
MAFS522 – Quantitative and Statistical Risk Analysis

Topic One – Mixture models for modeling default correction

Bernuolli mixture model

The loss of a portfolio from a loss statistics L = (L1, · · · , Lm) with Bern-

uolli variables Li ∼ B(1;Pi), where B(m; p) denotes the binomial distri-

bution with m independent trials and stationary probability of success p.

The loss probabilities are random variables

P = (P1, · · · , Pm) ∼ F

for some distribution function F with support in [0,1]m.
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Conditional independence

Conditional on a realization P̂ = (P̂1, · · · , P̂m) of P , the Bernuolli variables

L1, · · · , Lm are independent.

Li|Pi=P̂i
∼ B(1; P̃i), (Li|

P =P̂
)i=1,2,··· ,m are independent.

The (unconditional) joint distribution of the Li’s is

P(L1 = ℓ1, · · · , Lm = ℓm) =

∫

[0,1]m

m∏

i=1

P̂
ℓi
i (1−P̂i)

1−ℓidF (P̂1, · · · , P̂m), ℓi ∈ {0,1}.

The first and second moments of the single losses Li are given by

E[Li] = E[Pi].
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var(L1) = var(E[Li|P ]) + E[var(L1|P )]

= var(Pi) + E[E[L2
i |P ] − E[Li|P ]2]

= var(Pi) + E[Pi(1 − Pi)] = E[Pi](1 − E[Pi]).

The covariance between single losses

cov(Li, Lj) = E[LiLj] − E[Li]E[Lj] = cov(Pi, Pj)

so that the default correlation in a Bernuolli mixture model is

corr(Li, Lj) =
cov(Pi, Pj)√

E[Pi](1 − E[Pi])
√

E[Pj](1 − E[Pj])
.

The dependence between losses in the portfolio is fully captured by the

covariance structure of the multivariate distribution F of P .
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Uniform default probability

Retail banking portfolios and portfolios of smaller banks are often quite

homogeneous. Assuming Li ∼ B(1; p) with a common random default

probability P ∼ F , F is a distribution function with support in [0,1]. As

the mixture distribution is dependent on the single distribution F (p), this

leads to the one-factor Bernuolli mixture model. The joint distribution

of the Li’s:

P[L1 = ℓ1, · · · , Lm = ℓm] =
∫ 1

0
pk(1 − p)m−k dF (p)

where k =
m∑

i=1

ℓi and ℓi ∈ {0,1}. Write L as the random number of

defaults.
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The probability that exactly k defaults occur is

P[L = k] =

(
m
k

)∫ 1

0
pk(1 − p)m−k dF (p).

(mixture of binomial probabilities with the mixing distribution F )

The uniform default probability of borrowers (obligors) in the portfolio

p = P[Li = 1] = E[Li] =
∫ 1

0
p dF (p).

The uniform default correlation of two different counterparties is

ρ = corr(Li, Lj) =
P[Li=1, Lj=1] − p2

p(1 − p)

=

∫ 1
0 p2 dF (p) − p2

p(1 − p)
=

var(p)

p(1 − p)
.

Note that with a higher var(p), we have higher corr(Li, Lj).
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Remarks

1. Since var(p) ≥ 0, so corr(Li, Lj) ≥ 0. The non-negativity of correlation

is obvious since Li and Lj are dependent on the common mixture vari-

able p. In other words, we cannot implement negative dependencies

between the default risks of obligors under this model.

2. corr(Li, Lj) = 0 if and only if var(p) = 0, implying no randomness at

all regarding p. F is a Dirac measure concentrated in p. The absolute

portfolio loss L follows a binomial distribution with constant default

probability p.
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3. corr(Li, Lj) = 1 implies a “rigid” behavior of single losses in the port-

folio. This corresponds to p = 1 with probability p and p = 0 with

probability 1− p, where the distribution F of p is a Bernoulli distribu-

tion. Financially speaking, when an event occurs with probability p,

all counterparties default, and the total portfolio is lost. Otherwise,

with probability 1 − p, all obligors survive.

