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Credit default swaps

The protection seller receives fixed periodic payments from the pro-
tection buyer in return for making a single contingent payment cov-
ering losses on a reference asset following a default.

140 bp per annum

protection protection
seller | R} buyer
Credit event payment
(100% — recovery rate)

only if credit event occurs

holding a
risky bond




Protection seller

e carns premium income with no funding cost

e gains customized, synthetic access to the risky bond

Protection buyer

e hedges the default risk on the reference asset

1. Very often, the bond tenor is longer than the swap tenor. In

this way, the protection seller does not have exposure to the full
period of the bond.

2. Basket default swap — gain additional vield by selling default
protection on several assets.
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A bank lends 10mm to a corporate client at L 4+ 65bps. The bank
also buys 10mm default protection on the corporate loan for 50bps.

Objective achieved

e Maintain relationship

e reduce credit risk on a new loan

Risk Transfer >

./\ Default Swap

Premium ,
Corporate _ ‘ ‘
Boﬁower nge; o8t ai;db Bank If Credit Event: Financial
rincipa _ par amount Honse
If Credit Event:

obligation (loan)



Settlement of compensation payment

1. Physical settlement:

The defaultable bond is put to the Protection Seller in return
for the par value of the bond.

2. Cash compensation:

An independent third party determines the loss upon default
at the end of the settlement period (say, 3 months after the
occurrence of the credit event).

Compensation amount = (1 — recovery rate) x bond par.



Selling protection

To receive credit exposure for a fee or in exchange for credit expo-
sure to better diversify the credit portfolio.

Buying protection

To reduce either individual credit exposures or credit concentrations
in portfolios. Synthetically to take a short position in an asset
which are not desired to sell outright, perhaps for relationship or
tax reasons.



Credit default swap

Fixed leg

Floating leg

¥

Payment of §,,_135 at T3 if no default until 1.
The value of the fixed leg is

N

n=1

Payment of 1 —« at T, if default in (T,,_1,7Tn]
occurs. The value of the floating leg is

N
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The market CDS spread is chosen such that the fixed leg and float-
ing leg of the CDS have the same value. Hence

N
Z 5n—1H(O: Tn—l: Tn)ﬁ(oa Tn)

5= (1—n)2=L

SN 6,_1B(0,Ty)

Define the weights

5] N
0,1 B(0,T
Wy = an (0, Tn) , n=1,2,--- N, and an: ,
S 8,_1B(0, ) =t
k=1
then the fair swap premium rate is given by

N
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1. 3 dependsonly on the defaultable and default free discount rates,
which are given by the market bond prices. CDS is an example

of a cash producCt — pricing devived €rom. yield curves

2 It is similar to the calculation of fixed rate in the interest rate
swap

N
s= > w), F(0, T, 1,Tn)

n=1
5’!2,—-1B(07 Tn)

N
> 6,_1B(0,Ty)
E—1

where W n=12,---,N.
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Marked-to-market value
original CDS spread = 3'; new CDS spread =3
Let N = CDS_;y — CDSnew, and observe that CDSnew = 0, then

marked-to-market value = CDSyq =M= (5-7) Z B(0,Tn)0n—1,
n—g.

whe re. {T{n_ T Y e the Yemm'n:nj *ﬁyx_g_r.

h)"o }vhi

Why’? If an offsetting trade is entered at the current CDS rate 5,

the fee difference (5 —3') will be received over the life of the
CDS Should a default occurs, the protection payments will cancel
out, and the fee difference payment will be cancelled, too. The
fee difference stream is defaultable and must be discounted with
B(0,Ty).

e CDS’s are useful instruments to gain exposure against spread
movements, not just against default arrival risk.

e



Hedge strategy using fixed-coupon bonds

Portfolio 1

e One defaultable coupon bond C; coupon & maturity ty.
e One CDS on this bond, with CDS spread s

Portfolio 2

e One default-free coupon bond C: with the same payment dates
as the defaultable coupon bond and coupon size é — 3.

