
MAFS5250 – Computational Methods for Pricing Structured

Products

Topic 5 - Monte Carlo simulation

5.1 General formulation of the Monte Carlo procedure

• Expected value and variance of the estimate

• Multistate extension – correlated random samples

• Computational efficiency

• Calculating the Greeks

5.2 Variance reduction techniques

• Antithetic variates method

• Control variate method

• Importance sampling

5.3 Valuation of American options

• Method of parameterization of the early exercise boundary

• Linear regression method via basis functions

1



5.1 General formulation of the Monte Carlo procedure

A wide class of European style derivative pricing problems lead to the

evaluation of the following expectation functional

Et[f(Z(T ; t, z))].

• The stochastic process Z describes the price evolution of one or

more underlying financial variables such as asset prices and interest

rates, under the respective risk neutral probability distribution.

• The process Z has the initial value z at time t, and the function f

specifies the value of the derivative at the expiration time T .

• The Monte Carlo method is basically a numerical procedure for

estimating the expected value of a random variable, and so it leads

itself naturally to derivative pricing problem represented as expec-

tations.
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Simulation procedure

The simulation procedure involves generating random variables with a

given probability density and using the law of large numbers to take

the average of these values as an estimate of the expected value of

the random variable.

Consider a Brownian motion with drift rate µ and volatility σ, where

dxt = µdt+ σ dBt.

Here, Bt denotes the standard Brownian motion with zero drift rate

and unit variance rate. The Euler discretized scheme is given by

xt+∆t = xt + µ∆t+ σ(Bt+∆t −Bt).

Provided that σ is a constant, the Euler scheme provides O(∆t) ap-

proximation to the stochastic differential equation for xt (see Appendix

A3). The random increment Bt+∆t − Bt has mean zero and variance

∆t, so it can be simulated by random samples of
√
∆tϵ, where ϵ is a

sample from a standard normal distribution.
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In the context of derivative pricing, the Monte Carlo procedure involves

the following steps.

(i) Simulate sample paths of the underlying state variables in the

derivative model such as asset prices and interest rates over the

life of the derivative, according to the risk neutral probability dis-

tributions.

(ii) For each simulated sample path, evaluate the discounted cash flows

of the derivative.

(iii) Take the sample average of the discounted functional of the cash

flows over all sample paths.
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Simulated calculation of a European call option

The numerical procedure requires the computation of the expected

payoff of the call option at expiry, Et[max(ST − X,0)], based on the

information available at time t (which is St in the current context) and

discounted to the present value at time t, namely,

e−r(T−t)Et[max(ST −X,0)].

Assuming that the asset price St follows the Geometric Brownian mo-

tion, where the price dynamics under the risk neutral measure is given

by

dSt

St
= (r − q) dt+ σ dBt

or

d lnSt =

(
r − q −

σ2

2

)
dt+ σ dBt.

Here, σ is the volatility, r is the riskless interest rate, and q is the

dividend yield.
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Over time increment ∆t, the Euler approximation scheme gives

ln
St+∆t

St
= lnSt+∆t − lnSt =

(
r − q −

σ2

2

)
∆t+ σϵ

√
∆t

so that the random asset price ratio is related to the standard normal

random variable ϵ via

St+△t

St
= e

(
r−q−σ2

2

)
∆t+σϵ

√
∆t

.

Note that the price ratio
ST

St
can be decomposed as the product of

price ratios over successive time steps as follows:

ST

St
=

St+∆t

St

St+2∆t

St+∆t
· · ·

St+N∆t

St+(N−1)∆t
,

where T = N∆t.
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• Suppose there are N time steps between the current time t and

expiration time T , where ∆t = (T −t)/N . The numerical procedure

is repeated N times to simulate the price path from St to ST =

St+N△t.

• The ith simulated call value ci corresponding to the ith simulated

terminal asset price S
(i)
T is then computed using the discounted

expectation approach under the risk neutral measure

ci = e−r(T−t)max(S(i)
T −X,0)

= e−r(T−t)max

Ste

(
r−q−σ2

2

)
(T−t)+σ

√
∆t
∑N

j=1 ϵ
(i)
j −X,0

 .

• After repeating the above simulation for a sufficiently large num-

ber of runs, the expected call value is obtained by computing the

sample average of the simulated call value found in the sample

simulation.
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Monte Carlo convergence goes as 1/
√
M

Suppose we have M simulations {c1, c2, . . . , cM} of the call value, where

ci’s represent independent and identically distributed random variables.

By virtue of the law of large numbers, the sample mean c, tends to

the “true” price µ of the call option when the number of simulations

is very large. Note that E[ci] = µ. The population variance

var(ci) = σ2

comes from discretization errors. Different choices of simulation algo-

rithms (like the choice of the Euler scheme or Milstein scheme) lead

to different discretization errors, hence different population variances.

This error is caused by simulation of continuous time processes by

discrete time processes.

We do not know µ nor σ2 but we can certainly estimate µ and σ2 using

a suitably chosen statistic, like sample mean and sample variance.
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The sample mean c =
1

M

M∑
i=1

ci as an estimator of µ is unbiased since

the difference between the expected value of the estimator c and the

true value µ is seen to be zero, as shown by

E[c] =
1

M

M∑
i=1

E[ci] =
1

M

M∑
i=1

µ = µ.

Once these random variables {c1, c2, . . . , cM} are actually observed, the

sample mean c is the arithmetic average of these observations.

We can estimate the population variance σ2 using the sample variance

s2V =

∑M
i=1 c

2
i −Mc2

M − 1
.

The term M − 1 in the denominator (Bessel’s correction) ensures that

s2V is an unbiased estimator of σ2. One can understand Bessel’s cor-

rection intuitively from the degrees of freedom in the residuals vector

(not errors since the population mean µ is not known):

(c1 − c, . . . , cM − c),

where c is the sample mean. While there are M independent samples,

there are only M − 1 independent residuals, since they sum to zero.
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Recall that the variance of the sample mean c (unbiased estimator of

µ) and population variance var(ci) are related by

var(c) = var

 1

M

M∑
i=1

ci

 =
1

M2
var

 M∑
i=1

ci

 =
1

M
var(ci) =

1

M
σ2.

We may use
1

M
s2V as our estimate of var(c). The standard error (SE)

of c is taken to be the square root of var(c), where

SE =
1√
M

√√√√∑M
i=1 c

2
i −Mc2

M − 1
.

We expect the SE to decrease as 1/
√
M .

One may use the standard error to construct a confidence interval for

the estimate of the true value µ.
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Central limit theorem

• Let c be an estimator of the call value. For a sufficiently large

value of simulation runs M , the distribution
√
M(c− c)

σ
, c is the true call value,

tends to the standard normal distribution. Here, σ is the population

standard deviation of the simulated values of the call price. In

summary, the statistical error arising from the central limit theorem

decreases at the rate of 1/
√
M .

• The confidence limits of estimation can be reduced by increasing

the number of simulation runs M , though the reduction factor is
1√
M

. For example, in order to reduce the standard error by a factor

of
1

10
, we need to increase the number of simulation runs by 100

times.
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Sample calculations

S = 100, σ = 0.2, r = 0.06, q = 0.03, N = number of time steps =

10,M = number of simulation trials = 100, T = 1 so that

∆t = T/N = 0.1, σ
√
∆t = 0.2

√
0.1 = 0.0632,(

r − q −
σ2

2

)
∆t =

(
0.06− 0.03−

0.04

2

)
0.1 = 0.001,

lnS0 = 4.6052.

Suppose the first sample value of ϵ is −0.0497, then

lnS∆t = 4.6052+ 0.0001+ 0.0632(−0.0497) = 4.6030.

12



• The Figure illustrates a set of M = 100 simulated paths repeatedly

with typical parameter values for stock: S = 100, σ = 20%, r =

6%, q = 3%, T = 1 year, N = 10.

• To obtain an estimate of the call price µ, based on the law of large

numbers, we simply take the discounted average of these simulated

terminal payoff values:

c = e−rT

 1

M

M∑
i=1

max(0, S(i)
T −X)

 .
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• N = 10 time steps and M = 100 simulation runs

15



The sum of the values of CT and the squares of the values of CT are

accumulated:
M∑
j=1

CT,j = 996.488(sum CT) and
M∑
j=1

(CT,j)
2 = 26610.7(sum CT2).

The estimate of the option value Ĉ0 (call value) is then given by

Ĉ0 = 996.488/100× exp(−0.06× 1) = 9.3846.

