
MAFS5250 – Computational Methods for Pricing Structured

Products

Topic 4 – Exotic structured products

4.1 Participating life insurance policies

• Product nature: bonus distribution mechanism

• Finite difference scheme

• Numerical results and pricing behavior

4.2 Convertible bonds

• Embedded features

• Modeling considerations in convertible bond pricing model

• Finite difference algorithm

• Analysis of pricing behavior
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4.1 Participating life insurance policies

Product nature: bonus distribution mechanism

• Annual rate of return guarantee and bonus distribution

– interest is credited to the policy account balance according to

some smoothing surplus distribution mechanism

– specified claim to a fraction of any excess return (surplus) gen-

erated by the investments

• Surrender option held by investors

– American style feature of early redemption
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Contractual terms

• A contract of nominal value P0 is issued by the insurance company

at time zero.

• The contract is acquired by an investor for a single premium V0,

where V0 ≤ P0 (sold at a discount).

• Assuming no mortality risk, there are no further payments from or

to the contract prior to expiration time T . At expiry, the contract

is settled by a single payment from the issuer to the investor.

The nominal value P0 is preset while V0 is determined from the pricing

model as the fair value of the contract at time 0.

Reference B. Jensen, P.L. Jørgensen and A. Grosen, “A finite dif-

ference approach to the valuation of path dependent life

insurance liabilities,” Geneva Papers on Risk and Insurance

Theory , vol. 26 p.57-84 (2001).
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Distributed reserve and buffer

• Policy account balance, P (t) — book value of the policy

To the insurer, P (t) is the amount set aside to cover the contract

liability, considered as the distributed reserve.

• Market value of the asset base backing the contract, A(t)

• Undistributed reserve or buffer, B(t)

Mechanism in place to protect the policy reserve from unfavorable

fluctuations in the asset base. Accounting rule gives

A(t) = P (t) +B(t).

Since pension and life insurance companies typically invest largely in

highly liquid assets such as bonds and stocks for which the relevant

market prices are easily observable, we can assume that A is tradeable.

This justifies the use of a risk neutral pricing measure.

4



Crediting mechanism of the policy value process

We write {P (t)}0≤t≤T as the account balance process of the contract.

The benefit from the contract at maturity T is denoted by P (T ).

The evolution of P (·) between successive time points in the point set

T = {1,2, · · · , T}

is determined by the discretely compounded policy interest rate pro-

cess, {rP (t)}t∈T . We have

P (t) = [1 + rP (t)]P (t− 1), t ∈ T ,

so that

P (t) = P0

t∏
i=1

[1 + rP (i)].

Time is measured in years, P (·) is updated annually, and rP (·) is an-

nualized rate. That is, P (·) is held fixed for (t − 1, t) and has a jump

in value at t+.
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Dynamics of the asset side

dA(t) = µA(t) dt+ σA(t) dW (t), A(0) = A0.

Here, W (t) is a standard Brownian motion defined on the filtered prob-

ability space (Ω,F ,P) on the finite time interval [0, T ], σ is volatility

and µ is the expected rate of return.

Under the risk neutral probability measure Q, all prices discounted by

the continually compounded risk free interest rate r are Q-martingales.

We have

dA(t) = rA(t) dt+ σA(t) dWQ(t), A(0) = A0,

where WQ(t) is a standard Brownian motion under measure Q.
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Liability side of the balance sheet

Specification of rP (t) (dynamic distribution of funds to investor’s ac-

count) based on P (t−) and B(t−) = A(t)− P (t−):

rP (t) = max

(
rG, α

(
B(t−)

P (t−)
− γ

))
,

rG: annual rate of return guarantee of the contract

γ: target buffer ratio

α: distribution ratio

If the actual/observed buffer relative to the policy account balance

at time t− exceeds the desired level γ, then the insurer distributes a

fraction α of the surplus.

P (t): strictly increasing process with jump at discrete time points;

B(t) may be temporarily negative (insolvency with respect to the con-

tract). This occurs when A(s) < P (t+), where t < s < t + 1, since

P (t+) has been fixed at t+ earlier than s.
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Evaluation of the account balance process P (t)

In the favorable scenario where the asset return is sufficiently high,

specifically, rG < α

(
B(t−)

P (t−)
− γ

)
, we have

P (t+) = P (t−)

[
1+ α

(
B(t−)

P (t−)
− γ

)]
= P (t−) + α

[
B(t−)−B∗(t−)

]
,

where B(t−) = A(t) − P (t−) and B∗(t−) = γP (t−) is the desired level

of buffer over the period (t− 1, t). In general

P (t+) = P (t−)

[
1+max

(
rG, α

(
B(t−)

P (t−)
− γ

))]

= P (t−)

[
1+ rG+max

(
α

(
A(t)− P (t−)

P (t−)
− γ

)
− rG,0

)]
.

Here, the policy account process P (·) is highly dependent on the path

followed by A(t). Note that P (·) and B(·) have jump at each discrete

time point due to crediting mechanism while A(t) is assumed to be

continuous at all times.
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Bonus option

• The guaranteed interest rate implies a bond floor under the final

payment from the contract of PTfloor = P0(1 + rG)
T .

• Let V E(s) denote the time-s value of the contract (European style)

and let D(s) denote the time-s value of the bond component.

V E(s) = EQ
[
e−r(T−s)P (T )|Fs

]
, for all s ∈ [0, T ], V E(T ) = P (T )

D(s) = e−r(T−s)P0(1 + rG)
T [annually compounded].

Value of the bonus option is given by

Γ(s) = V E(s)−D(s).
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Surrender option (American style contract)

This is the right given to the investor to terminate the contract pre-

maturely

V A(s) = sup
τ∈Ts,T

EQ
[
e−r(τ−s)P (τ)|Fs

]
,

where the contract is terminated at the investor’s discretion at time τ .

Here, Ts,T denotes the class of Fs-stopping times taking values in [s, T ].

In most contracts, the investors may have to pay a penalty charge for

premature surrender. Here, we assume zero penalty charge.

