
MAFS5250 – Computational Methods for Pricing Structured

Products

Topic 6 – Advanced numerical schemes for pricing path depen-

dent options

6.1 Discretely sampled fixed strike Asian option

• Change of numeraire approach

• Choice of Markovian state variable

• Construction of the Crank-Nicolson scheme

6.2 Discretely sampled lookback options

• Fixed strike lookback call option

• Floating strike lookback option
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6.1 Discretely sampled fixed strike Asian options

Change of numeraire approach

Reference:

Andreasen, J., “The pricing of discretely sampled Asian and lookback

options: a change of numeraire approach,” Journal of Computational

Finance (Fall 1998) p.5-30.

• We make use of change of numeraire techniques to obtain the op-

tion price as a function of time and a one-dimensional Markovian

state variable. The state variable exhibits jumps at the observa-

tion points with probability one.

• Between two observation points, the state variable evolves contin-

uously, so the price function is governed by a PDE (consequence

of the Feynman-Kac representation Theorem).
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• A coupled sequence of PDEs are resulted, the solution of the first

PDE between two successive fixing dates generates the terminal

condition of the second one.

• The Asian option model is converted into a barrier option pricing

problem. Why do we have the “barrier type” behavior? This is

because when the state variable goes beyond a certain level, typi-

cally in the status of being currently in-the-money, the optionality

in the payoff function disappears. It is then possible to derive the

risk adjusted expectation of the terminal payoff in closed form.

• The Crank-Nicolson scheme is adopted for the numerical solution

of the resulting PDE.

• Highly accurate: within 1% accuracy even with 50 time steps

between successive observation time points.
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Model formulation: change of numeraire and Markov representation

Under a risk neutral measure Q, the stock price dynamics is given by

dSt

St
= (r − q)dt+ σ dWt.

Based on the risk neutral valuation principle where the money market

account is used as the numeraire, the time-t price of the contingent

claim H at time T is given by

Ft = E
Q
t [e−r(T−t)H].

We apply the change of measure with the stock price as the nu-

meraire, which is defined by

dQ′

dQ

∣∣∣∣∣
F0

=
Ste

qt

S0

/
ert =

St

S0e(r−q)t
, t > 0.

• One unit of asset at t = 0 will grow to eqt units at time t, if the

dividends are all used to buy additional units of asset.
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The solution to St is known to be

St = S0e
(r−q−σ2

2 )t+σWt,

so we obtain the share measure Q′ defined by the Radon-Nikodym

derivative

dQ′

dQ

∣∣∣∣∣
F0

= e−
σ2
2 t+σWt.

Recall the Girsanov theorem: Suppose WP
t is P -Brownian, and

dP ′

dP
= e

(
−µWP

t −µ2

2 t

)
,

then WP ′
t = WP

t + µt is P ′-Brownian. By choosing µ to be −σ in the

above formula, we observe that

W ′
t = Wt − σt

is Q′-Brownian when Wt is Q-Brownian.

5



Accordingly, the dynamics of St under Q′ is governed by

dSt

St
=
(
r − q + σ2

)
t+ σ dW ′

t , t > 0.

By applying the change of measure from Q to Q′ conditional on Ft

and observing
Ft

eqtSt
is Q′-martingale, we obtain

Ft = E
Q
t

[
e−r(T−t)H

]
= E

Q′
t

e−r(T−t)H

ST e
qT

Steqt

/
erT

ert

 = StE
Q′
t

[
e−q(T−t) H

ST

]
.

Remark Here, we use the numeraire change formula:

dQM

dQN

∣∣∣∣∣
Ft

=
M(T )

M(t)

/
N(T )

N(t)
,

where M(t) and N(t) are numeraires. When the money market ac-

count is used as the numeraire, the discount factor is e−r(T−t). With

the stock price as the numeraire, the “pseudo” discount factor is

e−q(T−t).
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Dimension reduction of a path dependent option model

When the contingent payoff H depends on the path history of St up

to T , then it is necessary to keep track of the path realization of St

when we compute Ft using the risk neutral valuation principle.