The standard error of the estimate is given by

SE =

√√√√√ M∑
j=1

(CT,j)
2 −

1

M

 M∑
j=1

CT,j

2

exp(−rT )

√
M − 1

/√
M

=

√
26610.73− 1

100(996.488)
2 exp(−0.06× 1)

√
100− 1

/
10

= 12.2246/10 = 1.22246.

The standard errors is quite sizable compared to the call value. To

reduce the standard error to 0.0122246, we need to choose M =

100× 1002 = 1 million.
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Summary of important properties

1. Its ease to accommodate complicated payoff in an option model.

For example, the terminal payoff of an Asian option depends on

the average of the asset price over certain time interval while that

of a lookback option depends on the extremum value of the asset

price over some period of time. It is quite straightforward to obtain

the average or extremum value in each simulated price path.

2. The demand for a large number of simulation trials in order to

achieve a high level of accuracy. The reduction factor in the stan-

dard error of c is 1/
√
M .

3. No curse of dimensionality

The operation counts in Monte Carlo simulation of n correlated

state variables is linear in n. That is, if n is doubled, the simulation

time is roughly doubled. Unlike finite difference schemes where the

operation counts increase in powers of n, Monte Carlo Simulation

suffers no curse of dimensionality.
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Multistate extension – correlated random samples

• Consider the situation where the payoff from a derivative depends

on n variables θi (1 ≤ i ≤ n). Define σi as the volatility of θi, m̂i as

the expected growth rate of θi in a risk-neutral world, and ρik as

the instantaneous correlation coefficient between θi and θk.

• The life of the derivative is divided into N subintervals of length ∆t.

Under the Geometric Brownian motion assumption, the discrete

version of the process for θi is

θi(t+∆t)− θi(t) = m̂iθi(t)∆t+ σiθi(t)ϵi
√
∆t,

where ϵi is a random sample from a standard normal distribution.

The correlation coefficient between ϵi and ϵk is ρik (1 ≤ i; k ≤ n).
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• One simulation trial involves generating N samples of ϵi (1 ≤ i ≤ n)

from a multivariate standardized normal distribution. These are

substituted into the above equation to produce simulated paths

for each θi, thereby enabling a sample value for the derivative to

be calculated.

• When two correlated samples ϵ1 and ϵ2 from standard normal dis-

tributions are required, independent samples x1 and x2 from a uni-

variate standardized normal distribution are obtained. The required

samples ϵ1 and ϵ2 are then calculated as follows:

ϵ1 = x1, ϵ2 = ρx1 + x2

√
1− ρ2,

where ρ is the coefficient of correlation.

As a verification, we consider

cov(ϵ1, ϵ2) = cov(x1, ρx1 + x2

√
1− ρ2)

= ρcov(x1, x1) +
√
1− ρ2cov(x1, x2) = ρ

since cov(x1, x1) = var(x1) = 1 and cov(x1, x2) = 0.
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Also, we consider

var(ϵ2) = cov(ρx1 + x2

√
1− ρ2, ρx1 + x2

√
1− ρ2)

= ρ2cov(x1, x1) + 2ρ
√
1− ρ2cov(x1, x2) + (1− ρ2)cov(x2, x2)

= ρ2 + (1− ρ2) = 1.

In matrix form, we have(
ϵ1
ϵ2

)
=

(
1 0

ρ
√
1− ρ2

)(
x1
x2

)
,

where (
1 0

ρ
√
1− ρ2

)(
1 0

ρ
√
1− ρ2

)T
=

(
1 ρ
ρ 1

)
.

The transformation matrix

(
1 0

ρ
√
1− ρ2

)
is related to the Cholesky

decomposition of the correlation matrix

(
1 ρ
ρ 1

)
.
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Extension to three samples

The required samples, ϵi (1 ≤ i ≤ 3), are defined as follows:

ϵ1 = a11x1

ϵ2 = a21x1 + a22x2

ϵ3 = a31x1 + a32x2 + a33x3

and so on. The matrix representation is seen to be ϵ1
ϵ2
ϵ3

 =

 a11 0 0
a21 a22 0
a31 a32 a33


 x1

x2
x3

 .

By equating the second order moments, we obtain

ρ21 = cov(ϵ1, ϵ2) = a21a11

ρ31 = cov(ϵ1, ϵ3) = a31a11

ρ32 = cov(ϵ2, ϵ3) = a31a21 + a32a22

1 = var(ϵ1) = a211

1 = var(ϵ2) = a221 + a222

1 = var(ϵ3) = a231 + a232 + a233.
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Alternatively, we consider

AAT =

 a11 0 0
a21 a22 0
a31 a32 0


 a11 a21 a31

0 a22 a32
0 0 a33


=

 a211 a21a11 a31a11
a21a11 a221 + a222 a31a21 + a32a22
a31a11 a31a21 + a32a22 a231 + a232 + a233


=

 1 ρ21 ρ31
ρ21 1 ρ32
ρ31 ρ32 1

 =
∑

.

Sequential steps to determine the coefficients

We choose the coefficients aij so that the correlation and variances are

correct. This can be done step by step as follows. Set a11 = 1; choose

a21 so that a21a11 = ρ21; choose a22 so that a221 + a222 = 1; choose

a31 so that a31a11 = ρ31; choose a32 so that a31a21 + a32a22 = ρ32;

choose a33 so that a231 + a232 + a233 = 1; and so on.
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Theoretical formulation of the Cholesky decomposition

Suppose we can generate n uncorrelated normally distributed vari-

ables x1, x2, · · · , xn with zero mean and unit variance. Write x =

(x1 x2 · · ·xn)T and observe that E[xxT ] = I. Let Σ be the correlation

matrix, which must be symmetric and semi-positive definite. Choose

a matrix A such that

AAT = Σ

where A is lower triangular. This is called the Cholesky decomposition,

which stems from the LU factorization. Due to the symmetric property

of
∑
, we deduce that U = LT .

Define ϵ = Ax, then ϵϵT = AxxTAT so that

E[ϵϵT ] = AE[xxT ]AT = AAT = Σ.

The semi-positive definite property of
∑

is revealed in the Cholesky

decomposition since

yT
∑

y = yTAATy = (ATy)TATy ≥ 0 for all y.
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Cholesky factorization at work

For d× d covariance matrix Σ, we need to solve

Σ = AAT

=


a11
a21 a22
... . . .

ad1 ad2 · · · add




a11 a21 · · · ad1
a22 · · · ad2

. . . ...
add

 .

Simply by multiplying, we observe

a211 = ρ11
a21a11 = ρ21

...
ad1a11 = ρd1

a221 + a222 = ρ22
...

a2d1 + · · ·+ a2dd = ρdd.
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Suppose we write

ρii =
i∑

l=1

a2il, i = 1, . . . , d;

ρij =
j∑

l=1

ailajl, j < i.

Taking a11 = ρ11 = 1, we have ai1 = ρi1. For a given i, we have

computed ajj for j = 1,2, . . . , i− 1. We then calculate

aij =

ρij − j−1∑
l=1

ailajl

 /ajj, j = 2, . . . , i− 1;

and in particular, we calculate

aii = ρii −
i−1∑
l=1

a2il.

The procedure is repeated for i = 2, . . . , d.
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Factor correlation of swap rates and 3-month LIBOR

Historical correlation of LIBOR and swap rates

ρ 3m LIBOR 5-year swap 10-year swap 30-year swap
3m LIBOR 1 0.1638 0.0817 0.0814
5y swap 0.1638 1 0.7118 0.8595
10y swap 0.0817 0.7118 1 0.6816
30y swap 0.0814 0.8595 0.6816 1

We use the Cholesky factorization to obtain

A =


1 0 0 0

0.1638 0.9865 0 0
0.0817 0.7080 0.7015 0
0.0814 0.8595 0.0965 0.4983

 .

The correlated unit variance normal variables ϵ1, . . . , ϵ4 are related to

the standard normal variables x1, . . . , x4 by

ϵ1 = x1

ϵ2 = 0.1638x1 +0.9865x2

ϵ3 = 0.0817x1 +0.7080x2 +0.7015x3

ϵ4 = 0.0814x1 +0.8595x2 +0.0965x3 +0.4983x4.
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Once sufficiently large samples of ϵ1, . . . , ϵ4 are found, we can now com-

pute the sampled correlation of them. Their correlations are displayed

in the table below. Comparing correlations between the historical cor-

relation matrix in the two tables, as expected, they are pretty close

(though the percentage errors are seen to be quite significant for ρ13
and ρ14).