• Since the surrender payoff is P (τ), so

V A(s) ≥ P (s), 0 ≤ s ≤ T.

However, if there is a surrender charge, which may be either fixed

or proportional or combination of both, then the surrender payoff is

reduced by the surrender charge. With penalty charges, V A drops

in value as a result.
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The contract value with surrender right is the sum of the bond compo-

nent, bonus option value and surrender option value. Let ψ(s) denote

the time-s value of the surrender option. We then have

ψ(s) = V A(s)−D(s)− Γ(s).

Comment on the optimal surrender policy

For an American style contract, since the value of P (s), t < s < t+1,

has been fixed at time t+, it will never be optimal to exercise the

contract between two updates of rP (·). Exercising the contract at

time s, t < s < t + 1, will result in a loss of interest amounting to[
er(s−t) − 1

]
P (t+) > 0, compared to exercising at time t+. On the

other hand, during the time interval (t, t+1), it may be possible that

A(s) drops drastically. The investor may envision the significant loss of

the bonus option while the guaranteed return rG is below the riskfree

rate. It may become advantageous to early surrender.
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States of the world

Note that P (s), t < s < t+1, does not change during the time interval

(t, t+1);P (s) is updated at t+ based on P (t−) and A(t).

All relevant information about the states of the world is summarized

by (A(s), P (t+)), where t < s < t + 1 ≤ T , observing that A(s) is

continuous for all times while P (s) has jump across sampling dates.

We write the time-s value of the contract as

Vs = V (s,A(s), P (t+)), t < s < t+1 ≤ T, t ∈ T ∪ {0}.

Here, T is the set of sampling dates and the contract initiation date is

time zero.
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Continuity of value function across a sampling date t

Vt− = Vt+ ⇔ V (t−, A(t), P (t−)) = V (t+, A(t), P (t+)).

Any joint realization of (s,As, Ps) necessarily changes V in a continuous

manner since there is no net cash flow associated with the contract

across a sampling date.

• The contract value is the discounted expectation of the terminal

value of the policy account and it remains to be continuous across

t even when P (t) has a jump. Such a jump of P (t) has been

anticipated based on A(t−) and P (t−), so the contract value at t−

should have reflected the jump of P (t) across t.

• Since the insurer is NOT required to sell the assets in response to

the jump in P (t) across t, so A(t) remains to be continuous. The

cash flow to the policy holder occurs only at maturity or surrender,

where the assets are sold to provide the cash payment required for

settlement of the contract. There is no cash flow to and from the

policy holder across the sampling date t.
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Model formulation

• P (·) is updated only discretely, so it does not change outside the

set of time points T (sampling dates).

• Between these ‘sampling dates’, the Black-Scholes equation is to

be solved (within the time interval between the consecutive years

t and t+1, and before the no-jump condition on V is applied):

∂V

∂s
+
σ2

2
A2∂

2V

∂A2
+ rA

∂V

∂A
− rV = 0, s ∈ (0, T ]/T ,

with VT = P (T ).

Over the time interval (t, t+1), we write the numerical option value

as

V
i,j
t,k = V (t+1− k∆s, i∆A, j∆P ),

where t ∈ {0,1, · · · , T − 1},0 ≤ k ≤ K,0 ≤ i ≤ I,0 ≤ j ≤ J. As k

increases from 0 to K, the calendar time decreases from t+1 to t.
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Computational domain

Restricted to the finite domain, (s,A, P ) = ([0, T ] × [0, A] × [P0, P ]),

where P0 is the initial policy value, A and P are sufficiently large con-

stants. Define P0 = j0∆P and P = J∆P , so that ∆P =
P − P0
J − j0

.

Let

I =
A

∆A
= number of equally spaced steps in the A-direction

K = number of time steps per year

Discretization considerations

• Choice of the mesh size of the grid in the (A,P )-space.

• Imposition of the auxiliary conditions.

• Implementation of the no-jump condition on the contract value

across sampling dates.
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Numerical procedure

1. Start at time T and apply the terminal payoff condition on a suitable

grid in the (A,P )-space.

2. For every discrete value of P , solve the Black-Scholes equation via

a finite difference scheme. This gives V(T−1)+ everywhere in the

grid.

3. Apply the no-jump condition on the contract value to obtain V(T−1)−

everywhere in the grid. Actually, we require the procedure of imple-

menting the jump condition on P (·) [jumping from P (t−) to P (t+)

at time t].

4. Repeat steps 2 and 3 to obtain Vt− from V(t+1)− everywhere in the

grid working backward from t = T −1 to t = 0. Minor remark: It is

not necessary to apply the no-jump condition at t = 0 since there

is no crediting of interest at time of initiation of the contract.
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We adopt the fully implicit scheme (A as the independent state variable

and P is fixed):

V
i,j
t,k − V

i,j
t,k+1

∆s
+

1

2
σ2(i∆A)2

V i+1,j
t,k+1 − 2V i,jt,k+1 + V

i−1,j
t,k+1

∆A2


+ r(i∆A)

V i+1,j
t,k+1 − V

i−1,j
t,k+1

2∆A

− rV
i,j
t,k+1 = 0,

which can be simplified to the following implicit relation:

EiV
i−1,j
t,k+1 +HiV

i,j
t,k+1 +GiV

i+1,j
t,k+1 = V

i,j
t,k ,

where

Ei =
r(i∆A)

2

∆s

∆A
−
σ2(i∆A)2

2

∆s

(∆A)2
,

Hi = 1+ r∆s+ σ2(i∆A)2
∆s

(∆A)2
,

Gi = −
r(i∆A)

2

∆s

∆A
−
σ2(i∆A)2

2

∆s

(∆A)2
.
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Boundary conditions

At A = 0, i = 0, the governing differential equation reduces to

∂V

∂s
− rV = 0.

There is no equity participation, so the contract value is only influenced

by discounting. The corresponding finite difference relation is

V
0,j
t,k+1 = (1− r∆s)V 0,j

t,k .

Here, 1 − r∆s can be visualized as the discrete discount factor over

one time step.