Remadls When does this defautt Free bond become O par
g&;? This f&%w?(e.& C -5 +o be set e.?».a\ tc e meiket
Imiq\leit\j , ‘t‘\& dedunelion o‘F c,ou.rm 5 }g, 63, S s

< vate |
! |Fe. of the band.

ed over the whole
QPP 1t



Comparison of cash flows of the two portfolios

1. In survival, the cash flows of both portfolio are identical.

Portfolio 1  Portfolio 2
t=20 —C(0) —C(0)

c—3

v

t=1; Cc —

— 8

+
Ol

t=1tnN 1+c—35 1

2. At default, portfolio 1's value = par = 1 (full compensation by
the CDS); that of portfolio 2 is C(7), 7 is the time of default.

The price difference at default = 1 — C(+). This difference is
very small when the default-free bond is a par bond.

Remark

The issuer can choose ¢ to make the bond be a par bond such that
the initial value of the bond is at par. .



‘This is an _approximate replication.

Recall that the value of the CDS at time 0 is zero. WNeglecting
the difference in the values of the two portfolios at default, the
no-arbitrage principle dictates

C(0) =C(0) = B(0,ty) +cA(0) —s5A(0).

Here, (¢—35)A(0) is the sum of present value of the coupon payments
at the fixed coupon rate ¢ — 5. The equilibrium CDS rate s can be
solved:
B(0,tyn) +<cA(0) — C(0)

A(0) '

S =

B(0,ty) + cA(0) is the time-0 price of a default free coupon bond

paying coupon at the rate of e |
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Cash-and carry arbitrage with par floater |

A par floater C’ is a defaultable bond with a floating-rate coupon
of ¢; = L; 1 + sP?", where the par spread sP?" is adjusted such that
at issuance the par floater is valued at par.

Portfolio 1

e One defaultable par floater ¢’ with spread sP" over LIBOR.
e One CDS on this bond: CDS spread is s.

The portfolio is unwound after default.
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Portfolio 2

e One default-free floating-coupon bond C’: with the same pay-
ment dates as the defaultable par floater and coupon at LIBOR,

c; = Lj_1.
The bond is sold after default.

Time Portfolio 1 Portfolio 2

t=20 —1 —1

t=1t; Li 1+ s -5 Li 4

t=1In 1+ Ly 1+ sP" —3 1+ Ly

7 (default) 1 C'(t) =14 L;(r — t;)

The hedge error in the payoff at default is caused by accrued interest
L;(r—t;), accumulated from the last coupon payment date ¢; to the
default time 7. If we neglect the small hedge error at default, then

ar . = ;
P =3, v



Remarks

e T he non-defaultable bond becomes a par bond (with initial value
equals the par value) when it pays the floating rate equals LI-
BOR. The extra coupon sP paid by the defaultable par floater
represents the credit spread demanded by the investor due to
the potential credit risk. The above result shows that the credit
spread sP?" is just equal to the CDS spread 3.

e The above analysis neglects the counterparty risk of the Pro-
tection Seller of the CDS. Due to potential counterparty risk,
the actual CDS spread will be lower.
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Valuation of Credit Default Swap

e Suppose that the probability of a reference entity defaulting

during a year conditional on no earlier default is 2%. HCre) Conttont
hajoard rote 1§ assumed.,

e Table 1 shows survival probabilities and unconditional default
probabilities (i.e., default probabilities as seen at time zero) for
each of the 5 years. The probability of a default during the first
year is 0.02 and the probability that the reference entity will
survive until the end of the first year is 0.98.

e The probability of a default during the second year is 0.02 X
0.98 = 0.0196 and the probability of survival until the end of
the second year is 0.98 x 0.98 = 0.9604.

e The probability of default during the third year is 0.02x0.9604 =
0.0192, and so on.

e



Table 1 Unconditional default probabilities and survival probabilities

Time (vears) Default probability Survival probability

1 0.0200 0.9800
2 0.0196 0.9604
3 0.0192 0.9412
4 0.0188 0.9224
5 0.0184 0.9039

. I he C@ic\&tﬁﬁow ot the £\¢P€¢t’€é Comp-en sation POy radat.  u pon. éeﬁ‘ﬁi":.
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e We will assume the defaults always happen halfway through a
year and that payments on the credit default swap are made
once a year, at the end of each year. We aiso assume that the
risk-free (LIBOR) interest rate is 5% per annum with continuous
compounding and the recovery rate is 40%.

e Table 2 shows the calculation of the expected present value of
the payments made on the CDS assuming that payments are
made at the rate of s per year and the notional principal is $1.