Correlation of standard normal random vectors after Cholesky factorization

ρ ϵ1 ϵ2 ϵ3 ϵ4
ϵ1 1 0.1624 0.0646 0.0724
ϵ2 0.1624 1 0.7087 0.8558
ϵ3 0.0646 0.7087 1 0.6855
ϵ4 0.0724 0.8558 0.6855 1
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Computational efficiency

Suppose WT is the total amount of computational work units available

to generate an estimate of the value of an option V .

Assume that there are two methods for generating the Monte Carlo

estimates for the option value, requiring W1 and W2 units of compu-

tation work respectively for each simulation run. For simplicity, we

assume WT to be divisible by both W1 and W2. For the given amount

of WT units of computer time, the number of simulation runs that

can be performed for method i in WT/Wi, i = 1,2. For example, given

WT = 100,000 while W1 = 50 and W2 = 100, then the number of

simulation runs that can be performed for Method 1 and Method 2 are

2,000 and 1,000, respectively.
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The sample means for estimating V from the two methods using WT

amount of work are, respectively,

W1

WT

WT/W1∑
i=1

V
(1)
i and

W2

WT

WT/W2∑
i=1

V
(2)
i .

Here, V
(1)
i and V

(2)
i denote the estimator of V in the ith simulation

using Methods 1 and 2, respectively, where each V
(1)
i and V

(2)
i has

expectation V and their respective population standard deviations are

σ1 and σ2.

What is the trade off between smaller standard deviation in the estima-

tion and heavier computational work? The most fundamental criterion

is to compare the standard errors achieved at a given total computation

time WT in both methods.
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Their respective standard errors are

σ1

√
W1

WT
and σ2

√
W2

WT
.

The first method would be preferred over the second one provided that

σ21W1 < σ22W2.

Alternatively speaking, a lower variance estimator is preferred only if

the variance ratio σ21/σ
2
2 is less than the work ratio W2/W1, when the

aspect of computational efficiency is taken into account.
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Numerical instability in delta calculations

A naive approach to calculate the delta of an option using Monte Carlo

simulation is to estimate the option value twice. Recall

∆ ≈
V (S + h, t)− V (S − h, t)

2h
, h is small.

This is an estimate of the first order derivative using the centered

difference formula, with an error of O(h2). Such procedure involves

subtracting two close numbers (leading to loss of significant figures)

and division by a small number. For example, consider 0.123789 −
0.123456 = 0.000333, the number of significant figures drops from 6

to 3. In general, estimating the derivative of a function numerically is

unstable.

The standard errors in the estimates of the two option values at S+h

and S − h are magnified when divided by h, resulting in an error of

O

(
1

hM1/2

)
, where M is the total number of simulation runs.
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Calculations of the delta of the Black-Scholes call price

We would like to calculate ∆ = ∂c
∂S0

, where c is the call option price and

S0 is the current stock price. Suppose we generate the first simulated

terminal stock price

ST = S0e

(
r−σ2

2

)
T+σ

√
TZ

,

and a second independent terminal stock price

ST (ε) = (S0 + ε)e

(
r−σ2

2

)
T+σ

√
TZ′

,

with Z and Z′ being independent standard normal random variables.

For each simulated terminal price, the discounted call payoff is

ĉ(S0) = e−rT max (ST −K,0) , ĉ(S0 + ε) = e−rT max(ST (ε)−K,0).

A crude estimate of delta is given by

∆̃ = ε−1 [ĉ(S0 + ε)− ĉ(S0)] .
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• By generating n independent replications of ST and ST (ε), we can

calculate the sample mean of n independent copies of ∆̃. As n →
∞, this sample mean converges to the true finite difference ratio:

ε−1 [c(S0 + ε)− c(S0)] .

• To obtain an accurate estimate of ∆, we should take ε small. Given

that we have generated ST and ST (ε) independently of each other,

we have

var(∆̃) = ε−2 [var(ĉ(S0 + ε)) + var(ĉ(S0))] = O(ε−2),

so var(∆̃) becomes very large if we make ε small.
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Method of common random numbers

Use the same normal random variable Z instead of generating 2 sets

of independent Z. The variance of the new estimate of ∆ is given by

var(∆̂) = ε−2 [var(ĉ(S0)) + var(ĉ(S0 + ε))− 2cov(ĉ(S0), ĉ(S0 + ε))]

since ĉ(S0) and ĉ(S0+ ε) are now no longer independent. Indeed, they

are positively correlated, so ∆̂ has a smaller variance than ∆̃.

More precisely, we observe that

|ĉ(S0 + ε)− ĉ(S0)| ≤ |ST (ε)− ST | = εe

(
r−σ2

2

)
T+σ

√
TZ

;

so that

E
[
|ĉ(S0 + ε)− ĉ(S0)|2

]
= O(ε2).

This gives var
(
ε−1[ĉ(S0 + ε)− ĉ(S0)]

)
= O(1). The variance of ∆̂ re-

mains bounded as ε → 0.
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RMS Errors for Various Delta Estimation Methods

Root mean square error of delta estimates for the call option

using the four methods with various values of ε. The model

parameters are S0 = 100, K = 100, σ = 0.40, r = 0.10 and

T = 0.2. Each entry is computed from 1,000 delta estimates,

each estimate is based on 10,000 replications. The value of

delta is 0.580 for the call option.

At large ε, the discretization error of the forward difference

formula is significant.
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Observations

• The RMS errors incurred in computing delta of a vanilla call using

common Z are mostly independent of ϵ and the choice of difference

method (forward or centered difference).

• However, the RMS errors incurred in computing delta of a vanilla

call using independent Z’s are highly dependent on the choice of

difference method (forward difference gives higher RMS errors).

Also, the RMS errors become significant with vanishingly small

value of ϵ.
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Governing equation for the delta under the Black-Scholes frame-

work

Another way to calculate the delta (and gamma) is to exploit the

differential equation to be satisfied by the delta. Differentiating the

Black–Scholes equation with respect to S, this gives

∂

∂t

(
∂V

∂S

)
+

∂

∂S

(
rS

∂V

∂S
+

σ2

2
S2∂

2V

∂S2

)
− r

∂V

∂S
= 0.

Since

∂

∂S

(
rS

∂V

∂S
+

σ2

2
S2∂

2V

∂S2

)
= r

∂V

∂S
+ rS

∂∆

∂S
+

σ2

2
S2∂

2∆

∂S2
+ σ2S

∂∆

∂S
,

so

∂∆

∂t
+

σ2

2
S2∂

2∆

∂S2
+ (r + σ2)S

∂∆

∂S
= 0. (A)

For a vanilla call option, the delta at expiry is

∆(S, T ) =1{S>X} =

1 if S ≥ X

0 otherwise
.
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We can estimate the value of the delta directly without taking the finite

difference of the computed option values by a Monte Carlo simulation

in which we calculate the expected value of the terminal delta using

the following random walk for St:

dSt = (r + σ2)St dt+ σSt dZt.

This corresponds to

St+∆t

St
= e

(
r+σ2

2

)
∆t+σϵ

√
∆t

.

Since there is no discounting term in the partial differential equation,

there is no need to take the present value. This result does not come

to a great surprise if we consider the call price formula:

c(S, t) = e−r(T−t)Et

[
ST1{ST>X}

]
−Xe−r(T−t)Et[1{ST>X}]

= SN(d1)−Xe−r(T−t)N(d2).
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Recall

∆ = N(d1) = N

ln S
X +

(
r + σ2

2

)
(T − t)

σ
√
T − t


and

N(d2) = N

ln S
X +

(
r − σ2

2

)
(T − t)

σ
√
T − t

 = P [ST > X].

Note that N(d2) is the solution to the undiscounted Black-Scholes

equation

∂V

∂t
+ rS

∂V

∂S
+

σ2

2
S2∂

2V

∂S2
= 0

subject to V (ST , T ) =1{ST>X}.

By comparing the drift terms in ∆ and N(d2), we deduce that ∆

satisfies eq.(A) and the same terminal condition.
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Pros and cons of Monte Carlo simulations

Advantages

• The level of mathematics required for performing a Monte Carlo

simulation can be very basic.

• Correlations among underlying state variables can be easily mod-

eled.

• Complex path dependency can often be easily incorporated.

• Suffer no curse of dimensionality since the workload increases lin-

early with the dimension of the pricing model.

Disadvantages

• The method is slow when compared with the lattice tree methods

for solving low-dimensional option models.