The value function is approximately linear in the far field, where A is

sufficiently large, so that

∂2V

∂A2
= 0 for A→ ∞.
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Applying this condition at I − 1, this yields the relation:

V
I,j
t,k+1 = 2V I−1,j

t,k+1 − V
I−2,j
t,k+1 .

In other words, the numerical boundary value V I,jt,k+1 can be computed

based on the value functions at the two neighboring interior points.

The discretized equation at I − 1 is seen to be

EI−1V
I−2,j
t,k+1 +HI−1V

I−1,j
t,k+1 +GI−1V

I,j
t,k+1 = V

I−1,j
t,k .

Eliminating V
I,j
t,k+1, the last equation becomes

(EI−1 −GI−1)V I−2,j
t,k+1 + (HI−1 +2GI−1)V I−1,j

t,k+1 = V
I−1,j
t,k .

For the first equation, we have

H1V
1,j
t,k+1 +G1V

2,j
t,k+1 = V

1,j
t,k − E1V

0,j
t,k+1

= V
1,j
t,k − E1(1− r∆s)V 0,j

t,k .

The imposition of the boundary condition at i = 0 would affect the first

element in the column vector of the tridiagonal system of equations.
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The matrix representation of the implicit scheme is given by

H1 G1 0 · · · · · · 0

E2 H2 G2 0 ...

0 E3 H3 G3 . . . ...

... . . . . . . . . . . . . 0

... 0 EI−2 HI−2 GI−2

0 · · · · · · 0 (EI−1 −GI−1) (HI−1 +2GI−1)





V
1,j
t,k+1

V
2,j
t,k+1
...

V
I−1,j
t,k+1



=



V
1,j
t,k − E1(1− r∆s)V 0,j

t,k

V
2,j
t,k
...

V
I−1,j
t,k


.

The last row in the coefficient matrix reflects the incorporation of the

numerical boundary condition in the far field.
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Implementation of the no-jump condition on the contract value

We need to code the relationship between V
i,j
t,K and V

i,j
t−1,0 according

to the no-jump condition. Recall

P (t+) = P (t−) +max(rGP (t−), α
{
[A(t)− P (t−)]− γP (t−)

}
).

Here, A(t)−P (t−) is the actual buffer at t− while γP (t−) is the desired

buffer at t−.

For each i and j in the grid, we write P (t+) = j̃∆P, P (t−) = j∆P ,

where j is some integer index. In terms of j̃ and j, the crediting

mechanism across a sampling date is modeled by

j̃ =
j∆P +max{rG(j∆P ), α[(i∆A− j∆P )− γ(j∆P )]}

∆P

= j +max
{
rGj, α

[(
i
∆A

∆P
− j

)
− γj

]}
. (i)

Remark Though there is an upward jump in P , the contract value

remains continuous across the date of interest crediting.
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• We solve for the contract value at finite number of preset values of

P , P = j∆P , j = j0, j0 + 1, . . . , J, with P0 = j0∆P and P = J∆P .

The updated P would not fall onto one of these preset values.

Linear interpolation between neighboring contract values is then

applied.

• Denote the integer part of j̃ as j. If j + 1 ≤ J, compute V i,jt−1,0 by

using the linear interpolation

V
i,j
t−1,0 = V

i,̃j
t,K ≈ [1− (j̃ − j)]V

i,j

t,K + (j̃ − j)V
i,j+1
t,K . (ii)
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Note that Vt and A(t) are continuous and P (t) has a jump across a

sampling date. The “initial” values V
i,j
t−1,0 at the zeroth time step,

k = 0, in the interval (t− 1, t) is given by

[1− (j̃ − j)]V
i,j

t,K + (j̃ − j)V
i,j+1
t,K .
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At time t−, suppose P (t−) assumes the upper bound value J∆P . Sub-

sequently, P (t+) jumps to j̃∆P > J∆P . The updated value of P falls

outside the preset upper bound of P . If j+1 > J and hence lies outside

the grid, then (ii) cannot be used. Instead, since for large values of

P , the contract value V is approximately linear in P , we can apply the

linear extrapolation as follows:

V
i,J
t−1,0 = V

i,J
t,K + (j̃ − J)

(
V
i,J
t,K − V

i,J−1
t,K

)
. (iii)

Extrapolation beyond the computational domain
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Summary

• P (s) stays at the same constant value as P (t+), for t < s < t+1.

• For a given fixed value of P , solve the Black Scholes equation

numerically between t+ and (t+1)−.

• V
i,̃j
t,K = V

i,j
t−1,0 across the sampling date t.

Note that i stays at the same value since the underlying asset price

is continuous across the sampling date t. However, j jumps to j̃

across t.
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Numerical results and pricing behavior

A large number of experiments have resulted in the choices of values

shown in the table below in the numerical implementation.

Choice of parameter values

A 1000

P 2000

I 800

J 200

K 100

• Setting A and P involves a tradeoff between covering as much

probability mass as possible and avoiding to enlarge the solution

region unnecessarily. With A0 = P0 = 100, setting P = 2000 and

A = 1000 should be sufficient.

• It is relatively more important to operate with a fine grid in the

A-direction as A is the uncertainty generating factor in the model.
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Convergence and computation time

Basic set of parameter values: A0 = P0 = 100, r = 5%, rG = 4%, T =

20 years, α = 0.3, γ = 0.1, σ = 15%,K = 100. The numerical results

of the participating policy with surrender right are listed below:

(I, J)

(100,100) (200,200) (400,400) (800,800) (1600,1600)

Contract value 113.45 111.96 111.36 111.30 111.28

Relative error 1.95% 0.62% 0.08% 0.02% 0.00%

CPU time (sec.) 11 48 202 828 3858

The number of time steps per year K has been fixed at 100. The

numerical tests show that gain in accuracy from further increasing K

is negligible.

Operation counts (CPU time)

Doubling I and J increases CPU time roughly by four-folds.
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value of bond element (decreases with increasing maturity since

rG < r)

value of the European contract value of the American contract

• Value of sum of option elements = value of contract − value of

bond element. Value of each option element increases as the time

to maturity increases.
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The guaranteed interest rate is raised from being smaller than the

riskless interest rate r to being larger than r [rG = 0.04, r = 0.03].