Define Dn =
n∑

i=1

Li, which is the total number of defaults. We then

have

E[Dn] = np.
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var(Dn) =
n∑

i=1

var(Li) +
n∑

i=1

n∑

j = 1
j 6= i

cov(Li, Lj)

= np(1 − p) + n(n − 1)(E[p2]− E[p]2)

var

(
Dn

n

)
=

p(1 − p)

n
+

n(n − 1)

n2
var(p̃) −→ var(p̃) as n → ∞.

When considering the fractional loss for n large, the only remaining vari-

ance is that of the distribution of p.

• One can obtain any default correlation in [0,1]; correlation of default

events depends only on the first and second moments of F . However,

the distribution of Dn can be quite different for different distribution

F .
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Remarks

1. For a given unconditional default probability p, increasing correlation

increases the probability of seeing large losses and of seeing small

losses compared with a situation with no correlation.

2. It is the common dependence on the background variable p that in-

duces the correlation in the default events. It requires assumptions of

large fluctuations in p to obtain significant correlation.
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Comparison with the case of independence of defaults

• The binomial distribution for independent defaults has a very thin

tail, thus not representing the possibility of a large number of defaults

realistically. Taking N = 100 obligors

Default Prob. (%) 1 2 3 4 5 6 7 8 9 10

99.0% VaR Level 5 7 9 11 13 14 16 17 19 20

Maximum loss which is not exceeded with a given high probability (or

confidence level).

V aRα(X) = inf{x ≥ 0|P [X ≤ x] ≥ α}.

Take p = 5%, the probability with 13 defaults or less is at least 99%,

that is, 99% confidence level.
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The distribution of the number of defaults among 50 issuers in the case

of a pure binomial model with default probability 0.1 and in cases with

beta distributions as mixture distributions over the default probability.
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Keeping the default probability constant while having larger probabilities

of many defaults requires the probability of very few defaults to increase

as well.

Remark

For large portfolios, it is the distribution of p which determines the loss

distribution. The more variability that there is in the mixture distribution,

the more correlation of default events and more weight there in the tails

of the loss distribution.

12



Choosing the mixing distribution using Merton’s model

Consider n firms whose asset values V i
t follow

dV i
t = rV i

t dt + σV i
t dBi

t

with

Bi
t = ρB̃0

t +
√

1 − ρ2B̃i
t.

The GBM driving V i
t can be decomposed into a common factor B̃0

t and

a firm-specific factor B̃i
t. Also, B̃0, B̃1, B̃2, · · · are independent standard

Brownian motions. The firms are assumed to be identical in terms of

drift rate and volatility.
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Let Di denote the default threshold of Firm i. Firm i defaults when

V i
0 exp

((
r − σ2

2

)
T + σBi

T

)
< Di

or

lnV i
0 − lnDi +

(
r − σ2

2

)
T + σ

(
ρB̃0

T +

√
1 − ρ2B̃i

T

)
< 0.

We write B̃i
T = ǫi

√
T , where ǫi is a standard normal random variable.

Then firm i defaults when

lnV i
0 − lnDi +

(
r − σ2

2

)
T

σ
√

T
+ ρǫ0 +

√
1 − ρ2ǫi < 0.
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Conditional on a realization of the common factor, say, ǫ0 = u, firm i

defaults when

ǫi < − ci + ρu√
1 − ρ2

where

ci =
ln

V i
0

Di
+

(
r − σ2

2

)
T

σ
√

T
.

Assume that V i
0/Di to be the same for all i so that ci = c for all i. For

given ǫ0 = u, the probability of default is

p(u) = N


−

c + ρu√
1 − ρ2


 .

