

c(S, τ ;X) is a decreasing function of X; furthermore,

∣∣∣∣∣ ∂c∂X
∣∣∣∣∣ < B(τ).
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Proof

The drop in the European call value for one dollar increase in the

strike price should be less than one dollar. The loss in the terminal

payoff of the call due to the increase in the strike price is realized

only when the call expires in-the-money. More precisely, we have∣∣∣∣∣ ∂c∂X
∣∣∣∣∣ < B(τ). The factor B(τ) appears since the potential loss of

paying extra one dollar in the strike price occurs at maturity so its

present value is B(τ).

Consider the payoffs of the following two portfolios at expiry. Port-

folio C contains λ units of call with strike price X3 and (1−λ) units

of call with strike price X1, and Portfolio D contains one call with

strike price X2.

Since VC ≥ VD for all possible values of ST , Portfolio C is dominant

over Portfolio D. Therefore, the present value of Portfolio C must

be equal to or greater than that of Portfolio D.
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Payoff at expiry of Portfolios C and D.

Asset value
at expiry

ST ≤ X1 X1 ≤ ST ≤ X2 X2 ≤ ST ≤ X3 X3 ≤ ST

Portfolio C 0 (1− λ)(ST −X1) (1− λ)(ST −X1) λ(ST −X3) +
(1− λ)(ST −X1)

Portfolio D 0 0 ST −X2 ST −X2

Result of
comparison

VC = VD VC ≥ VD VC ≥ V ∗D VC = VD

* Recall X2 = λX3 + (1− λ)X1, and observe

(1− λ)(ST −X1) ≥ ST −X2

⇔ X2 − (1− λ)X1 ≥ λST
⇔ X3 ≥ ST .
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• By changing the call options in the above two portfolios to the

corresponding put options, it can be shown that European put

prices are also convex functions of the strike price.

• By using the linear homogeneity property of the call and put

option functions with respect to the asset price and strike price,

where for the case of an European call option:

c(λS, τ, λX) = λc(S, τ,X), λ > 0,

one can show that the European call prices are convex functions

of the asset price (see Qn 7, Hw 1). That is,

c(λS1 + (1−λ)S2, τ ;X) ≤ λc(S1, τ,X) + (1−λ)c(S2, τ ;X), λ > 0.

It is necessary in the first step to establish convexity property of

option price functions on strike via the dominance principle since we

can hold portfolios of call options with different strikes and same

expiration date. We then use the linear homogeneity property to

establish the convexity property of call price functions on asset price.
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Impact of dividends on the asset price

• When an asset pays a certain amount of dividend, no-arbitrage

argument dictates that the asset price falls by an amount same

as the dividend (assuming there exist no other factors affecting

the income proceeds, like taxation and transaction costs).

• Suppose the asset price falls by an amount less than the dividend,

an arbitrageur can lock in a riskless profit by borrowing money

to buy the asset right before the dividend date, selling the asset

right after the dividend payment and returning the loan.
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It is assumed that the deterministic dividend amount Di is paid at

time ti, i = 1,2, · · · , n. The current time is t and write τi = ti− t, i =

1,2, · · · , n. The sum of the present value of the dividends within the

life of the option is

D = D1e
−rτ1 + · · ·+Dne

−rτn.

The dividends stream may be visualized as a portfolio of bonds with

par value Di maturing at ti, i = 1,2, · · · , n.

Weakness in the assumption

One may query whether the asset can honor the deterministic divi-

dend payments when the asset value becomes very low.

113



Put-call parity relations

For a pair of European put and call on the same underlying asset

and with the same expiration date and strike price, we have

p = c− S +D +XB(τ).

Recall that D is the sum of present values of all future deterministic

dividends. When the underlying asset is non-dividend paying, we set

D = 0. Recall that the value of the forward f = S −D −XB(τ), so

c− p = f .

The first portfolio involves long holding of a European call, a cash

amount of D+XB(τ) and short selling of one unit of the asset. The

second portfolio contains only one European put. The cash amount

D in the first portfolio is used to compensate the dividends paid to

the lender of the asset due to the short position of the asset. At

expiry, both portfolios are worth max(X−ST ,0). Since both options

are European, they cannot be exercised prior to expiry. By virtue

of law of one price, both portfolios have the same value throughout

the life of the options.
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Impact of dividends on the lower bound on a European call value

and the early exercise policy of an American call option

Recall the put-call parity relation: c = S − XB(τ) − D + p. Since

p ≥ 0 and c ≥ 0, we deduce that

c(S, τ ;X,D) ≥ max(S −XB(τ)−D,0).