• The surrender option has virtually no value since the guaranteed

interest rate is higher than the riskless interest rate. There is very

little incentive to terminate the contract prematurely.

• The bonus option has dropped in value (lower value is attached to

the equity participation) and the contract value mainly consists of

the bond element.
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Effect on contract value with varying values of riskless rate r.

• A higher interest rate r implies higher values of the bonus and

surrender options. The value of the bond component declines.
• There is a critical interest rate above which the American contracts

should be immediately exercised (as evidenced by values of Amer-

ican contracts staying the same when r is above some threshold

value). At sufficiently high r, the funds are better reinvested in

riskless bonds to realize the higher return.
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More discussion on the pricing behavior

• Raising rG implies smaller values of the bonus and surrender op-

tions.

• An increase in T yields a larger bonus option value.

• σ = 0 is not sufficient to make the values of the option elements

equal zero.

(i) When r < rG and σ = 0, the issuer will never be able to build

reserves for bonus payments and the contracts are in effect above

par riskless bonds.

(ii) When rG < r and σ = 0, the company will surely be able to

build bonus reserves and be forced to distribute part of this in the

form of bonus.
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4.2 Convertible bonds

Combination of bonds and equities – bond plus conversion option

• Bondholder has the right to convert the bond into common shares

of issuer’s company at some contractual price (conversion number

may change over time with dependence on the realization of the

stock price path).

• Issuer’s call and holder’s put

– Hard call and Parisian soft call provision; notice period require-

ment
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Holder’s perspective: take advantage of the future po-

tential growth of issuer’s company

Issuer’s perspective: raise capital at a lower cost by the

provision of conversion privilege to

the bondholders

convertible

bond price
conversion

premium

conversion value

straight bond value 

stock price

• High default risk when the stock price level is very low.

• Conversion premium = value above the bond floor.
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The conversion option is similar to a call option on the underlying

stock, where the call’s strike price equals the bond floor value.

Equity perspective on convertibles

• To take advantage of the upside potential growth of the underlying

stock (participation into equity).

• Swapping the variable stock dividends in return for fixed coupon

payments until the earlier of the maturity date and conversion date.

Fixed income perspective on convertibles

• Provides the “bond floor” value.

• Conversion option that allows the investor to exchange the straight

bond for a fixed number of shares.
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Call terms

Issuer has the right to call back the bond at a pre-specified call price

prior to final maturity, usually with a notice period requirement. Upon

call, the holder can either convert the bond or redeem at the call price.

Issuer’s perspective on the call right

• To have the flexibility to call if they think they can refinance the

debt more cheaply at a lower interest rate.

• To force bondholders to convert debt into equity, which can reduce

the company’s debt level and result in a beneficial effect on the

balance sheet. The issuer has the flexibility to shift debt into equity

to reduce the leverage of the firm. It is used as a tool by the issuer

for possible future equity financing – managing the debt / equity

balance.
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Call protection

Hard (or absolute):

To protect the bond from being called for a certain period of time.

Soft (or provisional):

The issuer is allowed to call only when certain conditions are satisfied.

Say the closing price of the stock has been in excess of 150% of the

conversion price on any 20 trading days within 30 consecutive days.

Role of the call protection

To preserve the value of the equity option for the bondholders. The

premium of the conversion right has been paid upfront at the time of

purchase. While waiting for the stock price to increase, convertibles

typically provide more income than the stock. Without the call pro-

tection, this income stream could be called away too soon. Hard call

protection of a longer time period is more desirable for the investors.
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Put feature

Allows the holder to sell back the bond to the issuer in return for a

fixed sum. Usually, the put right lasts for a much shorter time period

than the life of the bond.

• The holder is compensated for the lesser amount of coupons re-

ceived in case the equity portion of the convertible has a low value.

• It helps immunize the holder against the risk of rising interest rates

by effectively reducing the year to maturity. With a smaller value of

duration*, the convertible price becomes less sensitive to interest

rates.

⋆ Duration D is the weighted average of the times of cash flow

stream, weighted according to the present value of the cash flow

amount. The percentage change in bond price P is proportional

to negative yield change, where the proportional constant is the

duration:
∆P

P
≈ −D× yield change.
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Convertible bond issued by the Bank of East Asia

US$250,000,000

2.00 percent Convertible Bonds due 2003

Issue date July 19, 1996

Issue price 100 percent of the principal amount of the Bonds,

plus accrued interest, if any, from July 19, 1996 (in

denominations of US$1,000 each)

Conversion period From and including September 19, 1996 up to and

including July 7, 2003
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Conversion feature

Conversion price HK$31.40 per Share and with a fixed rate of ex-

change on conversion of HK$7.7405 = US$1.00.

Dilution protection

clause

The Conversion Price will be subject to adjustment

for, among other things, subdivision or consolida-

tion of the Shares, bonus issues, right issues and

other dilutive events.
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Put feature

Redemption at the

option of the bond-

holders

On July 19, 2001, the Bonds may be redeemed

at the option of the Bondholders in US dollars at

the redemption price equal to 127.25 percent of

the principal amount of the Bonds, together with

accrued interest.

The investors are protected to have 27.25% returns on the bond in-

vestment upon early redemption by the holder.
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Call feature

Redemption at the

option of the issuer

On or after July 19, 1998, the Issuer may redeem

the Bonds at any time in whole or in part at the

principal amount of each Bond, together with ac-

crued interest, if for each of 30 consecutive Trad-

ing Days, the last of which Trading Days is not less

than five nor more than 30 days prior to the day

upon which the notice of redemption is first pub-

lished, the closing price of the Shares as quoted on

the Hong Kong Stock Exchange shall have at least

130 percent of the Conversion Price in effect on

such Trading Day.

x x x x x x x x

last of the 30

consecutive days

day of

notice

30 5                 0
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Soft call protection – Parisian feature

The closing price has to be above 130 percent of the conversion price

on consecutive 30 trading days.