For example, there is a 0.9412 probability that the third payment
of s is made. The expected payment is therefore 0.9412s and its
present value is 0.9412se—9-05%3 = 0.8101s. The total present value
of the expected payments is 4.0704s.

e



Table 2 Calculation of the present value of expected payments.
Payment = s per annum.

Time  Probability Expected Discount PV of expected
(years) of survival payment factor payment

1 0.9800 0.9800s 0.9512 0.9322s

2 0.9604 0.9604s 0.9048 0.8690s

3 0.9412 0.9412s 0.8607 0.8101s

4 0.9224 0.9224s 0.8187 0.7552s

5 0.9039 0.9039s 0.7788 0.7040s

Total 4.0704s

v



Table 3 Calculation of the present value of expected payoff. No-
tional principal = $1.

Time Expected Recovery Expected Discount PV of expected
(years) payoff ($)  rate payoff ($) factor payoff ($)

0.5 0.0200 0.4 0.0120 0.9753 0.0117

1.5 0.0196 0.4 0.0118 0.9277 0.0109

2.5 0.0192 0.4 0.0115 0.8825 0.0102

3.5 0.0188 0.4 0.0113 0.8395 0.0095

4.5 0.0184 0.4 0.0111 0.7985 0.0088

Total 0.0511

For example, thereis a 0.0192 probability of a payoff halfway through
the third year. Given that the recovery rate is 40% the expected
payoff at this time is 0.0192 x 0.6 x 1 = 0.0115. The present value
of the expected payoff is 0.0115¢9-05%2.5 = 0.0102.

The total present value of the expected payoffs is $0.0511.



Table 4 Calculation of the present value of accrual payment.

Time  Probability Expected Discount PV of ex-

(years) of default accrual factor pected accrual
payment payment

0.5 0.0200 0.0100s 0.9753 0.0097s

1.5 0.0196 0.009s 0.9277 0.0091s

2.5 0.0192 0.0096s 0.8825 0.0085s

3.5 0.0188 0.0094s 0.8395 0.0079s

4.5 0.0184 0.0092s 0.7985 0.0074s

Total 0.0426s



As a final step we evaluate in Table 4 the accrual payment made in
the event of a default.

e There is a 0.0192 probability that there will be a final accrual
payment halfway through the third year.

e T he accrual payment is 0.5s.

‘e The expected accrual payment at this time is therefore 0.0192 x
0.5s = 0.0096s.

e Its present value is 0.0096s¢9-05%2.5 — 0.0085s.

e The total present value of the expected accrual payments is
0.0426s.

From Tables 2 and 4, the present value of the expected payment is

4.0704s 4+ 0.0426s = 4.1130s.



From Table 3, the present value of the expected payoff is 0.0511.
Equating the two, we obtain the CDS spread for a new CDS as

4.1130s = 0.0511

or s = 0.0124. The mid-market spread should be 0.0124 times the
principal or 124 basis points per year.

In practice, we are likely to find that calculations are more extensive
than those in Tables 2 to 4 because

(a) payments are often made more frequently than once a year

(b) we might want to assume that defaults can happen more fre-
quently than once a year.



Marking-to-market a CDS

e At the time it is negotiated, a CDS, like most like swaps, is
worth close to zero. Later it may have a positive or negative
value.

e Suppose, for example the credit default swap in our example
had been negotiated some time ago for a spread of 150 basis
points, the present value of the payments by the buyer would be
4.1130 x 0.0150 = 0.0617 and the present value of the payoff
would be 0.0511.

e The value of swap to the seller would therefore be 0.0617 —
0.0511, or 0.0166 times the principal.

e Similarly the mark-to-market value of the swap to the buyer of
protection would be —0.0106 times the principal.