• When S is sufficiently large, the European call almost behaves

like a forward whose value is S −D−XB(τ). Using the put-call

parity relation: c = p+ S −D −XB(τ), we obtain

p(S, τ ;X,D)→ 0 as S →∞.
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• Since the call price is lowered due to the dividends of the under-

lying asset, it may be possible that the call price becomes less

than the intrinsic value S − X when the lumped dividend D is

deep enough.

• A necessary condition on D such that c(S, τ ;X,D) may fall below

the intrinsic value S −X is given by

S −X > S −XB(τ)−D or D > X[1−B(τ)].

As a necessary condition, suppose D does not satisfy the above

condition (that is, the dividends are not sufficiently deep), then

it is never optimal to exercise the dividend-paying American call

prematurely. This is because C(S, τ ;X,D) ≥ c(S, τ ;X,D) > S −
XB(τ)−D > S −X when D ≤ X[1−B(τ)].
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When D > X[1 − B(τ)], the lower bound S − D − XB(τ) becomes

less than the intrinsic value S − X. As S → ∞, the European call

price curve falls below the intrinsic value line.
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Bounds on put price functions

The bounds for American and European puts can be shown to be

P (S, τ ;X,D) ≥ p(S, τ ;X,D) ≥ max(XB(τ) +D − S,0).

The second inequality is easily seen by virtue of the put-call parity

relation and observing c ≥ 0 and p ≥ 0.

• When XB(τ) + D < X ⇔ D < X[1 − B(τ)], the lower bound

XB(τ) +D − S may become less than the intrinsic value X − S
when the put is sufficiently deep in-the-money (corresponding

to low value for S). It becomes sub-optimal for the holder of an

American put option to continue holding the put option when

the put value falls below the intrinsic value, so the American put

should be exercised prematurely.

• The presence of dividends makes the early exercise of an Amer-

ican put option less likely since the holder loses the future divi-

dends when the asset is sold upon exercising the American put.

When D ≥ X[1−B(τ)], it is never optimal to exercise an Amer-

ican put.
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Lower and upper bounds on the difference of the prices of American

call and put options

• The parity relation cannot be applied to American options due

to the embedded early exercise feature.

First, we assume the underlying asset to be non-dividend paying.

From the put-call parity relation, since P > p and C = c, and putting

D = 0, we have

C − P < S −XB(τ),

giving the upper bound on C − P .
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• Consider the following two portfolios: one contains a European

call plus cash of amount X, and the other contains an American

put together with one unit of underlying asset.

If there were no early exercise of the American put prior to maturity,

the terminal value of the first portfolio is always higher than that

of the second portfolio. If the American put is exercised prior to

maturity, the second portfolio’s value becomes X, which is always

less than c + X. The first portfolio dominates over the second

portfolio, so we have

c+X > P + S.

Further, since c = C when the asset does not pay dividends, the

lower bound on C − P is given by

S −X < C − P.

Remark This result is sharper than the earlier result: C > S −X.
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Combining the two bounds, the difference of the American call and

put option values on a non-dividend paying asset is bounded by

S −X < C − P < S −XB(τ).

How to modify the bounds when the underlying asset pays dividend-

s?

• The right side inequality: C − P < S − XB(τ) also holds for

options on a dividend paying asset since dividends decrease call

value and increase put value.

• The left side inequality has to be modified as: S−D−X < C−P .

• Combining the results, the difference of the American call and

put option values on a dividend paying asset is bounded by

S −D −X < C − P < S −XB(τ).
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1.4 American options: Optimal early exercise policies

Non-dividend paying asset

• At any moment when an American call is exercised, its value

immediately becomes max(S −X,0). The exercise value is less

than max(S − XB(τ),0), the lower bound of the call value if

the American call remains alive. The act of exercising prior to

expiry causes a decline in value of the American call.

• Since the early exercise privilege is forfeited, the American and

European call values should be the same when the underlying

asset does not pay any dividend within the life of the American

call option.