Given ǫ0 = u, defaults of the firms are independent. The mixing dis-

tribution is that of the common factor ǫ0, and N transforms ǫ0 into a

distribution on [0,1].
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This distribution function F (θ) for the distribution of the mixing variable

p̃ = p(ǫ0) is

F (θ) = P [p(ǫ0) ≤ θ] = P


N


− c + ρǫ0√

1 − ρ2


 ≤ θ




= P

[
−ǫ0 ≤ 1

ρ

(√
1 − ρ2N−1(θ) + c

)]

= N

(
1

ρ

(√
1 − ρ2N−1(θ) − N−1(p)

))
where p = N(−c).

Here, p is the unconditional default probability corresponding to ρ = 0.

Note that F (θ) has the appealing feature that it has dependence on ρ

and p. The probability that no more than a fraction θ default is

P

[
Dn

n
≤ θ

]
=
∫ 1

0

nθ∑

k=0

nCkp(u)k[1 − p(u)]n−kf(u) du.
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The figure shows the loss distribution in an infinitely diversified loan port-

folio consisting of loans of equal size and with one common factor of

default risk. The unconditional default probability is fixed at 1% but the

correlation in asset values varies from nearly 0 to 0.2.
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Contagion models

Contagion means that once a firm defaults, it may bring down other

firms with it. Define Yij to be an “infection” variable. Both Xi and Yij

are Bernuolli variables.

Xi is the default indicator of firm i due to its firm specific causes

Yij =

{
1 if default of firm i bring down firm j
0 if default of firm i does not bring down firm j

.

P[Xi] = p and P[Yij] = q.
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The default indicator of firm i is

Zi = Xi + (1 − Xi)


1 −

∏

j 6=i

(1 − XjYji)


 .

Note that Zi equals one either when there is a direct default of firm i or if

there is no direct default and
∏

j 6=i

(1 − XjYji) = 0. The latter case occurs

when at least one of the factor XjYji is 1, which happens when firm j

defaults and infects firm i.

Define Dn = Z1 + · · · + Zn, Davis and Lo (2001) find that

E[Dn] = n[1 − (1 − p)(1 − pq)n−1]

var(Dn) = n(n − 1)βpq
n − (E[Dn])

2
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where

βpq
n = p2 + 2p(1 − p)[1 − (1 − q)(1 − pq)n−2]

+(1 − p)2[1 − 2(1 − pq)n−2 + (1 − 2pq + pq2)n−2].

cov(Zi, Zj) = βpq
n − var(Dn/n)2.

Remarks

1. Zero contagion gives a pure binomial model.

2. Increasing the contagion brings more mass to high and low default

numbers.

3. To preserve the mean, we must compensate for an increase in the

infection parameter by decreasing the probability of direct default.
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Estimating default through variation in frequencies

• Clustering of defaults should lead to larger fluctuations in default

frequencies as years with many defaults are followed by years of few

defaults compared with the overall default frequency.

• Consider a period of T years, each year we observe a population of n

firms and record for year t the number of defaults Dt.

Let ρ denote the correlation coefficient of default events contributing

to Di with a given year.

• Assume that the default events from year to year are independent,

then

var

(
Dt

n

)
=

p(1 − p)

n
+

n(n − 1)

n2
(E[p]2 − p2) ∼ E[p]2 as n → ∞.
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• The overall default frequency is estimated as

p̂ =
1

nT

T∑

t=1

Dt.

• The empirical variance of the default frequencies is obtained as

̂
var

(
Dt

n

)
=

1

T

T∑

t=1

(
Dt

n
− p̂

)2

,

which serves as an estimator for E[p]2 − E[p]2.

• A moment-based estimator for the correlation is

ρ̂ =
v̂ar(Dt/n)

p̂(1 − p̂)
.
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Moody’s Binomial Expansion Method

• For a Binomial distribution with independent obligors, the tail with

fewer (but larger) obligors is “fatter” than the tail with many (but

smaller) independent obligors. Actually, variance of fractional loss

decreases as 1/n as n increases.