<



Valuing credit default swap I: No counterparty default risk

by John Hull and Alan White, Journal of Derivatives (Fall 2000)
p.29-40. "

e Estimation of the risk neutral probability that the reference bond
will default at different times in the future. The market prices of
bonds issued by the same obligor and Treasury bonds are used
to provide the market information of the expected default loss
of the reference entity.

— Choose a set of N bonds issued by the obligor with maturity
dates 4,7 = 1,2,---,N, where t;_; <{; and t = 0. The life of
CDS is [0, tn].
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market price of Treasury bond with maturity date ¢;

ji= market price of defaultable bond with maturity date ¢;

Bj — Fj gives the market estimation of the present value of
expected default loss of the 5" defaultable bond over the period

[Oatj]nj — 172:"’7N-

Assume the risk neutral default probability density function ¢(t) to be
piecewise constant over [0,tn],q(t) = q;,t € (t;—1,t],i =1,2,---, N.
Define ﬁz—j be the present value of the expected default loss of the
jth risky bond defaulting within (¢;_1,%],4 < j. We deduce that

]
Y ¢Bi;=Bj—Bj, j=1,2,---,N. (i)
i=1

Try to determine g; by estimating 5;;.

G



Fj(t)

v(t):

Cj(t)

Rj (t):

Bij:

Forward price of the 5" bond for a forward contract maturing
at time ¢ (¢ <t;) assuming the bond is default-free. Note that

~ F;(t) is the forward value of 8, not B that is observable at

time ¢

Present value of $1 received at time ¢t with certainty

deﬁultable
Claim made by holders of the 3 Abond if there is a default at

time ¢ (t < t;) (depends on the recovery mechanism)

defauttable
Recovery rate for holders of the jt“/\bond in the event of a

default at time t (t < t;)
&ﬁufﬁlbl@
Present value of the loss from a default on the ;' bond at

time ¢; 4

The probability of default at time {;



e The no-arbitrage price at time ¢t of the no-default value of the
7™ bond is F;(t). If there is a default at time ¢, the bondholder
makes a recovery at rate R on a claim of C;(t). 1t follows that

B:; = v(t)[F;(t) — RC;j(t;)].

e There is a probability ¢4; of the loss @;; being incurred. The total
present value of the losses on the ;" bond is therefore given by

_
B =B = 2. %iby
==

e The first probability, %1, is (B1 —§1)/@11. The remaining prob-
abilities are given by

-

—1
Bj—Bj — Yi1%i%
Bjj

Y=

tJ
v



Assumptions

1. We estimate the expected recovery rate from historical data.

2. We assume that all risky bonds have the same seniority and
the expected recovery rate is time independent. Let R be this
expected recovery rate, which is independent of j and ¢.

3. Let C;(¢) denote the claim amount on the 5t bond defaulting
at time ¢, then

C;(t) = L[1 + A(t)],

[, = face value, A(t) = accrued interest at time t as percentage
of its face value.

ey



4. The protection buyer has to pay at default the accrued pay-
ment covering the period between the default time and the last
payment date.

5. The default event, Treasury interest rates and recovery rates
are mutually independent (under the risk neutral measure).

6. From the riskless Treasury interest rate, we can compute the
discount factor v(¢), which is the present value of $1 received
at time t with certainty.

Let F;(t) be the forward price of the 4t default-free bond for a for-
ward contract maturing at time ¢t. Assuming deterministic interest
rate, then the price at time t of the no-default value of the 4t bond
is F;(t). We then have

t; —~
Bij = / v(t) [Fj(t) — RCj(t)} dt 1<j,j=12,---,N. (i)

t; 1



From Eq. (i), we can deduce

— —1
__ B;j—B;— > 1 6B
QJ - 3
Bij
The risk neutral expected payoff paid by the protection seller upon
default at time t is L{1 — R[1 + A(t)]}. Therefore, the present value
of the expected payoff is

foT L{1 — R[1 + A(®)]}a(t)v(¢) dt.

j=12,---,N. (222)

u(t) = present value of payments at the rate of $1 per year on payment

dates between time zero and t
e(t) = present value of an accrual payment at time ¢ of the time interval

t — t*, where t* is the last payment date.

fad



How to compute the annuity premium rate w paid by the protection
buyer?

~ If there is no default prior to CDS maturity, the present value of
payments is wu(T).