It may be possible to reduce the dimension of the path dependent

option model if we can find a Markov process xt such that under Q′

dxt = µx(xt, t) dt+ σx(xt, t) dW
′
t ,

and together with the satisfaction of the property:

H

ST
= ξ(xT ),

for some function ξ.
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• If the above properties hold true, then the deflated option price

ft =
Ft

eqtSt

will be a function of (xt, t) only. By the Feynman-Kac represen-

tation theorem, f satisfies the following pde

∂f

∂t
+ µx

∂f

∂x
+

σ2x
2

∂2f

∂x2
− qf = 0,

subject to the terminal condition: f(x, T ) = ξ(x).

• The solution of the one-dimensional Black-Scholes type pde can

be solved by finite difference calculations.
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• Andreasen manages to find such a Markov representation for dis-

cretely sampled Asian and lookback options with either fixed strike

or floating strike. The payoff structures of many structured prod-

ucts and variable annuities resemble the Asian style payoff. The

same approach can be adopted provided that the corresponding

Markov representation can be found.

• The numerical pricing of discretely sampled path dependent op-

tion is considered more difficult compared to the continuously

sampled counterparts. We have jump of the path dependent s-

tate variable across a fixing date in discretely sampled options.

9



Asian call option with fixed strike (discretely sampled)

Let the fixing dates be t1, t2, ..., tn, and let the initial time be t0 = 0

and terminal date be tn+1 = T . We allow the flexibility that t1 = t0
and tn = T . Hence, we have

0 = t0 ≤ t1 < · · · < tn ≤ tn+1 = T.

Denote the index of the last fixing date associated with the current

time t by

m(t) = sup{1 ≤ i ≤ n : ti ≤ t}.
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Choice of the Markovian state variable

Define the running sum of discretely sampled stock prices up to time

t by

I(t) =
∑

1≤i≤n, ti≤t

S(ti) =
m(t)∑
i=1

S(ti).

The time-t price of the discrete Asian call option with fixed strike K

is

Ft = StE
Q′
t

e−q(T−t)

 I(T )
n −K

ST

+
 ,

where the average A(T ) = I(T )/n. Define the stochastic process

xt =
1
nI(t)−K

St
,

which jumps by a deterministic amount 1
n when the calendar time

moves across the fixing date ti, i = 1,2, . . . , n.
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• We observe

x(ti) =
1
n

∑i
j=1 S(tj)−K

S(ti)

=
1
n

∑i−1
j=1 S(tj)−K

S(ti)
+

1

n
= x(t−i ) +

1

n
, i = 1,2, . . . , n.

• At times between successive observation dates, the process xt
evolves continuously since I(t) is held fixed and only St changes

continuously as time evolves. The dynamics of xt under Q′ with

jump is
dx(t) = −(r − q)x(t)dt− σx(t)dW ′(t) +

1

n
dm(t).

To show the above dynamics equation of xt, recall that under Q′

dSt

St
= (r − q + σ2) dt+ σ dW ′

t

so

d
(
1
St

)
1
St

= [−(r − q + σ2) + σ2] dt− σ dW ′
t

= −(r − q) dt− σ dW ′
t .
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Under Q′, the evolution of xt depends only on xt itself and known

jumps at ti, i = 1, ..., n; so xt is Markovian. Therefore, Ft/St depends

on xt and t only, so we write

Ft

St
= f(xt, t) = E

Q′
t

[
e−q(T−t)x+T |xt

]
, x+T = max (xT ,0) .

Furthermore, once xt ≥ 0, then xu ≥ 0 for all u ≥ t since the sign of

xt depends on
1

n
I(t)−K and I(t) is non-decreasing in t.

For xt ≥ 0, we have

f(xt, t) = E
Q′
t

[
e−q(T−t)xT |xt

]
.

When optimality on xT disappears, the pricing problem reduces to

that of a futures contract. One can obtain the following closed form

formula:

e−q(T−t)E
Q′
t [xT |xt] = e−r(T−t)xt +

1

n

∑
i:t<ti≤tn

e−r(T−ti)−q(ti−t).