• Moody’s are aware that pure Binomial distribution with independent

defaults is unrealistic.

• Make tails of distribution fatter by assuming fewer obligors (the di-

versity score). Adjustment are made for:

– industry concentration

The idea is to approximate the loss on a portfolio of n positively correlated

loans with the loss on a smaller number of independent loans with larger

face value.
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Moody’s Diversity Scores

Number of Firms in Diversity
the Same Industry Score

1 1.0
2 1.5
3 2.0
4 2.3
5 2.6
6 3.0
7 3.2
8 3.5
9 3.7
10 4.0
10 Evaluated

or more case by case

Consider a portfolio of 60 bonds

Portfolio distribution

No of issuers in sector 1 2 3 4 5

No of incidences 2 7 3 4 2

Diversity 2 10.5 9 9.2 5.2
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• Based on the idea that issuers in the same industry sector are related,

while issuers in different industry sectors can be treated as indepen-

dent.

• For the example, there are 2 cases in which issuers are the only

representatives of hteir industry sector, 7 cases in which pairs of

issuers are in the same sector, etc. The total diversity score =

2 + 10.5 + 9 + 9.2 + 5.2 = 36.

• The original portfolio of 60 bonds is treated to be equivalent to a

portfolio of 36 independent bonds with the same default probability

but with notional value 60/36 times the original notional.
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Moody’s binomial expansion technique (BET)

The two parameters in a binomial experiment are n and p.

• Diversity score, weighted average rating factor and binomial expansion

technique.

• Generate the loss distribution.

To build a hypothetical pool of uncorrelated and homogeneous assets

that mimic the default behaviors of the original pool of correlated and

inhomogeneous assets.
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Moody’s diversity score

The diversity score of a given pool of participations is the number n of

bonds in a idealized comparison portfolio that meets the following criteria:

• Comparison portfolio and collateral pool have the same face value.

• Bonds in the comparison portfolio have equal face values.

• Comparison bonds are equally likely to default, and their defaults are

independent.

• Comparison bonds are of the same average default probability as the

participations of the collateral pool.

• Comparison portfolio has, according to some measure of risk, the

same total risk as does the collateral pool.
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Binomial approximation using diversity scores

Seek reduction of problem of multiple defaults to binomial distributions.

If n loans each with equal face value are independent, have the same de-

fault probability, then the distribution of the loss is a binomial distribution

with n as the number of trials.

Let Fi be the face value of each bond, pi be the probability of default

within the relevant time horizon and ρij between the linear correlation

coefficient of default events.

Assuming zero recovery, the loss variable Li associated with bond i with

face value Fi is given by

Li = Fi1{Di},

where Di is the default event of bond i.
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With n bonds, the total principal is
n∑

i=1

Fi and the mean and variance of

the loss of principal P̂ is

E[P̂ ] = E[L1 + · · · + Ln] =
n∑

i=1

FiE[1{Di}] =
n∑

i=1

piFi

var(P̂ ) =
n∑

i=1

n∑

j=1

E[LiLj] − E[Li]E[Lj]

=
n∑

i=1

n∑

j=1

FiFj(E[1{Di}1{Dj}] − E[1{Dj}]E[1{Dj}])

=
n∑

i=1

n∑

j=1

FiFjρij

√
pi(1 − pi)pj(1 − pj).

We construct an approximating portfolio consisting D independent loans,

each with the same face value F and the same default probability p.
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n∑

i=1

Fi = DF

n∑

i=1

piFi = DFp

var(P̂ ) = F2Dp(1 − p).

Solving the equations

p =

∑n
i=1 piFi∑n
i=1 Fi

D =

∑n
i=1 piFi

∑n
i=1(1 − pi)Fi

∑n
i=1

∑n
j=1 FiFjρij

√
ρi(1 − pi)ρj(1 − pj)

F =
n∑

i=1

Fi

/
D.

Here, D is called the diversity score.
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