
MAFS522 – Quantitative and Statistical Risk Analysis

Topic One – Mixture models for modeling default correction

• Bernuolli mixture models

• Mixing distribution using Merton’s structural model

• Moody’s binomial expansion method

• Contagion models

• Exponential models for dependent defaults
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Modelng dependent defaults

Why are we concerned about dependence between default events and

between credit quality changes?

• It affects the distribution of loan portfolio losses – critical in deter-

mining quantities or other risk measures used for allocating capital for

solvency purposes.

• Clustering phenomena: simultaneous defaults could affect the stability

of the financial system with profound effects on the entire economy.

• Occurrence of disproportionately many joint defaults is termed “ex-

treme credit risk”.
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Difficulties

• Parameter specification for default dependence models is often some-

what arbitrary.

Issues

• The “marginal” credit risk of each issuer in a pool is usually “well”

determined. Modeling various correlation structures that work with

the given marginal characteristics is the major challenge.

• Counterparty risk: The counterparty of a financial contract cannot

honor the contractual specification. For example, in a credit default

swap, the counterparty risk is high when the credit quality of the

protection seller is correlated with that of the underlying reference

securities.
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Bernuolli mixture model

• Naturally, the discrete Bernuolli random variable with only two possible

values can be used as an indicator of default of an obligor.

• The loss of a portfolio from a loss statistics L = (L1, · · · , Lm) with

Bernuolli variables Li ∼ B(1;Pi), where B(m; p) denotes the binomial

distribution with m independent trials and stationary probability of

success p. The loss probabilities (over a given time horizon) are

random variables

P = (P1, · · · , Pm) ∼ F

for some distribution function F with support in [0,1]m.

• In a mixture model, the default probability Pi of obligor i is assumed

to depend on a set of common economic factors.
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Conditional independence

Two events R and B are said to be conditionally independent given the

third event G if and only if

P(R ∩ B|G) = P(R(G)P(B|G)

or

P(R|B ∩ G) = P(R|G).

Two random variable X and Y are conditionally independent given an

event G if they are independent in their conditional probability distribution

given G. In terms of density functions:

fX(x|G)fY (y|G) = fX,Y (x, y|G),

or in terms of distribution fuctions:

FX(x, G)FY (y|G) = FX,Y (x, y|G).
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Conditional on the realization P̂ = (P̂1, · · · , P̂m) of P , the Bernuolli ran-

dom variables L1, · · · , Lm are independent.

That is, given the default probabilities, defaults of different obligors are

independent.

The (unconditional) joint distribution of Li’s is

P(L1 = ℓ1, · · · , Lm = ℓm) =
∫

[0,1]m

m∏

i=1

P̂
ℓi
i (1 − P̂i)

1−ℓi dF (P̂1, · · · , P̂m),

where ℓi ∈ {0,1}. Here “0” denotes “no default” and “1” denotes “de-

fault”. For example,

P(L1 = 1, L2 = 0, L3 = 1) =

∫

[0,1]3
P̂1(1 − P̂2)P̂3 dF (P̂1, P̂2, P̂3).
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The first and second moments of the single loss Li are computed as

follows. Observe that

E[Li|P ] = 1 × Pi + 0 × (1 − Pi) = Pi,

so by the tower rule we obtain

E[Li] = E[E[Li|P ]] = E[Pi].

The dependence between defaults stems from the dependence of the

default probabilities on a set of common factors.

Recall: E[L2
i |P ] = 12 × Pi + 02 × (1 − Pi) = Pi. Also,

E[LiLj] = E[E[LiLj|P ]] = E[PiPj].

By the conditional variance formula, we obtain

var(Li) = var(E[Li|P ]) + E[var(Li|P )]

= var(Pi) + E[E[L2
i |P ] − E[Li|P ]2]

= var(Pi) + E[Pi(1 − Pi)] = E[Pi](1 − E[Pi]).