For convenience, we write the above known solution as g(xt, t).
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Proof

We multiply the SDE for x(t) throughout by the integrating factor

e(r−q)t:

d[e(r−q)tx(t)] = −e(r−q)tσx(t) dW ′(t) +
1

n
e(r−q)tdm(t).

Integrating both sides with respect to u from t to T , we obtain

e(r−q)TxT−e(r−q)txt = −
∫ T

t
e(r−q)uσx(u) dW ′(u)+

1

n

∫ T

t
e(r−q)u dm(u).

Note that dm(u), where u runs from t to T , has an infinite jump

characterized by δ(u − ti) on all the fixing dates ti between t and T .

Therefore, we may write

dm(u) =
∑

i:t<ti≤tn

δ(u− ti), t ≤ u ≤ T,

so that∫ T

t
e(r−q)u dm(u) =

∫ T

t
e(r−q)u ∑

i:t<ti≤tn

δ(u− ti) du =
∑

i:t<ti≤tn

e(r−q)ti
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Next, we take the expectation under Q′ conditional on Ft. Note

that the expectation of the stochastic integral equals zero due to the

differential Brownian (whose expectation is zero). We then have

E
Q′
t [xT ] = e−(r−q)(T−t)xt +

1

n
e−(r−q)T ∑

i:t<ti≤tn

e(r−q)ti.

Remarks

• Recall E
Q
t [ST ] = e(r−q)(T−t)St, where r − q is the drift rate of

St under Q. Here, the drift rate of xt under Q′ is −(r − q), so

E
Q′
t [xT ] = e−(r−q)(T−t)xt.

• Due to the drift rate −(r− q) under Q′, the growth factor applied

over (ti, T ) is e−(r−q)(T−ti). The time-T future value of
1

n
added

to xt at fixing date ti is given by
1

n
e−(r−q)T e(r−q)ti. We sum these

jump terms for all fixing dates ti, where t < ti ≤ tn.
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Lastly, we obtain

g(xt, t) = e−q(T−t)E
Q′
t [xT ]

= e−r(T−t)xt +
1

n

∑
i:t<ti≤tn

e−r(T−ti)−q(ti−t).

When the current level of xt is below x = 0, the process xt may

pass through the level x = 0 at some future fixing date ti, where

m(t) < i ≤ n.

• If crossing does occur at time ti, i ≤ n, then

f(xti, ti) = g(xti, ti).

• On the other hand, if crossing never occurs, then the terminal

payoff max(xT ,0) is zero.
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Analogy as an up-and-in barrier option

(first passage time problem for a Markov process)

The Markov process xt has a finite known jump at 1
n at each sample

point. Here, τ is the first sample time that xτ ≥ 0.
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The crossing of xt across x = 0 can only occur at one of the sample

points. If crossing has not occurred prior to a sample point, the

sign of 1
nI(t)−K remains negative at times between 2 sample points.

Hence, xt remains to be negative at least before reaching the next

sample point.

We observe continuity of y across ti while x has a jump of 1
n across

ti. To get rid of the discontinuous dynamics of x(t), we define

y(t) = x(t)−
m(t)

n
.

We then have

dy(t) = −(r − q)

[
y(t) +

m(t)

n

]
dt− σ

[
y(t) +

m(t)

n

]
dW ′

t .
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By virtue of the Feynman-Kac representation theorem, we deduce

that the governing equation for f is given by

qf =
∂f

∂t
− (r − q)

[
y(t) +

m(t)

n

]
∂f

∂y
+

σ2

2

[
y(t) +

m(t)

n

]2
∂2f

∂y2
.

What is the domain of definition in the (y, t)-plane for ti−1 < t < ti?

Note that {(x, t) : x < 0,0 < t < T} is the domain of definition in

the (x, t)-plane since the discrete fixed strike Asian option can be

visualized as an up-and-out barrier option with the upper barrier at

x = 0.

At t0 < t < t1, y(t) = x(t); when tn−1 < t < tn, y(t) = x(t)− n−1
n since

there are n− 1 jumps at t1, t2, . . . , tn−1, each jump has magnitude
1

n
.