• On the date of issuance of the notice of redemption (taken as day

0), the Issuer looks back 5 to 30 days (corresponds to [−30,−5]

time interval) to check whether the history of the stock price path

satisfies the Parisian constraint. That is, the last of the 30 trading

days (with closing price above 130% of the conversion price) falls

in [−30,−5] time interval.

• From Issuer’s perspective, when the Parisian constraint has been

satisfied, the Issuer has 5 to 30 days to decide on redemption or

not.
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Modeling considerations in convertible bond pricing models

Reference “The valuation of convertible bonds with credit risk,” by

E. Ayache, P.A. Forsyth and K.R. Vetzal (2003) Working

paper of University of Waterloo.

Choices of the underlying state variables

• Firm value versus stock price

Earliest works use the value of the issuing firm as the underlying

state variable. From corporate finance perspective, the firm value

model can incorporate the balance sheet information on the firm’s

liabilities.

The firm’s debt and equity are claims contingent on the firm value,

and options on its debt and equity become compound options on

this variable.

43



Advantage:

Dilution effect on equity upon conversion of the bond into shares can

be modeled directly.

Disadvantage:

Since the value of the firm is not a traded asset, parameter estimation

is difficult. Any other liabilities of the firm that are more senior than

the convertible must be simultaneously valued.

• Most pricing models use the issuing firm’s stock price.

– Since stock is a traded asset, so parameter estimation is easy.

Also, the use of risk neutral valuation principle is more convinc-

ing. Hedging ratios can be computed easily.

– There is no need to estimate the values of other more senior

claims.
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How about stochastic riskfree interest rate?

• Addition of the stochastic interest rate as an additional state vari-

able increases the dimensionality of the pricing model.

• Practitioners often regard a convertible bond primarily as an equi-

ty instrument, where the main risk factor is the stock price. The

random nature of the riskfree interest rate is of second order im-

portance as the role of interest rate serves as the discount rate but

not in the payoff structure.
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Brennan and Schwartz (1980) conclude that “for a reasonable range

of interest rates the errors from the non-stochastic interest rate model

are likely to be slight.”

Why does interest rate fluctuation have lower impact on convertible

bond value? When interest rate increases, the conversion option in-

creases in value due to the drop in the bond floor value. Here, the

bond floor can be visualized as the strike price of the conversion op-

tion (the underlying call option increases in value when the strike price

decreases). The drop in value of the bond component is compensated

by the increase in value of the conversion option.

• Quite often, the interest rate r and stock price S are negatively

correlated. When the correlation coefficient ρSr is negative, an

increase in r leads to a drop in the bond component and a drop in

S (lowering of the equity component). Hence, high negative value

of correlation may lead to higher sensitivity of the convertible bond

value to interest rate fluctuation.
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Other considerations in modeling

• Modeling of the default risk of the issuer

– arrival of the default event

Structural approach versus reduced form approach (Poisson ar-

rival with specified hazard rate)

– loss upon default

Under the stock price model, what would be the drop of the

stock price upon default?

• Issuer’s call provision

– soft call requirement, trigger prices

– call notice period

• Dilution upon holders’ conversion – more shares are issued

• Holder’s put right
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When τ = 0.25 and τ = 10, the bond price curves intersect the con-

version value line (shown as dotted-dashed line) and the cap value

curve c̃n(S, τn) (shown as dashed line), respectively. Here, τn is the

length of the notice period. When τ = 1.5, the price curve ends at the

intersection point of the conversion value line and the cap value curve.
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Properties of the solution curves for the convertible bond price

1. The solution curves are bounded between the upper obstacle func-

tion (call price which has stock price dependence due to the notice

period requirement) and the conversion value (given by conversion

number × stock price).

2. At τ = 10, optimal conversion may be delayed since it is far from

expiry. The convertible bond value may shoot above the call price

if not called. In this case, the convertible bond may be terminated

prematurely by issuer’s call at sufficiently high value of stock price

(provided that the hard call and soft call provisions are satisfied).

3. At τ = 0.25, bondholder’s optimal conversion may occur when the

stock price reaches some threshold value. Beyond the threshold

stock price, the convertible bond value would fall below the con-

version value if unconverted.
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Credit spread: dependence on various aspects of default risks

The credit spread of the bond component should reflect the combina-

tion of default probability and loss upon default. The proper modeling

of default must include

(i) probability of arrival of default

(ii) recovery rate upon default.

Later, we show that the risky discount rate is r+(1−R)h, where h is

the hazard rate and R is the recovery rate. The credit spread equals

zero when either R = 1 or h = 0.
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Game between holder and issuer: conversion and calling

conv = value of stocks received if conversion takes place

call = call price

roll = value given by the rollback (neither converted nor recalled)

Six possible permutations on their relative values

(i) conv < call

conv < call < roll

conv < roll < call

roll < conv < call

(ii) call < conv (this occurs when the stock price is very high, so

convertible value = conv for sure)

call < conv < roll

call < roll < conv

roll < call < conv
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What would happen when call < conv?

• This occurs when the stock price level is sufficiently high, that is,

the conversion option is sufficiently deep-in-the-money. Since the

convertible bond value is always equal or above conv, so the issuer

initiates calling immediately.

• Upon calling, the holder chooses to convert into stocks since conv >

call.

• This represents a straightforward case since convertible value =

conv for sure, and there is no need to perform any numerical cal-

culations to find the convertible bond value.

Optimal premature conversion into shares would strike the tradeoff

between the stock dividends and the coupons.
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Dynamic programming procedures

First choice

max(min(roll, call), conv).

At each node, the optimal strategy of the holder is exemplified by

taking the maximum of min(roll, call) and conv.

• The maximum reflects the conversion right, which persists with or

without recall by the issuer.

• The bond value before potential conversion is seen to be min(roll, call)

since the issuer would initiate calling when the roll value shoots be-

yond the call price.
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Second choice

min(max(roll, conv),max(call, conv))

• When the issuer does not call, max(roll, conv) represents the opti-

mal strategy of the holder.