The covariance between a pair of losses

cov(Li, Lj) = E[LiLj] − E[Li]E[Lj].
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Note that

E[LiLj] = P(Li = 1, Lj = 1) × 1 × 1 + P(Li = 1, Lj = 0) × 1 × 0

P(Li = 0, Lj = 1) × 0 × 1 + P(Li = 0, Lj = 0) × 0 × 0

= P(Li = 1, Lj = 1)

=
∫ 1

0

∫ 1

0
P̂iP̂j dF (P̂i, P̂j) by conditional independence

= E[PiPj].

Hence,

cov(Li, Lj) = E[PiPj] − E[Pi]E[Pj] = cov(Pi, Pj),

so that the default correlation in a Bernuolli mixture model is

corr(Li, Lj) =
cov(Pi, Pj)√

E[Pi](1 − E[Pi])
√

E[Pj](1 − E[Pj])
.

The dependence between losses in the portfolio is fully captured by the

covariance structure of the multivariate distribution F of loss probabilities

P .
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One-factor Bernuolli mixture model

Retail banking portfolios and portfolios of smaller banks are often quite

homogeneous. Assuming Li ∼ B(1; p) with a common random default

probability p ∼ F , where F is a distribution function with support in

[0,1]. As the mixture distribution is dependent on the single distribution

F(p), this leads to the one-factor Bernuolli mixture model. The joint

distribution of Li’s:

P[L1 = ℓ1, · · · , Lm = ℓm] =

∫ 1

0
pk(1 − p)m−k dF(p)

where k =
m∑

i=1

ℓi and ℓi ∈ {0,1}, i = 1,2, · · · , m. Write L as the random

number of defaults.
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• The probability that exactly k defaults occur is

P[L = k] =

(
m
k

) ∫ 1

0
pk(1 − p)m−k dF(p).

This is the mixture of the binomial probabilities with the mixing dis-

tribution F .

• The uniform default probability of any obligor in the homogenous

portfolio is given by

p = P[Li = 1] = E[Li] =

∫ 1

0
p dF(p).
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• Note that E[LiLj] = P[Li = 1, Lj = 1]. The uniform default correla-

tion of two different obligors is

ρ = corr(Li, Lj) =
P[Li = 1, Lj = 1] − p2

p(1 − p)

=

∫ 1
0 p2 dF(p) − p2

p(1 − p)
=

var(p)

p(1 − p)
.

• Intuitively, with a higher var(p), we have higher corr(Li, Lj).

• Recall that the variance of the Bernuolli variable assuming values 0

and 1, and parameter p is

E[X2] − E[X]2 = p − p2 = p(1 − p).

Note that ρ = 1 if and only if var(p) = p(1 − p). This occurs when p

is Bernuolli with parameter p.
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Remarks

1. Since var(p) ≥ 0, so corr(Li, Lj) ≥ 0. The non-negativity of default

correlation is obvious since Li and Lj are dependent on the common

mixture variable p. In other words, we cannot implement negative

dependencies between the default events of obligors under this one-

factor binomial mixture model.

2. corr(Li, Lj) = 0 if and only if var(p) = 0, implying no randomness with

regard to p. In this case, p assumes the single value p. The absolute

portfolio loss L follows a binomial distribution with constant default

probability p. Correspondingly, the default events are independent.
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3. corr(Li, Lj) = 1 implies a “rigid” behavior of single losses in the port-

folio. This corresponds to p = 1 with probability p and p = 0 with

probability 1 − p, where the distribution F of p is a Bernoulli dis-

tribution. Financially speaking, when an external event occurs with

probability p, all obligors in the portfolio default and the total portfolio

is lost. Otherwise, with probability 1 − p, all obligors survive.

⋆ A non-financial analogy is the death events of all passengers in an

aeroplane.
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Fractional losses under the one-factor binomial mixture model

Define Dn =
∑n

i=1 Li, which is the total number of defaults in the port-

folio. We then have

E[Dn] = np.

Recall

var(Li) = E[Pi](1 − E[Pi]) = p(1 − p).

Under the assumption of uniform default probability, we have

var(Dn) =
n∑

i=1

var(Li) +
n∑

i=1

n∑

j = 1
j 6= i

cov(Li, Lj)

= np(1 − p) + n(n − 1)(E[p2] − E[p]2),
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so that

var

(
Dn

n

)
=

p(1 − p)

n
+

n(n − 1)

n2
var(p) −→ var(p) as n → ∞.