• For an American put, it may become optimal to exercise pre-

maturely when S falls to sufficiently low value. Since the gain

in time value of strike is zero when the interest rate is zero, an

American put is never exercised prematurely under zero interest

rate.
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Dividend paying asset

• When the underlying asset pays dividends, the early exercise of

an American call prior to expiry may become optimal when (i)

S is very high and (ii) the dividends are sizable. Under these

circumstances, it then becomes more attractive for the investor

to acquire the asset rather than holding the option.

– When S is high, the chance of regret of early exercise is low;

equivalently, the insurance value of holding the call is lower.

– When the dividends are sizable, it is more attractive to hold

the asset directly instead of holding the call.

– Paying X at maturity date T means present value is XB(τ).

Paying X at the current time t means the loss in the time

value of strike valued at t is X[1−B(τ)].

– A necessary condition for optimal early exercise of an Amer-

ican call is D > X[1 − B(τ)]. Note that when D = 0, this

necessary condition cannot be satisfied. To be sufficient for

optimal early exercise, the asset price has to be sufficiently

high.
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• For an American put, when D is sufficiently high, it may become

non-optimal to exercise prematurely even at very low value of

S (even when the put is very deep-in-the-money). The gain in

the time value of the strike cannot offset the losses in insurance

value of holding the put and the dividends received through

holding the asset.

– A necessary condition for optimal early exercise of an Ameri-

can put is D < X[1−B(τ)]. Note that this necessary condition

is satisfied automatically when D = 0. To be sufficient for

optimal early exercise, the asset price has to be sufficiently

low.

The necessary condition for early exercise for an American call or

put is dictated by the relative sizes of dividend amount D and time

value of strike as quantified by X[1−B(τ)].
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American call American put
time value of strike,

X

loss gain

dividend, Dtotal gain loss
insurance value as-

sociated with hold-

ing of the option

loss loss

Necessary condition

for early exercise

Dtotal > X[1−B(τ)] Dtotal < X[1−B(τ)]

Sufficiently deep-in-

the-money

Sufficiently high as-

set price

Sufficiently low as-

set price

(1) When D = 0, Dtotal > X[1 − B(τ)] cannot be satisfied, so the

holder never chooses to early exercise an American call. Also,

under D = 0, gain on dividend is not a contributing factor for

early exercise for the American call.

(2) When r = 0, B(τ) = 1, so X[1−B(τ)] = 0. Since Dtotal ≥ 0, so

Dtotal < X[1− B(τ)] cannot be satisfied. Therefore, the holder

never chooses to early exercise an American put. Also, there is

no gain on the time value of strike for the American put.
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American call on an asset paying discrete dividends

• Since the holder of an American call on an asset paying discrete

dividends will not receive any dividend in between the dividend

times, so within these periods, it is never optimal to exercise

the American call.

• It may be optimal to exercise the American call immediately

before the asset goes ex-dividend. What are the necessary and

sufficient conditions on the size of the dividend and the asset

price level right before the dividend time td for optimal early

exercise?
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One-dividend model – Amount of D is paid out at td

• If the American call is exercised at t−d , the call value becomes

S−d −X. The asset price drops to S+
d = S−d −D right after the

dividend payout.

• Holding of the American call exhibits zero net cash flow even the

dividend is paid at td, so the American call value has no jump

across td. If the call has a drop in value, we short the call at t−d
and buy back the call at t+d to close out the shorting position.

This represents an arbitrage opportunity.

• It behaves like an ordinary European option for t > t+d . This is

because when there is no further dividend, it becomes always

non-optimal to exercise the American call.
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• The lower bound of the one-dividend American call value at t+d
is the same lower bound for a European call, which is given by

S+
d −Xe

−r(T−t+d ), where T − t+d is the time to expiry.

• By virtue of the continuity of the call value across the dividend

date, the lower bound B for the call value at time t−d should

remain to be S+
d −Xe

−r(T−td). In terms of S−D, the lower bound

B is equal to (S−d −D)−Xe−r(T−td).
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By comparing the American call value (continuation meaning staying

alive across td) with the early exercise proceed: S−d −X, we deduce

(i) If S−d −X ≤ B, the exercise proceed is less than or equal to the

lower bound; that is,

S−d −X ≤ (S−d −D)−Xe−r(T−td)

or D ≤ X[1− e−r(T−td)]

it is never optimal to exercise at t−d since exercising leads to a

drop in call value.