• Upon recall, the holder chooses to accept the call price or convert

into shares. This can be represented by max(call, conv).

The issuer chooses to recall or to abstain from recalling in order to

minimize the option value.

These two procedures can be shown to be mathematically equivalent

if we apply the distributive rule of sequencing the order on the “max”

and “min” operations.
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Third choice

One should rule out the trivial scenario where call < conv. Given that

conv < call, the second dynamic programmic procedure can be reduced

to

min(call,max(conv, roll)).

Under the scenario conv < call, the holder has the optionality to convert

into shares but the convertible bond value is always capped by call.

The 3 choices of dynamic programming procedures give the same set

of outcomes

outcome

conv < call < roll call

conv < roll < call roll

roll < conv < call conv
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Summary

Recall that when call price < conversion value, then the convertible

bond value is simply given by the conversion value (straightforward

case). We are interested to find the price function within the range of

stock prices that observe

call price > conversion value.

That is, we are interested to compute the price function whose value

is capped by “call price”. Hence, the dynamic programming procedure

min(call,max(conv, roll)

makes good sense.

• The convertible bond value lies between the “call price” (upper

obstacle function) and conversion value (lower obstacle function).

• The call price has “stock price” dependence if we include the con-

sideration of the notice period requirement.
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Delayed call phenomenon

Empirical studies show that most convertible bonds are recalled by

issuers only when the stock price is sufficiently well above the “theo-

retical” critical recall price. In this case, the holders are almost sure

to make the “so called” forced conversion into shares. This is consis-

tent with one of the corporate finance considerations – delayed equity

financing.

• How to incorporate this behavior into the pricing model?

• Optimality of recall may not simply be defined by the rule: avoid

convertible bond value to shoot above the call price if not recalled.

Corporate treasurer may have to judge the impact on the stock

price upon the announcement of recall.
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Pricing model of a convertible bond with credit risk

• We adopt the one-factor contingent claims model with stock price

as the underlying state variable.

• We assume constant interest rate and model the arrival of default

by a Poisson arrival process with constant hazard rate.

• The stock price St under the risk neutral valuation framework is

assumed to follow the Geometric Brownian motion

dSt

St
= (r − q)dt+ σS dZt,

where r is the riskless interest rate, q and σS are the constant

dividend yield and volatility of the stock price, respectively, and Zt
is the standard Brownian motion.
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Conditional on no prior default up to time t, the probability of default

within the time period (t, t+dt) is h dt, where h is the constant hazard

rate of arrival of default.

Assume that upon default the bondholder receives the fraction R (re-

covery rate) of the bond value and the stock price drops to zero in-

stantaneously, the corresponding governing equation for the convertible

bond price function V (S, t) is given by

∂V

∂t
+
σ2

2
S2∂

2V

∂S2
+ (r − q+ h)S

∂V

∂S
− [r+ (1−R)h]V + c(t) = 0,

0 < S < S∗(τ),0 < t < T.
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Intuitive observations on the governing equation

1. With probability h dt over the instantaneous time interval (t, t+dt),

the stock price drops to zero due to default. Under expectation

calculations, we may consider h as the expected negative yield.

Therefore, the drift rate of the stock price process is modified to

r − q+ h.

2. The convertible bond value is discounted at the risky rate r+(1−
R)h. Here, (1− R)h is commonly recognized as the credit spread.

Investors demand the rate of return to be higher than the riskfree

interest rate by a certain spread due to potential loss upon default.

Both r and (1 − R)h represent the rate of decrease in the bond

value over time.
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3. The bond price function satisfies the governing equation only in the

continuation region = {(S, t) : 0 < S < S∗(t),0 < t < T}, where the

bond remains alive. Here, S∗(t) denotes the critical stock price at

which the bond ceases to exist either due to either early conversion

or calling, and T is the bond maturity date.

4. The source term c(t) as the coupon rate arises from the coupon

payment stream. The external cash payout rate may be represented

by

c(t) =
N∑
i=1

ciδ(t− ti),

where ci is the coupon payment paid on the discrete coupon pay-

ment dates ti, i = 1,2, · · · , N . The Dirac function ciδ(t − ti) indi-

cates the discrete nature of a coupon payment. The coupon rate

becomes infinite at ti when a discrete coupon amount is collected

across ti.
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Derivation of the governing equation

As usual, consider the portfolio Π = −V + ∆S, where ∆ units of the

underlying stock are held to hedge against the short position of one

unit of the convertible bond. Using Ito’s lemma and considering the

portfolio value under no-default and default, the expectation of dΠ

subject to default risk is given by

E[dΠ] = (1− h dt)

[
−
(
∂V

∂t
+
σ2

2
S2∂

2V

∂S2

)
dt−

∂V

∂S
dS

+ ∆ dS +∆qS dt− c dt

]
− h dt[−(1−R)V +∆S].

Here, h dt is the probability of default in the next differential time

instant dt. The loss in portfolio value upon default is ∆S+(1−R)(−V )

(note that the portfolio shorts one unit of V ). The expected change

in value due to default is −h dt times the above loss amount. Now,

we take ∆ = ∂V
∂S so that the stochastic terms involving dS vanish.

Assuming that the default risk is firm-specific, there will be no expected

excess return for bearing this risk. Hence, the expected rate of return

of the portfolio is the same as the riskfree interest rate. That is,

E[dΠ] = rΠ dt.
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Collecting the terms, we obtain

−
(
∂V

∂t
+
σ2

2
S2∂

2V

∂S2

)
+ qS

∂V

∂S
− hS

∂V

∂S
+ h(1−R)V − c(t)

= r

(
−V + S

∂V

∂S

)
so that

∂V

∂t
+
σ2

2
S2∂

2V

∂S2
+ (r − q+ h)S

∂V

∂S
− [r+ (1−R)h]V + c(t) = 0.

For the source term arising from the discrete coupons, we equate the

total coupon collected over the time interval (0, t) to obtain

∫ t
0
c(u) du =

Nt∑
i=1

ciH(t− ti), where H(t− ti) =

1 t ≥ ti
0 t < ti

.