When considering the fractional loss for n large, the only remaining vari-

ance is that of the distribution of p.

• One can obtain any default correlation in [0,1]. Note that the corre-

lation of default events depends only on the first and second moments

of F . However, the distribution of Dn can be quite different for dif-

ferent distribution F .
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Large portfolio approximation

By the law of large number,

Dn

n
→ p̃ as n → ∞

when the realized default probability equals p̃. That is,

P

(
Dn

n
< θ

∣∣∣∣∣p = p̃

)
n↑∞−→

{
0 if θ < p̃
1 if θ > p̃

.

P

(
Dn

n
< θ

)
n↑∞−→

∫ 1

0
1{θ>p̃}f(p̃) dp̃

=

∫ θ

0
f(p̃) dp̃ = F(θ).

As n → ∞, it is the probability distribution of the random default proba-

bility p that determines the fractional loss distribution.
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Remarks

1. For a given fixed unconditional default probability p, increasing cor-

relation increases the probability of seeing large losses and of seeing

small losses compared with a situation with small correlation.

2. It is the common dependence on the mixture variable p that induces

the correlation in the default events. It requires the assumption of

large fluctuations in p to obtain significant correlation. The more

variability that is in the mixture distribution, the more correlation of

default events and more weight there in the tails of the loss distribu-

tion.
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Example – beta distribution

A beta distribution for p gives us a flexible class of distributions in the

interval [0,1]. The beta distribution is characterized by the two positive

parameters α, β. The mean and variance of the distribution are

E[p] =
α

α + β
, var(p) =

αβ

(α + β)2(α + β + 1)
.

If we look at various combinations of the two parameters for which
α

α+β = p for some unconditional default probability p, the variance of

the distribution will decrease as we increase α.
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Two beta distributions both with mean 0.1 but with different variances.

The density corresponds to α = 1, β = 9 observes higher probability of

seeing smaller losses and larger losses.
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Comparison with the case of independence of defaults

• The binomial distribution for independent defaults has a very thin

tail, thus not representing the possibility of a large number of defaults

realistically.

• Taking N = 100 obligors

Default Prob. (%) 1 2 3 4 5 6 7 8 9 10

99.0% VaR Level 5 7 9 11 13 14 16 17 19 20

What is VaRα(X)? Maximum loss which is not exceeded with a given

high probability (or confidence level).

V aRα(X) = inf{x ≥ 0|P [X ≤ x] ≥ α}.

Take p = 5%, the probability with 13 defaults or less is at least 99%,

that is, 99% confidence level.
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The distribution of the number of defaults among 50 issuers in the case

of a pure binomial model with default probability 0.1 and in cases with

beta distributions (α = 1, β = 9) as mixture distributions over the default

probability. The later case exhibits a higher probability of seeing a large

number of default losses (commonly known as the thick tail) and small

number of losses also.
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Mixing distribution using Merton’s structural model

• Construct the random default probability (mixture variable) using the

structural approach for modeling default events.

Consider n firms whose asset values V i
t follow

dV i
t = rV i

t dt + σV i
t dBi

t

with

Bi
t = ρB̃0

t +

√
1 − ρ2B̃i

t.

The GBM driving V i
t can be decomposed into a common factor B̃0

t and

the firm-specific factor B̃i
t. Also, B̃0, B̃1, B̃2, · · · are independent standard

Brownian motions. The firms are assumed to be identical in terms of

drift rate and volatility.

The logarithm of the asset value of the firms are all correlated with

the common correlation coefficient ρ. The dependence of stochastic

movements of firm values among different firms is exhibited through the

dependence on B̃0
t .
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Default mechanism

Let Di denote the default threshold of Firm i. Firm i defaults when

V i
T = V i

0 exp

((
r − σ2

2

)
T + σBi

T

)
< Di

or

lnV i
0 − lnDi +

(
r − σ2

2

)
T + σ

(
ρB̃0

T +

√
1 − ρ2B̃i

T

)
< 0.

We write formally B̃i
T = ǫi

√
T , where ǫi is a standard normal random

variable.