• Relatively cumbersome to handle the early exercise feature of Amer-

ican style derivatives.
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5.2 Variance reduction techniques

• Suppose {ϵ(i)} denotes the independent samples from the standard

normal distribution for the ith simulation run of the asset price path

so that

S
(i)
T = St e

(
r−σ2

2

)
(T−t)+σ

√
△t

N∑
j=1

ϵ
(i)
j
, i = 1,2, · · · ,M,

where △t =
T − t

N
is the time step and M is the total number

of simulation runs. Note that ϵ
(i)
j is randomly sampled from the

standard normal distribution.

• An unbiased estimator of the price of a European call option with

strike price X is given by

ĉ =
1

M

M∑
i=1

ci =
1

M

M∑
i=1

e−r(T−t)max(S(i)
T −X,0).
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Antithetic variates method

We observe that if {ϵ(i)} has a standard normal distribution, so does

{−ϵ(i)}, and the simulated price S̃T
(i) obtained using {−ϵ(i)} is also a

valid sample for the terminal asset price distribution. A new unbiased

estimator of the call price can be obtained from

c̃ =
1

M

M∑
i=1

c̃i =
1

M

M∑
i=1

e−r(T−t)max(S̃(i)
T −X,0).

Normally we would expect ĉ and c̃ to be negatively correlated, that is, if

one estimate overshoots the true value, the other estimate downshoots

the true value. It seems sensible to take the average of these two

estimates. Indeed, we take the antithetic variates estimate to be

c̄AV =
ĉ+ c̃

2
.
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Rationale for better performance

The random inputs obtained from the collection of antithetic pair

{(Zi,−Zi)} are more regularly distributed than a collection of 2n in-

dependent samples.

• A large value of S
(i)
T resulting from a large Zi will be paired with a

small value of S̃
(i)
T obtained from −Zi.

• The sample mean over the antithetic pairs always equals the popu-

lation mean of 0, whereas the mean over finitely many independent

samples is almost surely different from 0.
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Example – Pricing an Asian option using antithetic variables

S+
t1

= St0 exp

((
r − q −

σ2

2

)
(t1 − t0) + σ

√
t1 − t0z1

)
,

S+
t2

= S+
t1

exp

((
r − q −

σ2

2

)
(t2 − t1) + σ

√
t2 − t1z2

)
,

...

S+
tm = S+

tm−1
exp

((
r − q −

σ2

2

)
(tm − tm−1) + σ

√
tm − tm−1zm

)
;

S−
t1

= St0 exp

((
r − q −

σ2

2

)
(t1 − t0)− σ

√
t1 − t0z1

)
,

...

S−
tm = S−

tm−1
exp

((
r − q −

σ2

2

)
(tm − tm−1)− σ

√
tm − tm−1zm

)
.

The antithetic variables estimator of the arithmetic Asian option value

is

max

(∑m
i=1 S

+
ti

m −X,0

)
+max

(∑m
i=1 S

−
ti

m −X,0

)
2

.
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Control variate method

• The control variate method is applicable when there are two similar

options, A and B. Option A is the one whose price is desired,

while option B is similar to option A in nature but its analytic price

formula is available.

• Let VA and VB denote the true value of option A and option B

respectively, and let V̂A and V̂B denote the respective estimated

value of option A and option B using the Monte Carlo simulation.

• How does the knowledge of VB and V̂B help improve the estimate

of the value of option A beyond the available estimate V̂A?

• The control variate method exploits information about the errors

in estimates of known quantities to reduce the error of an estimate

of an unknown quantity.
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The error VB − V̂B in the estimation of known quantity is used as a

control in the estimation of VA. Based on the observation VA − V̂A ≈
VB − V̂B, we define the control variate V̂ cv

A by adding VB − V̂B to V̂A,

where

V̂ cv
A = V̂A + (VB − V̂B).

We obtain the following relation between the variances of the above

quantities

var
(
V̂ cv

A

)
= var(V̂A) + var(V̂B)− 2 cov(V̂A, V̂B),

so that

var(V̂ cv
A ) < var(V̂A) provided that var(V̂B) < 2 cov(V̂A, V̂B).
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• The control variate technique reduces the variance of the estimator

of VA when the covariance between V̂A and V̂B is large. This is true

when the two options are strongly correlated.

• In terms of computational efforts, we need to compute two esti-

mates V̂A and V̂B.

• However, if the underlying asset price paths of the two options are

identical, then there is only slight additional work to evaluate V̂B
along with V̂A on the same set of simulated price paths.
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• To facilitate the more optimal use of the control VB− V̂B, we define

the control variate estimate to be

V̂
β
A = V̂A + β(VB − V̂B),

where β is a relaxation parameter with value other than 1.

• The new relation between the variances is now given by

var
(
V̂

β
A

)
= var

(
V̂A
)
+ β2 var(V̂B)− 2β cov

(
V̂A, V̂B

)
.

• The particular choice of β which minimizes var(V̂ β
A) is found to be

β∗ =
cov(V̂A, V̂B)

var(V̂B)
.

Note that when V̂A and V̂B are equal in distribution, then β∗ = 1

as expected.
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Remarks

• Note that

var(V̂ β
A)

∣∣∣∣∣
β=β∗

= var(V̂A) +
cov(ṼA, V̂B)2

var(V̂B)
− 2

cov(V̂A, V̂B)2

var(V̂B)

= var(V̂A)−
cov(V̂A, V̂B)2

var(V̂B)
.

Unlike the choice of β = 1, the control variate estimate based on

β∗ is guaranteed to decrease variance.

• Unfortunately, the determination of β∗ requires the knowledge of

cov(V̂A, V̂B), which is in general not available.

• One may estimate β∗ by computing sample variance and sample

convariance from the simulated option values V
(i)
A and V

(i)
B , i =

1,2, · · · ,M , obtained from the simulation runs.
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Valuation of Asian options

• Estimation of the value of an arithmetic averaging Asian option

based on the knowledge of the exact analytic formula of the cor-

responding geometric averaging Asian option.

• The averaging feature in the Asian options does not pose any

difficulty in Monte Carlo simulation since the average of the asset

prices at different observational instants in a given simulated path

can be computed easily.

• Since option price formulas are readily available for the majority

of geometrically averaged Asian options, the knowledge of which

may be used to include a variance reduction procedure to reduce

the confidence interval in the Monte Carlo simulation performed

for valuation of the corresponding arithmetically averaged Asian

options.
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• Let VA denote the exact price of an option whose payoff depends

on the arithmetic averaging of the underlying asset price and VG
be the exact price of an option similar to the above option except

that geometric averaging is taken.

• Let V̂A and V̂G denote the estimates of the option values with

respect to arithmetic and geometric averaging, respectively. Recall

that

VA = E[V̂A] and VG = E[V̂G].

An unbiased estimator of VA is given by

V̂ cv
A = V̂A + (VG − V̂G)

since the expected value of the estimator V̂ cv
A equals the time value

VA, where

E[Ṽ cv
A ] = E[ṼA] + VG − E[ṼG] = VA.
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Importance sampling methods

• Importance sampling is based on using knowledge of the pricing

problem to focus our sampling on critical areas of interest, values

of the underlying variable which yield important results. This would

achieve the goal of reducing the variance of the estimator.

• One obvious example of where this can be applied is pricing out-

of-the-money options, where payoffs only occur at very large (or

small) values of the underlier, and so sampling in these regions

makes our estimator with less variation.

• Another example is the estimation of the probability of meltdown

of a nuclear power plant. Since the occurrence of the rare event in

simulation runs is rare, naive Monte Carlo simulation would require

a large number of simulation runs in order to generate enough

samples of meltdown.
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Suppose we are interested in computing

θ = Ef [h(X)],

where X has a probability distribution function f . Let g be anoth-

er probability distribution function with the property that g(x) ̸= 0

whenever f(x) ̸= 0. That is, g has the same support as f .

The original simulation method is to generate N samples of X from

the density f and set the estimate of θ to be θ̂N =
1

N

N∑
j=1

h(Xj).

We performed simulation of the Monte Carlo paths using a different

distribution (with a change of measure) that will give more likelihood

for the simulated underlier to be located in the area of interest.
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Consider the expectation calculation of θ under the two distributions

f and g

θ = Ef [h(X)] =
∫

h(x)f(x) dx

=
∫

h(x)
f(x)

g(x)
g(x) dx = Eg

[
h(X)

f(X)

g(X)

]
= Eg[h

∗(X)],

where
f(X)

g(X)
is known as the likelihood ratio and should be chosen to

be easily computable.