(ii) When the discrete dividend D is sufficiently sizable such that

D > X[1− e−r(T−td)],

it may become optimal to exercise at t−d when the asset price

S−d is above some threshold value S∗d.
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Suppose the American call stays alive across td, the call value right

after the dividend date is given by

c(S+
d , T − t

+
d ) or equivalently c(S−d −D,T − t

+
d ),

where c(S, T − t) denotes the European call value with asset price S

and time to expiry T − t.

Indifferent to early exercise and continuation

Suppose D is sizable such that D > X[1 − e−r(T−td)] is satisfied.

The holder can make two choices at t−d : (i) exercise the American

call to receive payoff S−d −X, (ii) continue to hold the call option.

The critical asset price S∗d at which the holder is indifferent to early

exercise or continuation is given by the solution to

c(S−d −D,T − t
+
d ) = S−d −X.

When S−d < S∗d, we observe c(S−d − D,T − t+d ) > S−d − X, so it is

optimal to continue to hold the American call. Otherwise, when

S−d ≥ S
∗
d, it is optimal to early exercise the American call at t−d .
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Determination of S∗d (potential early exercise at t−d when D is suffi-

ciently deep)

The European call price function V = c(S–
d −D,T − t

+
d ) falls below

the exercise payoff line `1 : E = S –
d − X. Note that `1 lies to the

left of the lower bound value line `2 : B = S–
d −D−Xe

−r(T−td) when

D > X[1 − e−r(T−td)]. Here, S∗d is the value of S−d at which the

European call price curve cuts the exercise payoff line `1.
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Let Cd(S
−
d , T − t−d ) denote the American call price at asset price

level S−d and time t−d , where time to expiry is T − t−d . When D >

X[1− e−r(T−td)], then the American call price function right before

td consists of two segments:

Cd(S
−
d , T − t

−
d ) =

{
c(S−d −D,T − t

+
d ) when S−d < S∗d

S−d −X when S−d ≥ S
∗
d

.

The American call price at t < td can be obtained by the risk neutral

valuation formula with the known value at td.

Property of the critical asset price, S∗d

S∗d depends on D, which decreases when D increases. This is be-

cause the price curve of c(S−d −D,T − t
+
d ) is lowered and it cuts the

intrinsic value line `1 at a lower value of S∗d. Financially, the holder

chooses to receive the asset even at a lower asset value when the

dividend is deeper.
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Summary of the early exercise policies of American calls

• With no dividend, the decision of early exercise of an American

option (call or put) depends on the competition between the

time value of X and the loss of insurance value associated with

the holding of the option.

• Early exercise of non-dividend paying American call is non-optimal

since this leads to the loss of insurance value of the call plus the

loss of time value of X.

• For an American call on a discrete dividend paying asset, it may

become optimal to exercise at time right before the ex-dividend

time, provided that the dividend amount is sizable and the call

is sufficiently deep in-the-money (S−d > S∗d). The critical asset

price S∗d is a decreasing function of the size of dividend. Early

exercise of the American call at a lower asset price level leads

to a greater loss of insurance value but the loss is offset by the

more sizable dividend received since the asset is held at td via

exercising the American call at t−d .
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Continuous dividend model

Under constant dividend yield q, the dividend amount received during

(t, t+dt) from holding one unit of asset is qSt dt. Also, e−q(T−t) unit

of the asset at time t will become one unit at time T through the

accumulation of the dividends into purchase of the asset.

Why do we consider dividend yield model?

• It is considered as a continuous approximation to the discrete

dividends model. Otherwise, pricing under the discrete n-dividend

model requires the joint distribution of asset prices on all divi-

dend dates: Std1
, Std2

, · · · , Stdn.

• The foreign money market account, which serves as the under-

lying asset in exchange options, earns the foreign interest rate

rf that can be visualized as the dividend yield.
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When the underlying asset pays dividend yield q, the lower bound of

a European call c(S, τ ;X, q) becomes max
(
Se−qτ −Xe−rτ ,0

)
. As S

becomes sufficiently high, Se−qτ −Xe−rτ becomes less than S −X.