In terms of ǫi and ǫ0, firm i defaults when

lnV i
0 − lnDi +

(
r − σ2

2

)
T

σ
√

T
+ ρǫ0 +

√
1 − ρ2ǫi < 0.
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Conditional on a realization of the common factor, say, ǫ0 = u, firm i

defaults when

ǫi < − ci + ρu
√

1 − ρ2

where

ci =
ln

V i
0

Di
+

(
r − σ2

2

)
T

σ
√

T
.

Assume V i
0/Di to be the same for all i so that ci = c for all i. Given

ǫ0 = u, the probability of default is

p(u) = N


− c + ρu

√
1 − ρ2


 .

Given ǫ0 = u, defaults of the firms are independent. The mixing dis-

tribution is that of the common factor ǫ0, and the normal cumulative

distribution function N transforms ǫ0 into a distribution on [0,1].
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The distribution function F(θ) corresponding to the distribution of the

mixing variable p = p(ǫ0) is

F(θ) = P [p(ǫ0) ≤ θ] = P


N


− c + ρǫ0√

1 − ρ2


 ≤ θ




= P

[
−ǫ0 ≤ 1

ρ

(√
1 − ρ2N−1(θ) + c

)]

= N

(
1

ρ

(√
1 − ρ2N−1(θ) − N−1(p)

))
where p = N(−c).

Here, p is the unconditional default probability corresponding to ρ = 0.

Note that F(θ) has the appealing feature that it has dependence on ρ and

p. The probability that the fraction of defaults being less than or equal

to θ is

P

(
Dn

n
≤ θ

)
=

∫ 1

0

nθ∑

k=0

nCkp(u)k[1 − p(u)]n−kf(u) du.
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The figure shows the loss distribution in an infinitely diversified loan port-

folio consisting of loans of equal size and with one common factor of

default risk. The unconditional default probability is fixed at 1% but the

correlation in asset values varies from nearly 0 to 0.2.
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Moody’s Binomial Expansion Method

• For a binomial distribution with independent obligors, the tail with

fewer (but larger) obligors is “fatter” than the tail with many (but

smaller) independent obligors. Actually, variance of fractional loss

decreases as O
(
1
n

)
as n increases since var

(
Dn
n

)
= p(1−p)

n .

• Moody’s are aware that a pure binomial distribution with independent

defaults is unrealistic. They make the tails of distribution fatter by as-

suming fewer obligors (the diversity score). For example, adjustment

is made for:

– industry concentration

The idea is to approximate the loss on a portfolio of n positively correlated

loans with the loss on a smaller number of independent loans with larger

face value.
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Moody’s Diversity Scores

Number of Firms in Diversity
the Same Industry Score

1 1.0
2 1.5
3 2.0
4 2.3
5 2.6
6 3.0
7 3.2
8 3.5
9 3.7
10 4.0
10 Evaluated

or more case by case

When there are 3 firms in the same industry, there is less diversification

so the diversity score is only 2.
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• Based on the idea that issuers in the same industry sector are related,

while issuers in different industry sectors can be treated as indepen-

dent.

Consider a portfolio of 51 bonds = 1 × 2 + 2 × 7 + 3 × 3 + 4 × 4 + 5 × 2.

No of issuers in sector 1 2 3 4 5

No of incidences 2 7 3 4 2

Diversity 2 10.5 6 9.2 5.2

• For the example, there are 2 cases in which issuers are the only

representatives of their industry sector, 7 cases in which pairs of

issuers are in the same sector, etc. The total diversity score =

2+10.5+6+9.2+5.2 = 32.9, which is rounded to 33. The original

portfolio of 51 bonds is treated to be equivalent to a portfolio of 33

independent bonds with the same default probability but with notional

value 51/33 times the original notional.
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Moody’s binomial expansion technique (BET)

The two parameters in a binomial experiment are n and p.

• Diversity score, weighted average rating factor and binomial expansion

technique.

• Generate the loss distribution.