Here, Nt is the number of discrete coupons received within (0, t). By

differentiating with respect to t on both sides, we have

c(t) =
Nt∑
i=1

ciδ(t− ti).
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Auxiliary conditions

(i) Terminal payoff on the maturity date T

The terminal value of V is given by

V (S, T ) = (cN + P )1{P+cN≥nS} + nS1{P+cN<nS},

where 1A is the indicator function for the event A. Here, P denotes

the par value of the bond, cN is the last coupon payment and n is

the number of units of stock to be exchanged for the bond upon

conversion. The last coupon is not paid if the bondholder chooses

to convert at maturity.
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(ii) Conversion policy

Since the bondholders have the right to convert the bond into n

units of stock at any time, the convertible bond always stays equal

or above the conversion value. Upon voluntary conversion, the

value of the bond equals the conversion value identically. We then

have

V (S, t) > nS when the convertible bond remains alive,

V (S, t) = nS when the convertible bond is converted,

where t is the optimal time of conversion chosen by the bondhold-

ers.

• The screw clause stipulates that the accrued interest will not be

paid upon voluntary conversion. This clause may inhibit bondhold-

ers to convert optimally when a coupon date is approaching. More

precisely, optimal conversion occurs only at time instants right after

coupon payment dates.
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(iii) Calling policy

• The convertible bond indenture usually contains the hard call

provision where the bond cannot be called for redemption or

conversion by the bond issuer in the early life of the bond. This

serves as a protection for the bondholders so that the privilege

of awaiting growth of the equity component will not be called

away too soon.

• Let [Tc, T ] denote the callable period, that is, the bond cannot

be called during the earlier part of the bond life [0, Tc).

• Upon calling, the bondholders can decide whether to redeem the

bond for cash or convert into shares at the end of the notice

period of tn days.
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Notice period requirement

• Let t̂ denote the date of call so that t̂+tn is the conversion decision

date for the bondholders.

• The bondholders essentially replace the original bond at time t̂ by

a new derivative that expires at the future time t̂ + tn and with

terminal payoff max(nS,K + ĉ) = K + ĉ + max(nS − (K + ĉ),0),

where ĉ is the accrued interest from the last coupon date to the

time instant t̂ + tn, and K is the pre-specified call price of the

convertible bond.
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We write Vnew(S, t;K, tn) as the value of this new derivative derived

from the notice period requirement. When there is no soft call re-

quirement (a constraint that is related to stock price movement over

a short period prior to calling), the convertible bond value should be

capped by Vnew. The convertible bond should be called once its value

reaches Vnew(S, t;K, tn).

V (S, t) ≤ Vnew(S, t;K, tn) within the callable period,

V (S, t̂) = Vnew(S, t̂;K, tn) at the calling moment.

When there is a soft call requirement, it is possible that V (S, t) stays

above Vnew(S, t;K, tn).
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(iv) Coupon payments

By no arbitrage argument, there is a drop in bond value of amount

that equals the coupon payment ci across a coupon payment date

ti, i = 1,2, · · · , N . We have

V (S, t+i ) = V (S, t−i ) − ci, i = 1,2, · · · , N.

Remark

The interaction of the optimal conversion and calling policies deter-

mines the early termination of the convertible bond. This leads to a

game option model in which one has to solve for a set of interactive

optimal stopping decisions made by the two counterparties. The syn-

ergy of these two features can be treated effectively via a dynamic

programming procedure in the numerical schemes.
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Finite difference algorithms

We adopt the log-transformed variable x = lnS, and define time to

expiry τ = T − t. Let V mj denote the numerical approximation of

V (x, τ) at the grid point x = j∆x and τ = m∆t, where ∆x and ∆t are

the respective stepwidth and time step.

The explicit finite difference scheme takes the following basic form

V m+1
j = puV

m
j+1 + pmV

m
j + pdV

m
j−1 − [r+ (1−R)h]V mj + ci1{Ei}.

The probabilities of upward jump, zero jump and downward jump of

the logarithm of the stock price, x = lnS, are given by

pu =
1

2λ2
+

(
r − q+ h− σ2S

2

)√
∆t

2λσS
,

pm = 1−
1

λ2
, pd =

1

2λ2
−

(
r − q+ h− σ2S

2

)√
∆t

2λσS
,

respectively, and ∆x = λσS
√
∆t for some parameter λ.
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Here, Ei denotes the event that the coupon payment ci is paid at ti.

When the payment date ti is bracketed between two successive time

levels m∆t and (m+1)∆t, the bond values V m+1
j are increased by an

extra amount ci due to the discrete coupon payment.

Upon optimal conversion, the holder can convert into M shares of the

stock. The “initial” values V 0
j at time level n = 0, which correspond

to the terminal payoff values of the bond, are given by

V 0
j =


cN + P if xj ≤ ln

cN + P

M

Mexj otherwise
.
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Interaction of the callable and convertible features

Apply the full dynamic programming procedure

min(max(Vcont, Vconv),max(Vcall, Vconv))

at those nodes where holder’s conversion and issuer’s calling are al-

lowed.

When the calling right is non-operative (say, during the period under

the hard call constraint) where the conversion right exists only, the

full dynamic programming procedure reduces to the partial dynamic

programming procedure

V nj = max(Vcont, Vconv).
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Soft call requirement

To incorporate the soft call requirement, we model the associated

Parisian feature using the forward shooting grid approach, where an

extra dimension is added to capture the excursion of the stock price

beyond some predetermined trigger level B. With the inclusion of

the path dependence of the stock price associated with the soft call

requirement, the finite difference scheme is modified as follows:

V m+1
j,k = puV

m
j+1,g(k,j+1) + pmV

m
j,g(k,j) + pdV

m
j−1,g(k,j−1)

−[r+ (1−R)h]V mj,g(k,j) + ci1{Ei}.
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Cumulative Parisian feature to activate calling

The grid evolution function assumes the form

gcum(k, j) = k+1{xj>lnB}

for cumulative counting of number of days that the stock price has

been staying above the level B.