In the alternative estimation algorithm, however, we generate N values

from g(.) and set

θ̂N,IS =
1

N

N∑
j=1

h(Xj)
f(Xj)

g(Xj)
=

1

N

N∑
j=1

h∗(Xj).

Here, θ̂N,IS is then an importance sampling estimator of θ.
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Variance reduction via importance sampling

var(θ̂N,IS) < var(θ̂) if and only if varg(h∗(X)) < varf(h(X)), where

varg(h
∗(X)) =

∫
h∗(x)2g(x) dx− θ2

=
∫

h2(x)f(x)

g(x)
f(x) dx− θ2

and

varf(h(X)) =
∫

h2(x)f(x) dx− θ2.

The difference of these two variances is

varf(h(X))− varg(h
∗(X)) =

∫
h2(x)

[
1−

f(x)

g(x)

]
f(x) dx.
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In order to achieve a variance reduction, the above integral should be

positive. For this to happen, we should choose

f(x)

g(x)
> 1 where h(x)f(x) is small,

f(x)

g(x)
< 1 where h(x)f(x) is large.

Let us say that there is a region where h(x)f(x) is large. We would

like to choose g so that f(x)/g(x) is small whenever x is in the region,

that is, we would like a density g that puts more weight in that region.

When h involves a rare event so that h(x) ≈ 0 over most of the state

space, it can then be particularly valuable to choose g so that we often

sample from that part of the state space where h(x) has non-negligible

value.

Note that if we choose g to be

g(x) = h(x)f(x)/θ

then we have varg(h∗(X)) = θ2−θ2 = 0. In practice, θ is not known and

actually it is the quantity that we are trying to calculate. However, it

tells us the closer g is to the shape of h(x)f(x), the lesser the variance.
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Estimating a rare normal event using importance sampling

Consider the problem of estimating

θ = P [X ≥ 8],

where X ∼ N (0,1). If one tries to estimate θ via simulation without

doing importance sampling, we will often get zero as this event is

extremely rare.

We often take g to be from the same family of distributions as f .

Therefore, we try to estimate θ by doing importance sampling with a

new distribution ∼ N (µ,1) with some appropriate choice for µ.
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Consider

θ = P [X > 8] = Ef [1X>8] =
∫ ∞

−∞
1z>8

1√
2π

e−z2/2 dz

=
∫ ∞

−∞
1z>8

1√
2π

e−z2/2

1√
2π

e−(z−µ)2/2

1√
2π

e−(z−µ)2/2 dz

=
∫ ∞

−∞
1z>8e

−µz+µ2/2 1√
2π

e−(z−µ)2/2 dz

= Eg[1X>8e
−µX+µ2/2].

Here, g(.) is the density function of N (µ,1), where

g(x) =
1√
2π

e−(x−µ)2/2.

For a given µ, the likelihood ratio f(x)/g(x) is e−µx+µ2/2. This may be

visualized as the Radon-Nikodym derivative that effects the change of

measure.
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Recall that the closer g to the shape of h(x)f(x), the lesser is the

variance. It is desirable to choose g so that g(x) and h(x)f(x) both

take on their maximum values at the same value, say x∗. It is clear

that g(.) attains its maximum at x = µ. To match the two values of x

that give maximum value for g(x) and h(x)f(x), we set

µ = argmax
x

h(x)f(x)

= argmax
x

1X≥8
1√
2π

e−x2/2

= argmax
x≥8

e−x2/2 = 8.

The probability of occurrence of the event {X > 8} is much higher

when we perform sampling from N (8,1) instead of N (0,1).
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Example

Suppose we have X ∼ N(0,1) and one faces huge cost of h(X) when

X > 10. This may be extremely unlikely, which is almost similar to the

default of the United States Treasury bills or a serious accident in a

nuclear power plant.

Suppose we now use a crude Monte Carlo estimator, even for a very

high number of N , we would typically not observe a single value of Xi

exceeding 10 and thus estimate the mean costs E[h(x)] to be zero. If

we use

h(x) = Cx1[10,∞)(x)

with C a typically very large constant, then it is easy to verify that we

have

10 = argmax
x

{
Cx1[10,∞)(x)

1√
2π

exp(−x2/2)

}
.
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We use

g(x) =
1√
2π

exp(−(x− 10)2/2)

which leads to the importance sampling estimator of

Īimp,f̄ ,N(h(X)) =
1

N

N∑
i=1

CXi1Xi≥10 exp(50− 10Xi),

with all independent Xi ∼ N(10,1).

With N = 10,000 and C = 109, we obtained an estimate of 7.530 ·
10−14 with an approximate 95%-confidence interval of [7.029·10−14,8.031·
10−14]. Compare this to the exact value of C · exp(−50)/

√
2π =

7.695 · 10−14.
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Original density f(x) (grey) and shifted importance sampling density

g(x) (black).

This shift yields sampling values in the area of importance for calcu-

lating the expectation while the likelihood ratio function assigns these

samples their probability weights. In the crude Monte Carlo method

this has already been done before the sampling which results in (nearly)

no samples in the region of interest.
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5.3 Valuation of American options

The apparent difficulties of using simulation to price American options

stem from the backward nature of the early exercise feature since

there is no way of knowing whether early exercise is optimal when a

particular asset value is reached at a given time. Only with a pre-

specified exercise policy, the estimated option value with respect to a

given simulated path can be determined.

Backward induction procedure and dynamic programming procedure in

lattice tree algorithms

Lattice tree algorithms work well in American option price calculations

since they employ the backward induction procedure. The continuation

value (obtained via discounted expectation procedure) can be found

at each node under the backward induction procedure. The dynamic

programming procedure considers taking the maximum value among

exercise value and continuation value. The optimality taken at the

current node is independent of the optimal decisions at earlier time

points.
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Parametrization of the early exercise boundary: Grant-Vora-

Weeks algorithm

We identify the optimal exercise price S∗
ti

at selected time instants

ti, i = 1,2, · · · , N − 1 between the current t and expiration time T .

The determination of the optimal exercise prices is done by simulation

at successive time steps proceeding backwards in time, starting at

tN−1, then tN−2, · · · , t1, successively.

Once the optimal exercise boundary is identified, the option value can

be estimated by the usual simulation procedure, respecting the early

exercise strategy as dictated by the known optimal exercise boundary.

We illustrate the procedure by considering the valuation of an American

put option and choosing only three time steps between the current time

t and expiration time T , where t0 = t and t3 = T .
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Characterization of critical exercise prices

t
0

t
1

t
2

t
3

= T

S∗(t1) < S∗(t2) < S∗(T−) = min

(
r

q
X,X

)
.

The American put must be deeper-in-the-money in order to induce

early exercise of a longer-lived American put. In particular, when q is

large, the American put must be deeper in-the-money to induce early

exercise.

• Early exercise is a tradeoff between the gain on the time value of

the strike price received earlier and the losses on the dividends from

holding the underlying stock and the insurance value associated

with holding of the American put.
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Assuming a constant dividend yield q, the optimal exercise price at T

is equal to min

(
r

q
X,X

)
, where X is the strike price of the put option

and r is the riskless interest rate. At time δt from expiry, the insurance

value associated with holding the option is negligible, early exercise

occurs when the stock price S satisfies

rXδt− qSδt ≥ 0 ⇔ S ≤
rX

q
.

Note that S∗(T−) must be bounded above by X, otherwise the exercise

payoff becomes negative. Taking these two conditions together, we

have

S∗(T−) = min

(
r

q
X,X

)
.

At time t2 which is one time period prior to expiration, the put value

is X−St2 when St2 ≤ S∗
t2
, and e−r(T−t2)E[PT |St2] when St2 > S∗

t2
. Here,

PT = max(X − ST ,0) denotes the put option value at expiration time

T . Obviously, the conditional expectation E[PT |St2] is dependent on

St2. For a given value of St2, one can perform a sufficient number of

simulations to estimate E[PT |St2].
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Determination of the optimal exercise boundary of an American put at

discrete time instants

67



Systematic search for S∗
t2

• The optimal exercise price S∗
t2

is identified by finding the appropri-

ate value of St2 such that

X − S∗
t2

= e−r(T−t2)E[PT |S∗
t2
].

• We find the simulation estimate of e−r(T−t2)E[PT |St2] as a function

of St2 by starting with St2 close to but smaller than S∗
t3

(remark: S∗
t3

is known and S∗
t2

must be less that S∗
t3
) and repeat the simulation

process for a series of St2 which decreases systematically. Note

that

X − St2 < e−r(T−t2)E[PT |St2] when St2 > S∗
t2
.