To build a hypothetical pool of uncorrelated and homogeneous assets

that mimic the default behavior of the original pool of correlated and

inhomogeneous assets.
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Criteria of an idealized comparison portfolio

The diversity score of a given pool of participations is the number n

of bonds in an idealized comparison portfolio that meets the following

criteria:

• Comparison portfolio and collateral pool have the same face value.

• Bonds in the comparison portfolio have equal face values.

• Comparison bonds are equally likely to default, and their defaults are

independent.

• Comparison bonds are of the same average default probability as the

participations of the collateral pool.

• According to some measure of risk, the comparison portfolio has the

same total risk as does the collateral pool.
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Improved version of the binomial approximation using diversity scores

Seek the reduction of the problem of multiple defaults to binomial distri-

butions.

If the n loans each with equal face value are independent and they have

the same default probability, then the distribution of the portfolio loss is

a binomial distribution with n as the number of trials.

Let Fi be the face value of each bond, pi be the probability of default

within the relevant time horizon, and ρij between the linear correlation

coefficient of default events.

Assuming zero recovery, the loss variable Li (in dollar amount) associated

with bond i with face value Fi is given by

Li = Fi1{Di},

where Di is the default event of bond i.
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With n bonds, the total notional principal of the portfolio is
n∑

i=1

Fi. The

mean and variance of the loss principal P̂ is

E[P̂ ] = E[L1 + · · · + Ln] =
n∑

i=1

FiE[1{Di}] =
n∑

i=1

piFi

var(P̂ ) =
n∑

i=1

n∑

j=1

E[LiLj] − E[Li]E[Lj]

=
n∑

i=1

n∑

j=1

FiFj(E[1{Di}1{Dj}] − E[1{Dj}]E[1{Dj}])

=
n∑

i=1

n∑

j=1

FiFjρij

√
pi(1 − pi)pj(1 − pj).

Here, ρij is specified rather than as a quantity calculated based on infor-

mation on joint defaults.
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• We construct an approximating portfolio consisting D independent

loans, each with the same face value F and the same default proba-

bility p.

To determine the binomial distribution of the loss amount of the com-

parison portfolio, we need to specify the constant default probability p,

number of obligors D and the common face value of the bonds. These

lead to the following system of equations:

n∑

i=1

Fi = DF

n∑

i=1

piFi = DFp

var(P̂ ) = F2Dp(1 − p).
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Solving the equations, we obtain

p =

∑n
i=1 piFi∑n
i=1 Fi

D =

∑n
i=1 piFi

∑n
i=1(1 − pi)Fi

∑n
i=1

∑n
j=1 FiFjρij

√
ρi(1 − pi)ρj(1 − pj)

F =
n∑

i=1

Fi

/
D.

Here, D is called the diversity score.
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Contagion models

Contagion means that once a firm defaults, it may bring down other

firms with it. Define Yij to be an “infection” variable. Both Xi and Yij

are Bernuolli variables assuming values 0 and 1.

Xi is the default indicator of firm i due to its firm specific causes

Yij =

{
1 if default of firm i brings down firm j
0 if default of firm i does not bring down firm j

.

Assuming homogeneous property on the parameters:

E[Xi] = p and E[Yij] = q.
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The default indicator of firm i is

Zi = Xi + (1 − Xi)


1 −

∏

j 6=i

(1 − XjYji)


 .

Note that Zi equals one either when there is a direct default of firm i

or if there is no direct default and
∏

j 6=i

(1 − XjYji) = 0. The latter case

occurs when at least one of the factor XjYji is 1, which happens when

firm j defaults and infects firm i. Define Dn = Z1 + · · · + Zn, Davis and

Lo (2001) find that

E[Dn] = n[1 − (1 − p)(1 − pq)n−1]

var(Dn) = n(n − 1)βpq
n − (E[Dn])

2

cov(Zi, Zj) = βpq
n − (E[Dn/n])2,

where

βpq
n = p2 + 2p(1 − p)[1 − (1 − q)(1 − pq)n−2]

+(1 − p)2[1 − 2(1 − pq)n−2 + (1 − 2pq + pq2)n−2].

37



1. When there is no infection, q = 0, zero contagion gives a pure binomial

model. In this case, E[Dn] becomes np, which is the same as that of

the binomial distribution.