Actually, as S →∞, the value of the European call tends to that of

the forward, where

c(S, τ ;X, q)→ Se−qτ −Xe−rτ .
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Smooth pasting condition at S∗(τ) under continuous dividend yield

model

Value matching at S∗(τ) : C(S∗(τ), τ) = S∗(τ)−X. (i)

Smooth pasting at S∗(τ) :
∂C

∂S
(S∗(τ), τ) = 1. (ii)

S∗(τ) can be visualized as the lowest asset price at which the Amer-

ican call does not depend on the time to expiry. That is,

∂C

∂τ
= 0 at S = S∗(τ). (iii)

Find the total derivative of the American call price function with

respect to τ at (S∗(τ), τ) satisfying the value matching condition:

d

dτ

[
C(S∗(τ), τ)

]
=
∂C

∂τ
(S∗(τ), τ) +

∂C

∂S
(S∗(τ), τ)

dS∗(τ)

dτ
=
dS∗(τ)

dτ

By eq(iii), we obtain
∂C

∂S
(S∗(τ), τ) = 1. The smooth pasting condi-

tion (ii) can also be derived from optimality of early exercise (to be

visualized as the first order derivative condition).
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American call on a continuous dividend yield paying asset

The option price curve of a longer-lived American call will be above

that of its shorter-lived counterpart for all values of S. The upper

price curve cuts the intrinsic value tangentially at a higher critical

asset value S∗(τ). Hence, S∗(τ) for an American call is an increasing

function of τ .
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Properties of the optimal early exercise boundary S∗(τ) of an Amer-

ican call under continuous dividend yield model

X = strike price, r = riskfree interest rate, q = constant dividend

yield, σ = volatility of asset price

S∗(0+) = X max

(
1,
r

q

)
, S∗∞ =

µ+

µ+ − 1
X,

0 < µ+ =
−
(
r − q − σ2

2

)
+

√(
r − q − σ2

2

)2
+ 2σ2r

σ2
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Stopping region = {(S, τ) : S ≥ S∗(τ)}, inside which the American

call should be optimally exercised. When S < S∗(τ), it is optimal

for the holder to continue holding the American call option.

1. At a higher value of τ , critical asset price S∗(τ) is larger since the

American call option has to be deeper in-the-money to induce

optimal early exercise. S∗(τ) is monotonically increasing with

respect to τ with

S∗(0+) = X max

(
1,
r

q

)
and S∗∞ =

µ+

µ+ − 1
X. The determination

of S∗∞ requires a pricing model of the perpetual American call

option.

2. S∗(τ) is a continuous function of τ when the asset price process

is continuous.

3. S∗(τ) ≥ X for τ ≥ 0

Suppose S∗(τ) < X, then the early exercise proceed S∗(τ) − X
becomes negative. This must be ruled out.
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One-dividend paying model for an American put

• A single dividend D is paid at td.

• Never exercise immediately prior to the dividend payment for

time t < td, since gain in the time value of X is X[er(td−t) − 1]

cannot offset the loss in dividend. We would like to find ts such

that the holder of the American put is indifferent to the time

value of strike and the dividend at td. Paying X later at td, the

strike X at ts grows to X[er(td−ts)− 1]. Equating the time value

of strike X with D at td, we obtain

X[er(td−ts) − 1] = D giving ts = td −
ln
(
1 + D

X

)
r

.

• When t < ts, early exercise is optimal when S falls below some

critical asset price S∗(t).
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The behavior of the optimal exercise boundary S∗(t) as a function

of t for a one-dividend American put option. Note that S∗(T ) = X

for an American put option whose underlying asset becomes non-

dividend paying after td.
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In summary, the optimal exercise boundary S∗(t) of the one-dividend

American put model exhibits the following behavior.

(i) When t < ts, S∗(t) first increases then decreases smoothly with

increasing t until it drops to the zero value at ts. When the

calendar time is well before ts, S∗(t) is increasing as it follows

a general trend of increasing monotonically in time. However,

when the calendar time comes closer to ts, S∗(t) decreases in

time in order to adopt the trend that S∗(t) falls to zero when t

reaches ts.

(ii) S∗(t) stays at the zero value in the time interval [ts, td].

(iii) When t ∈ (td, T ], the American put behaves like the European

put counterpart since there will be no more dividend. As a result,

S∗(t) is a monotonically increasing function of t with S∗(T ) = X.
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Here, td < t1 < t2 < T . The put price curve at time t1 intersects

the intrinsic value line tangentially at S∗(t1). We observe: S∗(t1) <

S∗(t2) < X. At longer time to expiry, the American put has to be

deeper in-the-money (lower asset price) in order to induce optimal

early exercise.
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