• Once the functional dependence of the discounted expectation val-

ue e−r(T−t2)E[PT |St2] in St2 is available, one can find a good esti-

mate of S∗
t2

such that the above equation is satisfied.
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• Estimate E[PT |St2] for varying St2.

Determine the critical value S∗
t2

such that

X − S∗
t2

= e−r(T−t2)E[PT |S∗
t2
].

• Estimate the continuation value for a given value of St1, respecting

S∗
t2

obtained in the first step. Find the critical value S∗
t1
, such that

continuation value equals exercise value.

• Once the optimal exercise prices at t1 and t2 are available, one

can mimic the above numerical procedure to find the estimate of

the discounted expectation value of holding the put at time t0 by

performing simulation runs with an initial asset value St0. The put

value at time t0 for a given St0 is the maximum of the estimate of

the discounted expectation value obtained from simulation (taking

into account the early exercise strategy as already determined at

t1 and t2) and the intrinsic value X − St0 from early exercise.
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Regression method via basis functions

• Under the discrete assumption of exercise opportunities, the option

values satisfy the following dynamic programming equations

Vn = max(hn(S), Hn(S)), n = 0,1, · · · , N − 1,

where S = S(tn), Hn(S) is the continuation value at time tn and

hn(S) is the exercise payoff. At maturity date tN = T , we have

VN(S) = hN(S) [for notational convenience, we set HN(S) = 0].

• The difficulty of estimating the above conditional expectations may

be resolved by considering an approximation of the continuation

value Hn(S) in the form

Hn(S) ≈
M∑

m=0

αnmϕnm(S),

for some choice of the basis functions ϕnm(S).
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Least squares projection onto the span of basis functions

According to functional analysis, a function can be expanded in an

infinite sum of basis functions, provided that the function is defined in

the corresponding spanning space of the basis functions. An example

is the infinite series representation for Fourier integrable functions.

Longstaff and Schwartz propose to determine the coefficients αnm

through the least squares projection onto the span of basis functions.

Their chosen basis functions are the Laguerre polynomials defined by

Lm(S) = e−S/2 e
S

m!

dm

dSm

(
Sme−S

)
, m = 0,1,2, · · · .

The first few members are:

L0(S) = e−S/2, L1(S) = e−S/2(1− S), L2(S) = e−S/2
(
1− 2S +

S2

2

)
.
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Pathwise approximation to the optimal stopping rule

We use C(ω, s; t, T ) to denote the path of cash flows generated by the

option, conditional on the option not being exercised at or prior to time

t. The holder is assumed to follow the optimal stopping strategy for

all subsequent time points. Here, s is the optimal stopping time within

t and T , and ω indicates the randomness associated with the simulated

asset price path. Recall that the value of an American option is given

by maximizing the discounted cash flows from the option, where the

maximum is taken over all stopping times.

• We seek for a pathwise approximation to the optimal stopping rule

based on the simulated paths associated with the early exercise

right in the American option.

• Like other simulation algorithms, the key is to identity the condi-

tional expected value of continuation.
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• Suppose we have chosen M basis functions, then Hn(ω) is estimat-

ed by regressing the discounted cash flow onto the basis functions

for the paths where the option is in-the-money at time tn. Only

the in-the-money paths are used since one can better estimate the

conditional expectation in the region where exercise is relevant.

• Once the functional form of the estimated continuation value Ĥn(ω)

is obtained from linear regression, we can calculate the estimated

continuation value from the known asset price at time tn for that

random path ω.

• When the cash flows received by the option holder for all paths

are identified, we can compute an estimate of the option value by

discounting each cash flow back to the issue date and averaging

over all sample price paths.
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Example

• Consider a 3-year American (actually Bermudan) put option on a

non-dividend paying asset with strike price 1.1. The put can be

exercised only at t = 1,2,3.

• We take the riskless interest rate to be 0.06. Only 8 sample paths

of the asset price are generated under the risk neutral measure.

Asset price paths

Path t = 0 t = 1 t = 2 t = 3 Cash flow at t = 3

1 1.00 1.09 1.08* 1.34 0.00

2 1.00 1.16 1.26 1.54 0.00

3 1.00 1.22 1.07* 1.03 0.07

4 1.00 0.93 0.97* 0.92 0.18

5 1.00 1.11 1.56 1.52 0.00

6 1.00 0.76 0.77* 0.90 0.20

7 1.00 0.92 0.84* 1.01 0.09

8 1.00 0.88 1.22 1.34 0.00

* Sample path for which the put is in-the-money at t = 2.

Note that there are 5 paths for which the put is in-the-money at

t = 2.
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• For the 5 paths that are in-the-money at t = 2, we compute the

corresponding discounted cash flows received at t = 3 if the put is

not exercised at t = 2.

• Let X and Y denote, respectively, the asset price at t = 2 and

the discounted cash flow conditional on no exercise at t = 2. The

values of X and Y for those in-the-money asset price paths are

listed below:

Path Y X exercise value continuation value

1 0.00× 0.94176 1.08 0.02 0.0369

3 0.07× 0.94176 1.07 0.03 0.0461

4 0.18× 0.94176 0.97 0.13 0.1176

6 0.20× 0.94176 0.77 0.33 0.1520

7 0.09× 0.94176 0.84 0.26 0.1565

∗ The discount factor is e−0.06 = 0.94176.

The 5 data points of (X,Y ) in the above table provide 5 obser-

vations of V and S from simulation. The conditional expectation

values of continuation are computed based on the least squares

fitting procedure outlined below.
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We fit the observations of Vi and Si, i = 1,3,4,6,7, of the 5 in-the-

money paths by least squares regression using the basis functions: 1,

S and S2. Here, V is the estimate of the continuation value function

in S at time t2. We minimize the sum of squares of the errors.
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We assume an approximate relationship:

V = a1 + a2S + a3S
2

where S is the stock price at the 2-year point and V is the value of

continuing, discounted back to the 2-year point. Our five observations

on S are 1.08,1.07,0.97,0.77 and 0.84. The corresponding values for

V are 0.00,0.07e−006×1,0.18e−0.06×1,0.20e−0.06×1, and 0.09e−0.06×1.

We use this data to calculate the values of a1, a2 and a3 that minimize

5∑
i=1

(Vi − a1 − a2Si − a3S
2
i )

2

where Si and Vi are the ith observation on S and V , respectively. It

turns out that a1 = −1.070, a2 = 2.983 and a3 = −1.813, so that the

best-fit relationship is

V = −1.070+ 2.983S − 1.813S2.

77



We estimate the corresponding continuation values at t = 2 of various

simulation paths that are in-the-money at that time instant. This gives

the value at the 2-year point of continuing for Paths 1,3,4,6, and 7

of 0.0369,0.0461,0.1176,0.1520, and 0.1565, respectively.

Dynamic programming procedure

• For Path 1 where X = 1.08, the immediate exercise value equals

1.10− 1.08 = 0.02 while the continuation value is

−1.070+ 2.983× 1.08− 1.813× 1.082 = 0.0369.

Since the continuation value is higher, it is not optimal to exercise

the put at t = 2 for the first path. Note that Path 1 ends up to

expire out-of-the-money at maturity. Therefore, the correspond-

ing cash flow received by the option holder at t = 2 for Path 1

conditional on not exercising prior to t = 2 is zero.

• For Path 4, since the exercise value is higher than the continuation

value, the cash flow for this path at t = 2 is set equal to the

exercise value. One can check that it is also optimal to exercise at

t = 2 for Paths 6 and 7.
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Conditional on not exercising prior to t = 2, the cash flows received at

t = 2 and t = 3 for the 8 simulated price paths are summarized in the

following table:

Path t = 1 t = 2 t = 3

1 — 0.00 0.00

2 — 0.00 0.00

3 — 0.00 0.07

4 — 0.13 0.00

5 — 0.00 0.00

6 — 0.33 0.00

7 — 0.26 0.00

8 — 0.00 0.00

Note that it is optimal to exercise the put at t = 2 for Paths 4,6 and

7. Once the option has been exercised at t = 2, the cash flow at t = 3

becomes zero.
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Determination of the stopping rule at t = 1

• We proceed recursively to determine the stopping rule at t = 1.

There are 5 paths (Paths 1,4,6,7 and 8) for which the put is

in-the-money at t = 1.

• Similarly, we solve for the estimated expectation function at t = 1

by regressing the discounted value of subsequent option cash flow

at t = 1 on a constant, X, and X2, where X is the asset price at

t = 1.