2. Increasing the contagion brings more mass to high and low default

numbers. To preserve the mean, we must compensate for an increase

in the infection parameter by decreasing the probability of direct de-

fault. Note that

E[Zi] = E



1 − (1 − Xi)
∏

j 6=i

(1 − XjYji)





= (1 − p)(1 − pq)n−1.

By equating the probability of no default with and without infection

effect, we find p̂(q) such that

[1 − p̂(q)][1 − p̂(q)q]n−1 = 1 − p.

We have p̂(0) = p and p̂(q) < p for q > 0. While the mean is preserved,

the variance is increased.
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Recall the following results:

• (1 − q)i = probability that all i self-defaulting bonds do not

affect a particular non-defaulting bond

• 1−(1−q)i = probability that at least one of the self-defaulting

bonds affect a particular non-defaulting bond

• The k bonds that are defaulting can be chosen in Cn
k combinations.

Write α
pg
nk as the probability that out of the n bonds, k (≤ n) particular

bonds default. Consider the two cases:

(i) All these k bonds are self-defaulting and they do not infect any of the

remaining n − k bonds;

(ii) Of the k bonds defaulting, i of them are self-defaulting while k − i

of them are infected by the first of these i self-defaulting bonds,

i = 1,2, · · · , k.
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Probability mass function of Dn

Let F(k;n, p, q) denote the probability mass function of Dn, where

F(k;n, p, q) = P[Dn = k],

then F(k;n, p, q) = Cn
k α

pq
nk, where

α
pq
nk = pk(1 − p)n−k(1 − q)k(n−k)

+
k−1∑

i=1

Ck
i pi(1 − p)n−i[1 − (1 − q)i]k−i(1 − q)i(n−k).

• It is necessary to isolate the special case where all of the k defaulting

bonds do not infect any other non-defaulting bonds in the portfolio.

This is captured by the first term in α
pq
nk.
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• With k bonds that are defaulting, i of them are self-defaulting and

k − i of them are infected by the first i of these self-defaulting bonds.

For i = 1,2, · · · , k − 1, consider

0 0 0 0 0 0 0 0 0 0 0 0

first k bonds default 

i of these 

defaulting bonds 

are self-defaulting 

k - i bonds  

defaulted since 

they are 

infected by  

the first i

self-defaulting bonds 

n – k bonds remain non-defaulting 

Probability of occurrence is pi(1 − p)n−i[1 − (1 − q)i]k−i(1 − q)i(n−k).
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Exponential model for dependent defaults

Reference

Kay Giesecke, “A simple exponential model for dependent defaults,”

(2003) Journal of Fixed Income, vol.13(3), p.74-83.

Model setup

• A firm’s default is driven by idiosyncratic as well as other regional,

sectoral or economy-wide shocks, whose arrivals are modeled by in-

dependent Poisson processes.
• Default times are assumed to be jointly exponentially distributed. In

this case, the exponential copula arises naturally.

Advantages

1. All relevant results are given in closed form.
2. Efficient simulation of dependent default times is straightforward.
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Bivariate version of the exponential models

Suppose there are independent Poisson processes N1, N2 and N with re-

spective intensity λ1, λ2 and λ. Here, λi is the idiosyncratic shock intensity

of firm i and λ is the intensity of a macro-economic shock affecting all

firms simultaneously.

Define the default time τi of firm i by

τi = inf{t ≥ 0 : Ni(t) + N(t) > 0}.

That is, a default occurs completely unexpectedly if either an idiosyncratic

or a systematic shock strikes the firm for the first time. Since Ni and N

are independent, firm i defaults with intensity λi + λ so that the survival

function is

Si(t) = P [τi > t] = P [Ni(t) + N(t) = 0] = e−(λi+λ)t.

The expected default time and variance are

E[τi] =
1

λi + λ
and var(τi) =

1

(λi + λ)2
.
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Define

t ∨ u = max(u, t), t ∧ u = min(u, t),

so that

t + u = max(u, t) + min(u, t)

eλ(t∧u) = min(eλt, eλu).