Expected value of payments
T
— w /O L La)[ut) + e®] dt + wLu(T) [1 _ /O (1) dtjl.

Lastly, w is determined such that the present value of payments
equals the present value of expected default loss. Hence

e g1 RO+ AODe®e®d
f(;f g [u(®) + e(®)] dt + u(T) [1 _ fg q(t) dt]

{;«h



Counterparty risk of credit default swap

CDS swap premium
Protection (fee payment ~ Protection
Buyer upto I'AT) Seller B
T = wem mm e
contingent payment

(creditlossif t < T)

T = default time of Asset R
T = maturity date of swap

Reference
Asset €

3 parties: Protection Seller (Counterparty), Protection Buyer, Ref-
erence Obligor



e Protection Buyer pays periodic swap premium (insurance fee)
to Protection Seller (counterparty) to acquire protection on a
risky reference asset (compensation upon default).

e Before the 1997 crisis in Korea, Korean financial institutions
are willing to offer protection on Korean bonds. The financial
melt down caused failure of compensation payment on defaulting
Korean bonds by the Korean Protection Sellers.

e Given that the counterparty (Protection Seller) may default on
the contingent compensation payment, what is the impact of
the counterparty risk on the swap premium?

3%



How does the inter-dependent default risk structure between the
Protection Seller and the Reference Obligor affect the swap rate?

1. Replacement cost (Protection Seller defaults earlier)

e If the Protection Seller C defaults prior to the Reference
Entity, then the Protection Buyer renews the CDS with a
new counterparty.

e Supposing that the default risks of the Protection Seller C
and Reference Entity R are positively correlated, then there
will be an increase in the swap rate of the new CDS.

2. Settlement risk (Reference Entity defaults earlier)

e The Protection Seller defaults during the settlement period
after the default of Reference Entity.

35
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Default contagion with interacting intensities

The default status of the assets in the portfolio is given by the
default indicator process

H,= (H} Hf---H)e{0,1}=E,

where Hg — 1{7‘1673} and F is the state space of the default status.

Characterize the default intensity of firm 2 by

Mi(Hp) =a;+ ) b’i,j]-{'rjgt}w t <y, (A)
J7=1
and A\y; = O for t > 7;. Also, a; > O and b;; are constants such
that A ; is non-negative. The jumps are independent of the order
in which the defaults have occurred.

Lt
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as + bs 7+ bs 3 + bs 1

as + bs 7+ bs 3 i
|
as -+ b5,7 i \
E bs.3
5\ b
as : 5,7

{
Ty T3 - ' 71 )

The default intensity for Firm 5 when the first default time 17 = 77,
the second default time 75 = 73 and the third default time 73 = 71.
The successive defaults of Firm 7, Firm 3 and Firm 1 put Firm 5
at a higher risk.



3]

{0} — —{2}

as

{3}

Illustration of the construction for m = 3. Arrows indicate possible

transitions, and the transition intensities are given on top of the
arrows.

{0} — no default; {i} — default of Firm «;
{i,7} — default of Firms ¢ and j;

{1,2,3} — default of all 3 firms.



T hree-Firm Model

The inter-dependent default intensities of the 3 firms are defined as

a1+ b1o1 ey F 01l oy 010l chnocn
az + lel{TAgt} + b231{TC§t} + b241{TA§t,T()§t}

= as+ba1 Ly, oy +osel o +bsal i cimpay

We assume an extra jump in default intensity if the other two firms
have defaulted, allowing the interaction between the default events
on the intensity of surviving firms.

The state space S of H = (H, HP, HY) is given by

s ={(0,0,0),(1,0,0),(0,1,0),(0,0,1),(1,1,0),(1,0,1),(0,1,1),(1,1,1)}.