In general, when ti−1 < t < ti, y(t) = x(t)− i−1
n , i = 1,2, ..., n.
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We perform the numerical calculations backward in the calendar time,

starting from the last period: tn < t ≤ tn+1 = T .

In the last time period: tn < t ≤ tn+1 (between the last monitoring

instant and maturity date), we have y = x− 1. Recall that

f(xt, t) = g(xt, t) for xt ≥ 0 ⇔ yt ≥ −1.

Suppose xt < 0 in the last time period, then the option is sure to

expire out-of-the-money. We then have

f(y, t) = 0 for y < −1 and t ≥ tn.

In general, for ti−1 < t < ti, the terminal condition is given by

f(y, t−i ) =

{
f(y, t+i ) if y < − i

n
g (y, ti) if − i

n ≤ y < −i−1
n

.
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For ti−1 < t < ti, x = y + i−1
n ; and x < 0 ⇔ y < −i−1

n .

21



• Note that the state space of y within which the numerical solution

of f is sought changes as time progresses.

• The state space is kept constant for all t between 2 sample points.

Running backward in time, the newly added region is subject to

the terminal condition as specified by the known function g(·, ·),
where f(y, t−i ) = g(y, ti), −

i

n
≤ y < −

i− 1

n
.

• Between 2 sample points, say within the time interval [ti−1, ti],

the pde is solved numerically using the Crank-Nicolson scheme.

When y lies within
[
− i

n,−
i−1
n

)
at t−i , the Asian option becomes in-the-

money when t advances across ti (due to the jump of
1

n
in xt at t = ti).

By virtue of continuity of option value, we have f(y, t−i ) = g (y, ti).

on the other hand, when y < − i
n, we have continuity of f(y, t) across

t = ti.
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Construction of the Crank-Nicolson scheme

Rewrite the governing partial differential equation between two suc-

cessive fixing dates as[
−q +

∂

∂t
+ µ(y)

∂

∂y
+ v(y)

∂2

∂y2

]
f = 0, ti−1 < t < ti, y < −

i− 1

n
,

where

µ(y) = −(r − q)

[
y +

m(t)

n

]
and v(y) =

σ2

2

[
y +

m(t)

n

]2
.

We suppress the dependence of µ and v on t since m(t) is constant

in each interval [ti−1, ti].
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Approximate the differential operators in the partial differential equa-

tion by centered differences at
(
y, t+ ∆t

2

)
. We obtain the Crank-

Nicolson scheme:[
−
q

2
+

1

∆t
+

µ(y)

2
δy +

v(y)

2
δyy

]
f(y, t+∆t)

=

[
q

2
+

1

∆t
−

µ(y)

2
δy −

v(y)

2
δyy

]
f(y, t),

where the difference operators are

δyh(y) =
h(y +∆y)− h(y −∆y)

2∆y
,

δyyh(y) =
h(y +∆y)− 2h(y) + h(y −∆y)

∆y2
.

The artificial boundary conditions: δyyf = 0 is applied at the lower

boundary ymin and
∂f

∂t
= qf at the upper boundary [known solution

g(x, t) at y = ymax is subject to the discount rate q when xt is held

fixed and time dependence is only exhibited only in those terms that

involve e−q(ti−t)].
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For the interval [ti−1, ti], we limit our state space to the discrete grid:

{(yl, sk)}k=0,1,...,K;l=0,1,...,L with

sk = ti−1
K − k

K
+ ti

k

K
and yl = ymin

L− l

L
+ ymax

l

L
.

Here, ∆t =
ti−ti−1

K and ∆y = ymax−ymin
L . We have

ymax = −
i− 1

n

and we set ymin = −2 (for maturity less than one year).

It is convenient to choose the same stepwidth ∆y at all time intervals.

Since the state space of y increases in size in the backward induction

procedure, so L increases accordingly with an increase in ymax.