The joint survival probability is found to be

S(t, u) = P [τ1 > t, τ2 > u]

= P [N1(t) = 0, N2(u) = 0, N(t ∨ u) = 0]

= e−λ1t−λ2u−λ(t∨u)

= e−(λ1+λ)t−(λ2+λ)u+λ(t∧u)

= S1(t)S2(u)min(eλt, eλu).

All random variables are defined on a filtered probability space (Ω,F , P).

Depending on the specific application, P is the physical probability (risk

management setting) or some risk neutral probability (valuation setting).
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Survival copula

There exists a unique solution Cτ : [0,1]2 → [0,1], called the survival

copula of the default time vector (τ1, τ2) such that the joint survival

probabilities can be represented by

S(t, u) = Cτ(S1(t), S2(u)).

The copula Cτ describes the complete non-linear default time dependence

structure. Cτ marries the marginal survival probabilities into joint survival

probabilities.

Define θi =
λ

λi + λ
, we obtain

Cτ(w, v) = S(S−1
1 (w), S−1

2 (v)) = min(vw1−θ1, wv1−θ2).
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Write w = S1(t) and v = S2(u) so that t = S−1
1 (w) and u = S−1

2 (v).

S(t, u) = Cτ(w, v) = S1(t)S2(u)min(eλt, eλu).

Now, S1(t) = e−(λ1+λ)t and S2(t) = e−(λ2+λ)t, so that

w−θ1 =
[
e−(λ1+λ)t

]
(
− λ

λ1+λ

)

= eλt,

v−θ2 =
[
e−(λ2+λ)u

]
(
− λ

λ2+λ

)

= eλu.

Lastly, we obtain

S(t, u) = Cτ(w, v) = wv min(w−θ1, v−θ2)

= min(vw1−θ1, wv1−θ2).
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The parameter vector θ = (θ1, θ2) controls the degree of dependence

between the default times.

1. Firms default independently of each other (λ = 0 or λ1, λ2 → ∞)

θ1 = θ2 = 0, Cτ
θ (u, v) = uv (product copula)

2. Firms are perfectly correlated (firms default simultaneously, λ → ∞ or

λ1 = λ2 = 0)

θ1 = θ2 = 1 and Cτ
θ (u, v) = u ∧ v.

It can be shown that

uv ≤ Cτ
θ (u, v) ≤ u ∧ v, θ ∈ [0,1]2, u, v ∈ [0,1].

Also, the defaults can only be positively correlated.
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Joint default probabilities and default copula

Similarly, define Kτ by

Kτ(P1(t), P2(t)) = P [τ1 ≤ t, τ2 ≤ u] = P(t, u)

where Pi(t) = P [τi ≤ t] = 1 − Si(t). Since

S(t, u) = 1 − P1(t) − P2(u) + P(t, u)

so that these copulas are related by

Kτ(u, v) = Cτ(1 − u,1 − v) + u + v − 1

= min([1 − v][1 − u]1−θ1; [1 − u][1 − v]1−θ2) + u + v − 1.
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Multi-variate extension

Assume that there are n ≥ 2 firms. The default of an individual firm

is driven by some idiosyncratic shock as well as other sectoral, industry,

country-specific or economy-wide shocks.

Define a matrix (aij)n×m, when aij = 1 if shock j ∈ {1,2, · · · , m} modeled

through the Poisson process Nj with intensity λj, leads to the default of

firm i ∈ {1,2, · · · , n} and aij = 0 otherwise. For example, when n = 3

(aij) =




1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1


 .

Note that m =
n∑

k=1

nCk = 2n − 1. Suppose the economy-wide shock

events are excluded, one then set ai7 = 0 for i = 1,2,3. This corre-

sponds to bivariate dependence only.
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Take n = 3 firms, there are 23 − 1 = 7 possible shocks.

1st shock affects Firm 1 only
2nd shock affects Firm 2 only
3rd shock affects Firm 3 only
4th shock affects both Firm 1 and Firm 2
5th shock affects both Firm 1 and Firm 3
6th shock affects both Firm 2 and Firm 3
7th shock affects both Firm 1, Firm 2 and Firm 3

Firm 1 defaults if

N1(t) + N4(t) + N5(t) + N7(t) =
7∑

k=1

a1kNk(t) > 0.