• We can compute the estimated continuation values and immediate

exercise values at t = 1.
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We compute Y at different in-the-money paths by using the cash flow

information earlier based on not exercising prior to t = 2.

Path Y X exercise value continuation value
1 0.00× 0.941762 1.09 0.01 0.0139
4 0.13× 0.94176 0.93 0.17 0.1092
6 0.33× 0.94176 0.76 0.34 0.2866
7 0.26× 0.94176 0.92 0.18 0.1175
8 0.00× 0.941762 0.88 0.22 0.1533

∗ The estimated conditional expectation function at t = 1 from least

squares regression is

E[Y |X] = 2.038− 3.335X +1.356X2.

Note that Path 6 would give early exercise at t = 2 with payoff value

of 0.33 if it remains alive at t = 1. However, since its exercise value of

0.34 is higher than its continuation value, so it is optimal to exercise

at t = 1 for Path 6.

81



Note that exercise at t = 1 is optimal for Paths 4,6,7 and 8. The

optimal stopping rules at all times are now identified.

Stopping rule Option cash flow matrix

Path t = 1 t = 2 t = 3 t = 1 t = 2 t = 3

1 0 0 0 0.00 0.00 0.00

2 0 0 0 0.00 0.00 0.00

3 0 0 1 0.00 0.00 0.07

4 1 0 0 0.17 0.00 0.00

5 0 0 0 0.00 0.00 0.00

6 1 0 0 0.34 0.00 0.00

7 1 0 0 0.18 0.00 0.00

8 1 0 0 0.22 0.00 0.00

∗ “1” represents exercise optimally at the exercise date.

82



• Once optimal exercise for a given path has been chosen at an

earlier time, the stopping rules that have been obtained for later

times in the backward induction procedure becomes immaterial. In

this example, Paths 4,6,7 have positive cashflow at t = 2 if exercise

is possible only at t = 2 and t = 3. However, when exercise instant

t = 1 is included, optimal exercise at t = 1 occurs for these paths.

Consequently, these paths give zero cash flow at all subsequent

times (corresponding to t = 2 and t = 3).

• When the cash flows generated by the put option at each time

along each path have been identified, the put option value can be

computed by discounting each cash flow back to the current time,

and taking average value over all sample paths. This gives

1

8
(0.07e−0.06×3 +0.17e−0.06×1 +0.34e−0.06×1

+ 0.18e−0.06×1 +0.22e−0.06×1) = 0.1144.

Note that Paths 1,2 and 5 survive up to maturity date and expire

out-of-the-money at expiry.
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Summary

1. Generate all M simulation asset price paths up to maturity T .

2. At tN−1, seek the mN−1 paths that are in-the-money. Perform the

regression procedure to determine the best-fit relationship for the

continuation value V in terms of the stock price S such that

mN−1∑
i=1

Vi − n∑
j=1

ajϕj(S)

2

is minimized. Here, ϕj(S), j = 1,2, . . . , n are the basis functions.

Also, Vi and Si are the observation of V and S for the ith observation

among the in-the-money paths. The coefficients a1, a2, . . . , an are

determined using the least squares fitting procedure.
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3. Find the continuation value at a given stock price at tN−1 for all the

mN−1 paths using the best-fit relationship for V =
n∑

j=1

ajϕj(S) ob-

tained in step 2. Compare the continuation value with the exercise

value to determine the stopping rule at t = tN−1.

4. At tN−2, seek the mN−2 paths that are in-the-money. Compute

Vi at these paths based on the discounted cash flow using the

knowledge of the stopping rule obtained at tN−1. Repeat the same

procedure for the determination of the coefficients a1, a2, . . . , an

using the least squares procedure. Again, determine the stopping

rule at t = tN−2 by comparing the continuation value and exercise

payoff.

5. Repeat the same procedure until t = t1 for the stopping rule.

6. Lastly, compute the sample average of the discounted cash flows

from all M simulation paths, respecting all the stopping rules ob-

tained at all time points.
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Mathematical appendices

A.1 Law of Large numbers and central limit theorem

A.2 Generation of random numbers with assigned probability distribu-

tions

A.3 Numerical integration of stochastic differential equations

A.4 Quasi Monte Carlo simulation – low discrepancy sequences
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A.1 Law of Large numbers and central limit theorem

Law of Large numbers

The average of the results obtained from a large number of trials

should be close to the expected value. That is, the sample average

Xn =
1

n
(X1 +X2 + · · ·+Xn)

converges to the expected value. That is,

Xn → µ as n → ∞,

where X1, X2, . . ., is an infinite sequence of independent and identically

distributed integrable random variables with E[X1] = E[X2] = · · · = µ.

Integrability of Xj means that the expected value E[Xj] exists and is

finite.
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Weak Law: The sample average converges in probability towards the

expected value. That is

Xn
P−→ µ as n → ∞;

or for any ϵ > 0, we have

lim
n→∞P [|Xn − µ| > ϵ] = 0.

The weak Law states that for any non-zero tolerance (ϵ > 0) specified,

no matter how small, with a sufficiently large sample, there will be a

very high probability that the average of the observations will be close

to the expected value.

Convergence in probability is also called weak convergence of random

variables.
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Strong Law: The sample average converges almost surely to the ex-

pected value.

Xn
a.s.−−→ µ as n → ∞;

or

P [ lim
n→∞Xn = µ] = 1.

Random variables that converge strongly (almost surely) are guaran-

teed to converge weakly (in probability).

The strong Law states that the event |Xn−µ| > ϵ almost surely will not

occur. With probability one, we have that for any ϵ > 0, the inequality

|Xn − µ| < ϵ holds for all sufficiently large value of n.
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Central limit theorem

Let {X1, X2, . . . , Xn} be a random sample of size n, a sequence of

independent and identically distributed random variables drawn from

distributions of expected values given by µ and finite variances given

by σ2.

The classical central limit theorem describes the size and the distri-

butional form of the stochastic fluctuations around the deterministic

number µ during this convergence. As n → ∞, the random variables
√
n(Xn − µ) converge in distribution to N(0, σ2). That is,

√
n

1
n

n∑
i=1

Xi − µ

 d−−→ N(0, σ2).
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In the case σ > 0, convergence in distribution means that the cumu-

lative distribution functions of
√
n(Xn − µ) converge pointwise to the

cumulative distribution function of N(0, σ2) distribution. For every real

number z, we have

lim
n→∞P [

√
n(Xn − µ) ≤ z] = N(z/σ).

Applications

Rolling a large number of identical and unbiased dice, the distribution

of the sum (or average) of the rolled numbers will be well approximated

by a normal distribution.

Why the use of the term “central limit theorem”?

The occurrence of the Gaussian density function in repeated experi-

ments can be explained by the very same limit theorem, which plays a

central role in the calculus of probability.
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A.2 Generation of random numbers with assigned probability

distributions

Uniform numbers generation

A congruential generator is a recursive formula returning a sequence

of pseudor random numbers

1. Fix positive integers m (modulus), a (multiplier) and c (increment).

2. Set up a seed x0 ∈ {0,1, . . . ,m− 1}

3. Run the recursive rule: xi+1 = axi + c (mod m).

4. Return ui+1 =
xi+1

m
∈ [0,1].

Since any sample value xi lies in the set {0,1, . . . ,m−1}, the sequence

would meet twice the same value in m stops. Typically, m is chosen

to be very large, like 235 or 237 − 1.
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Stratified Sampling

To enhance uniformity of the generated numbers, we may divide [0,1]

into M stratifying bins
[
i

M
,
i+1

M

]
, i = 0,1, . . . ,M − 1. We force the

first sample to fall within
[
0,

1

M

]
, the second sample into

[
1

M
,
2

M

]
, and

so on until the Mth sample has been generated in the last subinterval[
M − 1

M
,1
]
. Then, the next number is generated within

[
0,

1

M

]
, and so

on. That is,

uk ∈
[
i

M
(mod M),

i+1

M
(mod M)

]
, k = 1,2, . . . , n.

If n = kM , then this method ensures that K samples fall into each

interval
[
i

M
,
i+1

M

]
.
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Pseudo-code for stratified sampling
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Inverse transformation method

Given a uniform random variable U on [0,1], we seek a transformation

f of U such that f(U) has a cumulative distribution function given by

F , that is,

P [f(U) ≤ x] = F (x).

If f is bijective and monotonically increasing, the inverse function f−1

is well defined. We may write

P [f(U) ≤ x] = P [U ≤ f−1(x)] = f−1(x).