• If we set ymin = −2 for all time intervals, we observe the ad-

vantage of having a smaller computational domain in later time

intervals (saving of computational efforts).
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For the interior nodes, l = 1,2, ..., L, we have(
q

2
+

1

∆t

)
f(sk, yl)−

µ(yl)

2

f(sk, yl+1)− f(sk, yl−1)

2∆y

−
v(yl)

2

f(sk, yl+1)− 2f(sk, yl) + f(sk, yl−1)

∆y2

=
(
−
q

2
+

1

∆t

)
f(sk+1, yl) +

µ(yl)

2

f(sk+1, yl+1)− f(sk+1, yl−1)

2∆y

+
v(yl)

2

f(sk+1, yl+1)− 2f(sk+1, yl) + f(sk+1, yl−1)

∆y2
.

Applying δyy = 0 at the (k, L)th node, we obtain

f(sk, yL+1) = 2f(sk, yL)− f(sk, yL−1),

where f(sk, yL+1) is a fictitious point outside the computational do-

main.
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We are marching backward in time, starting from k = K − 1 down to

k = 0. The values at k = K (terminal conditions) are inferred from

the last time interval (by continuity of value function).

The matrix system of equations of the Crank-Nicolson scheme:

− A0 −
− A1 −

...

...
− AL−1 −
− AL −





f(sk, y0)
f(sk, y1)

...

...
f(sk, yL−1)
f(sk, yL)


=



− B0 −
− B1 −

...

...
− BL−1 −
− BL −





f(sk+1, y0)
f(sk+1, y1)

...

...
f(sk+1, yL−1)
f(sk+1, yL)


.

Here, both coefficient matrices are essentially tridiagonal. We would

like to find the explicit representation of the rows Aℓ and Bℓ; and

special care is taken at ℓ = 0 and ℓ = L so as to incorporate the

numerical boundary conditions.
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At ℓ = L, the numerical scheme becomes(
q

2
+

1

∆t

)
f(sk, yL)−

µ(yL)

2∆y
[f(sk, yL)− f(sk, yL−1)]

=
(
−
q

2
+

1

∆t

)
f(sk+1, yL) +

µ(yL)

2∆y
[f(sk+1, yL)− f(sk+1, yL−1)].

The last two components in the row vector BL are

BL,L−1 = −
µ(yL)

2∆y
, BL,L = −

q

2
+

1

∆t
+

µ(yL)

2∆y
;

and the last two components in the row vector AL are

AL,L−1 =
µ(yL)

2∆y
, AL,L =

q

2
+

1

∆t
−

µ(yL)

2∆y
.
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At y = ymax (node ℓ = 0), the differential equation becomes
∂f

∂t
= qf

so that the discretized scheme at y0 is

f(sk+1, y0)− f(sk, y0)

∆t
= q

f(sk, y0) + f(sk+1, y0)

2
giving (

q

2
+∆t

)
f(sk, y0) =

(
−
q

2
+∆t

)
f(sk+1, y0).

Hence, the two row vectors A0 and B0 each contains only one com-

ponent, namely,

A0,0 =
q

2
+

1

∆t
and B0,0 = −

q

2
+

1

∆t
.

Since we have set δyy = δy = 0 at y0, it is not surprising that µ(y0)

and v(y0) do not appear in A0 and B0.
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We solve a sequence of matrix equations from k = K−1,K−2, ...,0 :

Af(sk) = Bf(sk+1),

where f is the vector

f(sk) = (f(sk, y0), · · · , f(sk, yL))T

and A and B are (L + 1)-dimensional tridiagonal matrices with the

lth rows given by

Al =

(
0, · · · ,0,

µ(yl)

4∆y
−

v(yl)

2(∆y)2
,
q

2
+

1

∆t
+

v(yl)

(∆y)2
,−

µ(yl)

4∆y
−

v(yl)

2(∆y)2
,0, · · · ,0

)

Bl =

(
0, · · · ,0,−

µ(yl)

4∆y
+

v(yl)

2(∆y)2
,−

q

2
+

1

∆t
−

v(yl)

(∆y)2
,
µ(yl)

4∆y
+

v(yl)

2(∆y)2
,0, · · · ,0

)

for l = 1, · · · , L− 1.
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and

A0 =
(
q

2
+

1

∆t
,0,0, · · · ,0

)
,

AL =

(
0, · · · ,0,

µ(yL)

2∆y
,
q

2
+

1

∆t
−

µ(yL)

2∆y

)
,

B0 =
(
−
q

2
+

1

∆t
,0,0, · · · ,0

)
,

BL =

(
0, · · · ,0,−

µ(yL)

2∆y
,−

q

2
+

1

∆t
+

µ(yL)

2∆y

)
.
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Backward induction procedure

• We start at time t−n . By applying the known analytic solution at

tn, we obtain f(t−n ). We then numerically solve backward in time

to t+n−1 by solving the matrix system: Af(sk) = Bf(sk+1).