Firm 2 defaults if

N2(t) + N4(t) + N6(t) + N7(t) =
7∑

k=1

a2kNk(t) > 0.
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Joint survival function

τi = inf



t ≥ 0 :

m∑

k=1

aikNk(t) > 0





meaning that firm i defaults with intensity
m∑

k=1

aikλk and

Si(t) = exp



−
m∑

k=1

aikλkt



 .

The joint survival function

S(t1, t2, · · · , tn) = P [τ1 > t1, · · · , τn > tn]

= exp


−

m∑

k=1

λk max(a1kt1, · · · , anktn)


 .
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Take n = 3, consider

S(t1, t2, t3) = exp(−λ1 max(t1) − λ2 max(t2) − λ3 max(t3)

−λ4 max(t1, t2) − λ5 max(t1, t3)

−λ6 max(t2, t3) − λ7 max(t1, t2, t3))

• The first term e−λ1 max(t1) = e−λ1t1 means that the first shock has

not arrived up to time t1.

• The fourth term e−λ4 max(t1,t2) means that the fourth shock has not

arrived up to max(t1, t2), so both the first and second firms have not

been affected by the fourth shock up to max(t1, t2).

• The seventh term e−λ7 max(t1,t2,t3) means that the seventh shock has

not arrived up to max(t1, t2, t3), so all firms have not been affected

by the seventh shock up to max(t1, t2, t3).
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Survival copula function

The exponential survival copula associated with S can be found via

Cτ(u1, · · · , un) = S(S−1
1 (u1), · · · , S−1

n (un)). Fixing some i, j ∈ {1,2, · · · , n}
with i 6= j, the two-dimensional marginal copula is given by

Cτ(ui, uj) = Cτ(1, · · · ,1, ui,1, · · · ,1, uj,1, · · · ,1)

= min(uju
1−θi
i , uiu

1−θj
j )

where we define, analogously to the bivariate case,

θi =

∑m
k=1 aikajkλk∑m

k=1 aikλk
, θj =

∑m
k=1 aikajkλk∑m

k=1 ajkλk

as the ratio of joint default intensity of firms i and j to default intensity

of firm i or j, respectively.
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Mathematical Appendices

Understanding “conditional independence”

Example Hemophilia is a hereditary disease. If a mother has

it, then with probability 1
2, any of her sons independently will inherit it.

Let H, H1 and H2 denote the events that the mother, the first son, and

the second son are hemophilic, respectively. Note that H1 and H2 are

conditionally independent given H. However H1 and H2 are not indepen-

dent. This is because if we know that one son is hemophilic, the mother is

hemophilic. With probability 1/2, the other son is also hemophilic. Note

that

P(H1|H) = P(H1|H ∩ H2) =
1

2

P(H2|H) = P(H2|H ∩ H1) =
1

2
.
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Conditional Variance

Just as we have defined the conditional expectation of X given the value

of Y , we can also define the conditional variance of X, given that Y = y,

as follows:

var(X|Y ) = E[(X − E[X|Y ])2|Y ].

That is, var(X|Y ) is equal to the (conditional) expected square of the

difference between X and its (conditional) mean when the value of Y

is given. In other words, var(X|Y ) is exactly analogous to the usual

definition of variance, but now all expectations are conditional on the

fact that Y is known.

Formula

var(X) = E[var(X|Y )] + var(E[X|Y ]).

56



• To obtain the unconditional variance of X, we add the expectation of

conditional variance of X given Y to the variance of expectation of X

given Y .

Proof

We start from

var(X|Y ) = E[X2|Y ] − [E[X|Y ])2

so

E[var(X|Y )] = E[E[X2|Y ]] − E[E[X|Y ])2]

= E[X2] − E[(E[X|Y ])2]. (i)

Treating E[X|Y ] as a random variable, and observing E[E[X|Y ]] = E[X],

var(E[X|Y ]) = E[(E[X|Y ])2] − (E[X])2. (ii)

By adding eqs. (i) and (ii), we arrive at the formula.
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