State 1

State 2

State 3

State 4

(0,0,1)

| State 5

State 6

State 7

State 8

(1,1,1)

£y

. i*“‘ 2



The infinitesimal generator A of the process H is given by

- —(a1 + ap + b3) ay.,
0 —(az + b21
+a3z + bzi)

0 0

0 0

0 4]

0 0

0 0

| 0 0

az
0

—(ag + bi2
+az + b3a)
0
0
0
0

0

a3 0 0 0

0 az + bay az + bz1 0

0 a1 + b1z 0 a3z + bao
—(a1 + b13 ag + bi3 ag + bag 0
+ag + bay)

0 —{agz + b3y 0 0

+bzoe + bza)
0

0 —{ag + bay 0
+bos + bag)
0 0 0 —{a1 + b12
+b13 + b14)
0 0 0 0

For example, consider the transition rate from State 2: (1

to State 5: (1

N1 = Np3 = Nog = No7 = Apg

1

0) and State 6: (1 O

Nos
Nog

1):

aos + boq
a3 + b31

0 and Ao =1 — ANopg — Nog.

[

(a3 + b31
+b3z + b3z)
—(ag + ba1
+bas + a24
—(a1 + b12
+b13 {-Jl_ b14)

0 0)

£
g
oAk




Define the conditional transition density matrix on ¥, = v’ as

P(t, sl") = (pij (£, slv'))1s1x51 = @, 8,93 5197 191% )51

Kolmogorov backward equation

dP(t, sly")
G — APl Plsysld) =T,
The (i, )™ entry p;;(¢, s|¢’) satisfies the following system of ODE:
4 Sl
dpij(tusayiv yji/'ub,) | /
- - N (t ] t; ) 3 J 7
| pij(s, 5,95, y5lY") = 1{yj}(yz')

Since default state is absorbing, A is upper triangular.



Using the results in egs (1a,b), eq. (2a) can be expressed as

dp?,.j(ta S,Y;, ygl¢,)
dt

N
k=1

with auxiliary condition:

pij (5,8, 95, Y;1¥') = 1{yj}(yz')- (2b)

Marginal distribution of default times
Fi(t;) = Prlr < 4] = / > Pij (0, L) dpgy (w),
Y, (i)=1
where we sum over all states j with default of the ith obligor [y;(4) =

1] and subsequently integrate over the distribution 'U“i#(w)' Here,
M¢(w) is the probability measure which gives the law of W.

h%‘r



* Assume that the pre-default intensities of A and B are
.Xf‘ = a1 -+ azl{fBg,}, ]

)\.}tg - bl +b21{1:A§t}- ' /

Consider a four-state Markov chain in continuous time whose state space is
{(N,N), (D,N), (N, D), (D, D)}, where “N” signifies nondefault and “D” is default
and the first coordinate refers to issuer A and the second to B. We can then reformulate
the analysis by looking at the generator:

(—(ay + b1) aj b1 0 )
A= 0 —(b1 + b2) 0 b1+ by
0 0 —(a1+a2) art+a

\ 0 0 0 0 )

Because of the simple upper triangular structure of the generator itis easy to compute
its matrix exponential. Clearly, the eigenvalues of A are just 1ts diagonal elemenis.



Letting

[ —(a1 + by) 0 0 0\
D— 0 —(bq +‘b2) 0 0
| 0 ' 0 - —{a1+a2) O
\ 0 0

0 0/

and relying on the assumption of distinct parameter values,

(1 a
ay — by
B=10 1
| 0 0
\0 0

we have

b )
b1 —ay

0 b

1

0o 1)

A=BDB !




In fact, B~ is also easy to compute as

- b |
(1 aq 1 -4 b1 n aj \ |
| b —ay; ap;— b by —ap ay — by w{
B l1-10 1 0 ~1 |
0 0 1 ~1 1\
0 0 0 1, ]
and hence we can compute all relevant transition probabilities:
 {exp(—(ay + b1)) o 0 0)
P(t) =B 0 exp(——(b1 + b)) 0 -0 51
0 0 exp(—(ai1 +ax)t) O
\ -0 0 0

L

In particular, this gives us the marginal probability of A being in default before 1:

QP < 1) = Pa(t) + Pia(o),

where we have added the case where B has not defaulted and where both have
defaulted.|

et



Simple computation gives us

| | |
Q(TA g £ = ay — ay exp(— (a1 + by)t) + bilexp(—{(a1 + a2)t) — 1].