• At time t+n−1, the numerical solution together with the function

g(·, tn−1) serves as the terminal condition for the numerical solu-

tion over the next time interval (tn−2, tn−1).

The finite difference algorithm is surprisingly accurate even with 50

time steps per each time interval. The maximum relative error com-

pared with the Monte Carlo simulation results is approximately 0.4%.
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The parameters are: r = 0.05, q = 0.0, σ = 0.2, T = 1.0, t = 0.0, n = 10,

S(0) = 100.0, ti = 0.1i. MC refers to Monte Carlo solution, and FD refers to

finite difference solution. The different I’s refer to the number of time steps. We

used I/10 number of steps per jump size 1/n in the y direction. The Monte Carlo

prices are based on 105 simulations with a control variate technique. The standard

deviations of the Monte Carlo option prices are approximately 3.0× 10−3.
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6.2 Discretely sampled lookback options

Fixed strike lookback call option

For t ≥ 0, we define the discretely monitored realized maximum of

the asset price S(t) by

S̄(t) = sup
1≤i≤m(t)

S(ti)

with S̄(t) = 0 for t < t1 for notational convenience.

Terminal payoff = (S̄(T )−K)+.

First, we solve for the time-t option value when S̄(t) ≥ K.

Next, we solve for the case S̄(t) < K. This is done by treating the

option pricing problem as a first passage problem of S to the level

K, where the payoff at the first passage time is equal to the option

value corresponding to S̄(t) ≥ K.
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1. S̄(t) = 0 for 0 ≤ t < t1 and S̄(t) = S(t1) for t1 ≤ t < t2. Here, tn

is the last observation date and T = tn+1 is the maturity date.

2. S̄(t) is updated to a higher value on an observation date if a new

maximum asset price is realized.
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Once S̄(t) ≥ K, t < T , the discrete fixed strike lookback call is guar-

anteed to be in-the-money. The time-t option price is given by

F (S(t), t) = E
Q
t

[
e−r(T−t)(S̄(T )−K)

]
= StE

Q′
t

[
e−q(T−t)S̄(T )

S(T )

]
− e−r(T−t)K.

This is consistent with the observation that Ft/e
qtSt is Q′-martingale.

Define x(t) = S̄(t)
S(t) for t ≥ t1. Note that we have adopted the change

of measure from Q to Q′ since it is more convenient to work with

x(t).

• Unlike the Asian option model, the numerical calculation of the

closed form analytic solution to E
Q′
t

[
e−q(T−t)S(T )

S(T )

]
is more cum-

bersome than its numerical solution via finite difference scheme

since the closed form formula involves n-dimensional cumulative

normal distribution functions.
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Potential updating of recorded realized maximum value across a sam-

pling date

It may occur that S(t−i ) ≥ S̄(t−i ) = S̄(ti−1). That is, the stock price

at t−i is equal to or higher than the recorded realized maximum on

the last fixing date. In this case, we have x(ti) = 1 since the updated

realized maximum S̄(ti) becomes S(ti) [by virtue of continuity of S(t)

across ti].

If otherwise, suppose we have S(t−i ) < S̄(t−i ) and so x(t−i ) > 1. There

will be no updated realized maximum. By continuity, we have x(ti) =

x(t−i ).