Comparing the two results, we set f such that f−1 = F . If F is

continuous and strictly increasing, then F is bijective and f = F−1

satisfies the required properties.
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Suppose F is continuous but not injective, then we define the gener-

alized inverse function

F−1(y) = min{x : F (x) = y};

which always exists since F is right-continuous.
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Define F−1(y) = min{x : F (x) ≥ y}, which always exists since F is right

continuous. For any u ∈ [0,1], {x : u ≤ F (x) < F ◦ F−1(U)} is always

an empty set. We then have

P [F−1(U) ≤ x] = P [F ◦ F−1(U) ≤ F (x)]

= P [F ◦ F−1(U) ≤ F (x)] + P [U ≤ F (x) < F ◦ F−1(U)]

= P [U ≤ F (x)] = F (x).
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Box-Muller method for generating normal variables

It takes uniformly distributed variables and turn them into normal. Let

u1 and u2 be two uniform random numbers between zero and one.

We combine them to give 2 numbers x1 and x2 that are close to be

normally distributed (zero mean and unit variance):

x1 =
√
−2 lnu1 cos(2πu2) and x2 =

√
−2 lnu1 sin(2πu2).

Let X1 and X2 be independent and identically distributed standard

normal random variable N(0,1) with joint pdf f(x, y), where

f(x1, x2) =
1

2π
e−(x21+x22)/2.
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Define X1 =
√
R cos H⃝ and X2 =

√
R sin H⃝, then

fR, H⃝(r, θ) =
1

2

e−r/2

2π
= fR(r)f H⃝(θ).

Here, we choose fR(r) to be the pdf of the exponential distribution

while f H⃝(θ) to be the pdf of the uniform distribution on [0,2π]. Sup-

pose we generate U1 and U2 to be iid U(0,1), then

X1 =
√
−2 lnU1 cos 2πU2 and X2 =

√
−2 lnU1 sin 2πU2.

This is because −2 lnU1 is a sample from an exponential with mean 2

and 2πU2 is a sample from U(0,2π).
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The approximation to the Normal distribution using 500 uni-

formly distributed points and the Box-Muller method.
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A.3 Numerical integration of stochastic differential equation

Consider the following generic one-dimensional stochastic differential

equation (SDE):

dXt = µ(Xt, t)dt+ σ(Xt, t)dWt,

where W = {Wt,0 ≤ t ≤ T} is a one-dimensional standard Wiener

process, µ and σ are the measurable drift and diffusion coefficients,

respectively.

The Ito-Taylor expansion of the SDE is

Xt = Xt0 + µ(Xt0)
∫ t

t0
ds+ σ(Xt0)

∫ t

t0
dW (s)

+
σ(Xt0)σ

′(Xt0, t0)

2
{[W (t)−W (t0)]

2 − (t− t0)}+R,

where σ′(x, t) =
∂σ

∂x
(x, t), R is the remainder of higher order.

101



After dropping R, the discretized version is

Xtj+1 = Xtj + µ(Xtj)∆tj + σ(Xtj)∆Wj +
σ(Xtj)σ

′(Xtj)

2
[(∆Wj)

2 −∆tj],

where ∆tj = tj+1− tj and ∆Wj = W (tj+1)−W (tj). Note that ∆Wj =

O(
√
tj).

Euler Scheme

This is the simplest discretization scheme, expanding the diffusion term

only up to O(
√
∆t). Let Zj be iid N(0,1), the explicit Euler scheme is

Xtj+1 = Xtj + µ(Xtj , tj)∆tj + σ(Xtj , tj)
√
∆tjZj.
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Milstein Scheme

The Milstein scheme improves upon the Euler scheme by expanding

the diffusion term to O(∆t), which gives

Xtj+1 = Xj + µ(Xj, tj)∆tj + σ(Xj, tj)
√
∆tjZj

+
σ(Xtj)σ

′(Xtj)

2
∆tj(Z

2
j − 1).

The analytic form of the derivative of the volatility function is required.

When σ is constant, the Milstein scheme reduces to the Euler scheme.
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Runge-Kutta scheme

We would like to avoid the inclusion of σ′(Xtj) in the discretized

scheme. By observing

∆Xi = µ(Xi)∆t+ σ(Xi)∆Wi,

we obtain

σ(Xi +∆Xi)− σ(Xi) = σ′(Xi)∆Xi +O((∆X)2)

= σ′(Xi)[µ(Xi)∆t+ σ(Xi)∆Wi] +O((∆X)2)

= σ′(Xi)σ(Xi)∆Wi +O(∆t) as (∆X)2 ∼ O(∆t).

Performing the following Taylor expansions, we deduce that

σ(Xi +∆Xi) = σ(Xi + µ(Xi)∆t+ σ(Xi)
√
∆t)

+ σ′(Xi + µ(Xi)∆t+ σ(Xi)
√
∆t)σ(Xi)(∆Wi −

√
∆t)

+O(∆t),

and

σ′(Xi + µ(Xi)∆t+ σ(Xi)
√
∆t) = σ′(Xi) +O(

√
∆t).
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Combining the results, we obtain

σ(Xi + µ(Xi)∆t+ σ(Xi)
√
∆t)− σ(Xi) = σ′(Xi)σ(Xi)

√
∆t+O(∆t)

giving

σ′(Xi)σ(Xi) =
1√
∆t

[σ(Xi + µ(Xi)∆t+ σ(Xi)
√
∆t)− σ(Xi)] +O(∆t).

Finally, the Runge-Kutta scheme can be represented in the predictor-

corrector form:

X̂i = Xi + µ(Xi)∆t+ σ(Xi)
√
∆t

Xi+1 = Xi + µ(Xi)∆t+ σ(Xi)∆Wi

+
1

2
√
∆t

[σ(X̂i)− σ(Xi)][(∆Wi)
2 −∆t].

Note that when σ(Xi) becomes constant, both the Milstein and Runge-

Kutta schemes reduce to the Euler scheme.
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A.4 Quasi Monte Carlo simulation method

Quasi Monte Carlo methods are commonly used to evaluate multi-

dimensional integrals. Consider∫
In

f(x) dx

over the n-dimensional unit cube, In = [0,1]× · · ·× [0,1]. We generate

a sequence of pseudo random numbers x1, x2, . . . , xN , over the unit

cube, and approximate the integral by

θN =
1

N

N∑
i=1

f(xi).

In Quasi Monte Carlo methods, we produce a deterministic sequence

of points (called low-discrepancy sequence) that provides the best pos-

sible spread in In.
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Halton sequence

The Halton sequence is a sequence of numbers h(i, b) for i = 1,2, ....

The integer b is the base. The numbers all lie between zero and one.

The numbers are constructed as follows. First choose your base. Let

us choose 2. Now write the positive integers in ascending order in base

2, i.e. 1, 10, 11, 100, 101, 110, 111, etc. The Halton sequence base

2 is the reflection of the positive integers in the decimal point, i.e.
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This has been called reflecting the numbers about the decimal point.

If you plot the Halton points successively you will see that the next

number in the sequence is always as far as possible from the previous

point. Generally, the integer i can be written as

i =
m∑

j=1

ajb
j

in base b, where 0 ≤ aj < b. The Halton numbers are then given by

h(i; b) =
m∑

j=1

ajb
−j−1.
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Here is an algorithm for calculating Halton numbers of arbitrary base;

the nth term in a Halton sequence of base b is given by Halton(n,b).

Function Halton(n,b)

Dim n0, n1, r, As Integer

Dim h As Double

Dim f As Double

n0 = n

h = 0

f = 1/b

While (n0 > 0)

n1 = Int (n0 / b)

r = n0 - n1 * b

h = h + f * r

f = f / b

n0 = n1

Wend

Halton = h

End Function
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A Monte Carlo sample in two dimensions.
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It is better to use a non-random series of points with better

distributional properties.
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• Quasi-random sequence seek to fill space uniformly, though they

fail many statistical tests for randomness.

The estimate of the d-dimensional integral∫ 1

0
· · ·

∫ 1

0
f(x1, · · · , xd) dx1 · · · dxd

is given by

1

N

N∑
i=1

f (h(i, b1), · · · , h(i, bn)) ,

where bj are distinct prime numbers. The error in these quasi-random

methods is

O
(
(logN)d/N

)
,

and it is better than Monte Carlo at all dimensions.
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Estimate of the error in the value of a five-dimensional con-

tract using the basic Monte Carlo simulation and a low dis-

crepancy sequence.
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