Suppose the condition of M0 cumulative days of breaching is required

in order to activate the calling right, the full dynamic programming

procedure with issuer’s recall right is applied only when the condition

gcum ≥M0 has been satisfied.
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Anatomy of the embedded features

Using the one-factor defaultable convertible bond pricing model, we

explore the dependence of the convertible bond value on the coupon

payment streams, conversion ratio and soft call constraint.

We examine the interaction of the callable and conversion features

and show how the notice period requirement affects the critical stock

price at which the convertible bond is terminated prematurely either

by issuer’s optimal calling or holder’s voluntary conversion.
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par value 100

annualized volatility 20%

dividend yield per year 1%

maturity date 5 years

coupon rate 2% per annum, paid semi-annually

conversion ratio 1

call period starting 1.0 years from now till maturity

converison period throughout the life

call price 140

riskless interest rate flat at 5% per annum

hazard rate 0.02

recovery rate 0.8
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Plot of convertible bond value against time at different fixed values

of stock price (dotted curve corresponds to S = 70, solid curve corre-

sponds to S = 100 and dashed curve corresponds to S = 120).
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At low stock price level (S = 70)

• The convertible bond behaves like a conventional coupon bond. Its

value increases with time since the riskless interest rate is higher

than the coupon rate (see the lower dotted curve). There is a drop

in value across a coupon payment date.

• At maturity, the bond value matches the total value of par plus the

last coupon.

At intermediate stock price level (S = 100)

• At the stock price level S = 100 (same as conversion price), the

convertible bond drops in value within the last coupon period (see

the middle solid curve).

• The more noticeable drop in value is attributed primarily to the

higher rate of decrease in the value of the conversion option at

times close to maturity.
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At high stock price level (S = 120)

• At a higher stock price level S = 120 (20% above the conver-

sion price), the bond value shows a trend of slight decrease with

increasing time (see the upper dashed curve). The conversion op-

tion decreases in value with increasing time at a rate faster than

the rate of increase in value of the bond component.

• The bond value stays almost at constant value within the last

coupon period. This is because the value of a deep-in-the-money

convertible bond is dominated by its equity component since the

bond is almost sure to be converted into shares at maturity, so the

time dependent effect of accrued interest of the bond component

is negligible.
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Price sensitivity with respect to conversion number and stock price level

stock price conversion number

0.7 0.8 0.9 1.0 1.1 1.2 1.3

50 85.30 85.67 86.29 87.19 88.41 89.97 91.87

100 94.10 99.47 105.90 113.18 121.12 129.56 138.37

120 101.93 110.18 119.49 129.56 140.16 151.14 162.37

130 106.59 116.29 126.98 138.37 150.21 162.37 174.73

140 111.67 122.77 134.81 147.45 160.48 173.77 187.23

150 117.08 129.56 142.88 156.73 170.91 185.30 199.81

The entries in the table are convertible bond values corresponding to

different conversion numbers and stock price levels.
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• At a low stock price level, the bond value is not quite sensitive to

an increase in conversion number.

• The bond value is less sensitive to an increase in stock price when

the conversion number is low.

• Both phenomena are due to the low value of the equity component

of the convertible bond. The data also reveal that the delta of the

bond value increases with higher conversion number, due to an

increased weight in the equity component.
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Parisian soft call provision

• The current stock price is taken to be 130 and the annualized divi-

dend yield to be 1%. We specify that the issuer can initiate the call

only if the stock price stays above the trigger price consecutively

or cumulatively for 30 days.

• For the purpose of comparison, the convertible bond value is found

to be equal to 144.17 if there is no call feature (infinite trigger

price) and equal to 135.71 if there is no soft protection requirement

(zero trigger price). These two values serve as the respective upper

and lower bound for the value of the bond subject to the soft call

requirement.
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Price sensitivity with respect to the Parisian soft call provision

trigger price consecutive counting cumulative counting

130 136.01 135.83

140 136.64 136.08

150 137.89 137.13

160 138.93 138.32

180 140.65 140.30

200 141.81 141.60

The entries in the right two columns are values of convertible bond

subject to varying levels of trigger price and under the rules of con-

secutive counting and cumulative counting of the number of days of

breaching the trigger price.
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1. The bond value increases with an increasing trigger price. This is

obvious since it becomes harder for the issuer to initiate the call

when calling is constrained by a higher trigger price.

2. The bond value becomes higher when the soft call requirement is

more stringent. This is because bondholders have better protection

against calling by issuer. Also, this explains why the convertible

bond has a higher value under the rule of consecutive counting

when compared with that under cumulative counting.
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Two-year convertible, coupons paid semi-annually
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Assuming that the issuer cannot call, the curves show the plot of the

critical conversion price S∗
conv against time. Within the last coupon

payment period, S∗
conv decreases with time. At times right before a

coupon date, S∗
conv tends to infinite value.
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Delayed call phenomenon

• In the earlier theoretical works on analyzing the optimal calling poli-

cies, Ingersoll (1977) and Brennan and Schwartz (1977) claimed

that the bond issuer should call the bond whenever the convertible

bond value reaches the call price.

• The notice period requirement may have profound impact on the

critical call price S∗
call since the bondholder receives upon calling

a more valuable short-lived option (whose maturity date coincides

with the ending date of the notice period), rather than the cash

amount that equals the sum of the call price plus accrued interest.

86



X(t) is the critical stock price without the notice period requirement

We examine the impact of the notice period requirement on the the-

oretical critical call price, S∗
call. The time-averaged values of the ratio

S∗
call/X are obtained under varying length of the notice period and

different set of parameter values.
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• The sample calculations reveal that the so called “delayed call

phenomena” may be largely attributed to the under estimation

of the critical call price at which the issuer should call the bond

optimally.

• A large portion of the “amount of call delay” may be eliminated

when more careful contingent claims pricing calculations are per-

formed.

• There may be other rationales from corporate finance perspectives

(say, taxes) which explain why issuers choose to delay their calls.

• In future empirical studies on assessing the amount of call delay due

to corporate finance considerations, the more accurate theoretical

critical stock price should be computed.
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