The jump amount on x(t) across t−i is equal to (i) zero if S(t−i ) <

S(t−i ). If otherwise, the jump amount is 1− x(t−i ) when x(t−i ) ≤ 1 ⇔
S(t−i ) ≥ S(t−i ).
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In summary, for 1 ≤ i ≤ n,

x(ti) =

{
1 if x(t−i ) ≤ 1

x(t−i ) if x(t−i ) > 1
. (i)

On the observation date ti, we always have x(ti) ≥ 1. After then,

x(t) may drop below 1 when S(t) increases beyond S(ti).
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The process xt may jump by an amount (1−x(t−))+ when t falls on an

observation date. Such jump occurs when a new realized maximum

of the stock price is recorded on that observation date. In between

two successive observation dates, the evolution of xt is continuous.

Under Q′, the dynamics of xt is governed by

dx(t) = −(r − q)x(t−)dt− σx(t−)dW ′(t) + (1− x(t−))+dm(t)

x(t1) = 1.

Therefore, xt is a Markov process with domain on x > 0.

We define

f(x(t), t) = E
Q′
t

[
e−q(T−t)S̄(T )

S(T )

]
= EQ′ [

e−q(T−t)x(T )|x(t)
]
.
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When t ≥ t1, suppose S̄(t) ≥ K, then

F (S(t), t) = S(t)f(x(t), t)− e−r(T−t)K. (A)

At the first time ti(i ≤ n) with S staying at or above K, x(ti) = 1

since a newly recorded maximum must occur and so gives a jump of

x(t) to the value one. We then obtain the payoff

F (S(ti), ti) = S(ti)f(1, ti)− e−r(T−ti)K. (i)

• Note that S̄(t)−K can change sign only on the observation dates

at which potential updating of the recorded maximum value may

occur.

40



How about when S̄(t) < K? In general, for t ≥ 0 with S̄(t) < K, we

deduce from eq.(i) that

F (S(t), t) = EQ
[
e−r(τ∗−t){S(τ∗)f(1, τ∗)− e−r(T−τ∗)K}1τ∗≤tn|S(t)

]
,

(B)

where τ∗ is the first passage time defined by

τ∗ = inf
i=1,··· ,n

{ti : S(ti) ≥ K},

with the convention: inf ϕ = ∞.

Like an up-and-in barrier option, the option expires with zero terminal

payoff unless S(t) crosses K at some random first passage time τ∗.

Numerical procedure

1. First, solve for f(x, u) for all (x, u) with u ≥ max(t, t1).

2. If S̄(t) ≥ K, then the option price is given by eq. (A). Otherwise,

solve the first passage time problem as depicted in eq. (B).
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Numerical solution for f(y, t), corresponding to the scenario S(t) ≥ K

Let y = lnx. For the jump dynamics, it is seen that when y < 0

(which is equivalent to x < 1) at t−i , then y jumps to 0 across ti.

When y ≥ 0 at t−i , y remains continuous across ti.

By virtue of the Feynman-Kac representation theorem, for ti−1 < t <

ti, i = 2,3, . . . , n+ 1, and the incorporation of the jump dynamics in

y via the auxiliary condition on an observation date, f is governed by

qf =
∂f

∂t
−
(
r − q +

σ2

2

)
∂f

∂y
+

σ2

2

∂2f

∂y2
,

subject to

f(y, t−i ) =

{
f(0, t+i ) if y < 0

f(y, t+i ) if y ≥ 0

f(y, T ) = ey.

We solve for f(y, t) for t+1 < t < T . Note that f(y, t) is not defined

for t < t1 since no maximum value has yet recorded.
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Calculations for f [S̄(t) ≥ K];
time marching in τ = T − t, where τ is the time to expiry.

qf =
∂f

∂t
−
(
r − q +

σ2

2

)
∂f

∂y
+

σ2

2

∂2f

∂y2
,

−∞ < y < ∞, t1 < t < T = tn+1.

jump condition at ti : f(y, t
−
i ) =

{
f(0, t+i ) if y < 0
f(y, t+i ) if y ≥ 0

, i = n− 1, n− 2, · · · ,1;

terminal payoff: f(y, T ) = ey.