o az — by

The important thing to note is that this expression does not depend on b,. This is
intuitively clear. b, only takes effect after the default of A and from that time it
controls the waiting time for B to follow A in default. In other words, changing &,

will only serve to move probability mass between Pi2(z) and Pi4(¢) but will not
alter the sum.

e ——

Had we tried to compute

. t ‘ r \
Eexp ( — [0 Aﬁ‘ds) = F exp ( — /0 (a1 + dzl{ngs}) ds), |

we would obtain an expression that does depend on b3, since the distribution of 7B
obviously depends on b, and this enters into the expression.

iy
e, 59



| colbo + by)e Cotbn=(Combtr -y < 4,
t1, 1) = | - o > h
f, 1) =4 bo(co + cp)e Coredn=tbo=an -y, 5 4,

i
!
!
!

The marginal density of the default times 77 and 7¢ can be obtained by integrating

~ the joint density f(#;,72). This gives

—

dty co — by

Plr? e dt;] _ (bo + b2)co [e-—(bo+bg)t1 _ e-n(bawo)n] + bye~ ot

and

dr, by — ¢
Consequently, the marginal survival probabilities are given by
cge ottt _ p g~Borcots

Plt% > 1] = — ,
Cop — bz‘
and - ‘ (co+e2) (bo-+co)
‘ b e~ cotea M __ 6’26" o+Coli2
P[Tc >l = 2 | )
by — 2

c .
P[T € dp| — (co + €2)bo [€~(Co+€z)fz _ e—(bn+€0)f2} + C(}em(bﬁc‘)ﬁz‘

—_—
—

g



\
Swap Premium in the Two-firm Model |

So(T) =

;(b0+b2+r)6 BT —ﬂAT __ﬁnAT . -1
e b [T
p 1 — e PAT

where 8 = by + ¢o + 7 and

Az(T) _ 1 — e“(b{}‘FC{}—FF}T Te‘*(b{}+€g+r)}ﬁ | ’
o (b +¢o + ry? '

b(}_"CQ"&“}”

g +§ S e o]
00 i=1 | |
N ~ | e "'YT&
. Sz, (T) < mcle,Pe-\Aen‘b of Q;_,) 't(\,euj’m E C € li—cﬁn—é@ >1’:‘.}
c
& iavolved . Thic s YL asonable fiace G vaeréese. £ e

by Ca due To B’ dedoutl  would hav@ iapak only on the

f@gkucﬁmeat cost,
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I'f Lfeen B S defoutt- free ) thow Alo. SWap pro=ivem AS

1 /’

; E [g*rngz(-T) I{TC>T5}] +SZ(T)A-2(T) — F [gmr(rc+6)1{TC£T}], § /

where

A X —rr TC — Tf._
AE(T) = Z I {g g ( — 1) 1{Ti—I<TC<Ti}] .

i=1

To examine the effect of settlement risk on the swap premium, we define tﬁe SWap |

premium spread V(T) to be the difference of the swap premium with and without - |

settlement risk, that 1s, |
V(T) = So(T) - §2(T).




Intuitively speaking, it is not clear that whether V(T) 1s strictly positive. In a CD!
the protection buyer inevitably faces a trade-off between a higher present value ¢
compensation for its loss in the event of C’s default? that is, i B

J—c I R Al D s (o) -
E[e @ +5}I{TC§§T}] > FE [6 r( +6)_1{TC5T}1{TB>TC+5}}

and a higher present value of total swap payments due to an obligation to mak
compensation to swap buyer upon the default of underlying asset, that is,

E{g“rTil{Tc>Ti}] —{—}Q(T) > E[eﬂrTiI{TBATC:;»Ti}} +A2(T),; o -

It is quite straightforward to derive So(7"), which can/be obtained by setting bg
bz =0 1n Sz(T). ‘ ' B _ .




Settlement Risk Premium in percentage (%)

Figure 2 Change of settlement risk premium on 8. The base
0.25, bp = 0.15, by =0.15, ¢cg=0.1, ¢ = 0.1.
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*The settlement Yisk premicu~ inecreatet as S nereasls, and
s sensitivig s very .S'ijni-ﬁ'c_m“:‘
the effect of bo and be have relativel 5 lesc influgace
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