Lookback option value F (S(t), t) = S(t)f(y, t)− e−r(T−t)K, yt = ln
S(t)

S(t)
.
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Numerical solution for g(y, t), corresponding to the scenario S(t) < K

For S̄(t) < K, we may define y = ln S(t)
K , and g = F

K . Note that g is

governed by

rg =
∂g

∂t
+

(
r − q −

σ2

2

)
∂g

∂y
+

σ2

2

∂2g

∂y2

on {(y, t) : ti−1 < t < ti, i = 1,2, · · · , n;−∞ < y < ∞}, subject to the

auxiliary conditions:

g(y, t−i ) =

{
g(y, t+i ) if y < 0

eyf(0, ti)− e−r(T−ti) if y ≥ 0

g(y, tn) = 0.

Note that if S̄(t) < K for t ≥ tn, then F (S(t), t) = 0 since the lookback

option is sure to be out-of-the-money at expiry.
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• We may treat f and g in the same grid and simultaneously solve for

f and g at each time step in that respective order. Be aware that

the coefficients in the finite difference schemes are different since

the governing equations are not the same. Also, the definitions of

the independent variable y in the two formulations are different.

Remark

For y ≥ 0 at t = ti, this corresponds to the first time that S(t)

reaches K or above. The option value normalized by K is given

by [see eq.(i)]

g(y, ti) =
F (y, ti)

K
= eyf(0, ti)− e−r(T−ti),

where x(ti) = 1 ⇔ y = 0 and
S(ti)

K
= ey.

• At current time t, values of options of different strikes are gener-

ated by

F (S(t), t) = Kg

(
S(t)

K
, t

)
.
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Calculations for g [S̄(t) < K]; τ is the time to expiry.

rg =
∂g

∂t
+

(
r − q −

σ2

2

)
∂g

∂y
+

σ2

2

∂2g

∂y2
, −∞ < y < ∞, 0 < t < tn.

g(y, t−i ) =

{
g(y, t+i ) if y < 0
eyf(0, ti)− e−r(T−ti) if y ≥ 0

, i = n− 1, n− 2, · · · ,1;

g(y, tn) = 0.

Lookback option value F (S(t), t) = Kg(y, t), where yt = ln
S(t)

K
.
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The parameters are: r = 0.05, q = 0.0, σ = 0.2, T = 1.0, t = 0.0, n = 10,

S(0) = 100.0, ti = 0.1i. MC refers to Monte Carlo solution, and FD refers to

finite-difference solution. The different I’s refer to the number of time steps and

also to the number of steps in the y-direction. The Monte Carlo prices are based

on 105 simulations with a control variate technique. The standard error on the

estimated Monte Carlo option prices is approximately 3.0× 10−3.
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Floating strike lookback option

Terminal payoff =
(
S̄(T )− αS(T )

)+. The fair option price is given by

F (S(t), t) = S(t)EQ′
t

e−q(T−t)
(
S̄(T )

S(T )
− α

)+
= S(t)EQ′

t

[
e−q(T−t) (x(T )− α)+ |x(t)

]
= S(t)f(x(t), t) if t ≥ t1.

It suffices to solve for f(x, t) where t ≥ t1. For t < t1, there is no

recorded maximum value yet. Observe that F (t1) = S(t1)f(1, t1)

since
S(t1)

S(t1)
= 1 for sure. Since f(1, t1) is independent of asset price

dynamics, so

F (S(t), t) = e−r(t1−t)E
Q
t [S(t1)]f(1, t1)

= e−r(t1−t)e(r−q)(t1−t)S(t)f(1, t1)

= e−q(t1−t)S(t)f(1, t1), t < t1.

Again, this result arises from the property that Ft/e
qtSt is Q′-martingale.
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With y = lnx, f solves

qf =
∂f

∂t
−
(
r − q +

σ2

2

)
∂f

∂y
+

σ2

2

∂2f

∂y2

where ti−1 < t < ti, i > 1. At t = t−i , suppose S(ti) > S̄(ti) = S̄(ti−1),

this corresponds to

x(t−i ) =
S̄(t−i )

S(t−i )
< 1 ⇔ y(t−i ) < 0.

Right at the moment t = ti, y jumps to the “zero” value. By con-

tinuity, f(y, t−i ) = f(0, ti), y < 0. When y ≥ 0, we expect to have

continuity of f across ti. The auxiliary conditions become

f(y, t−i ) =

{
f(0, ti) if y < 0
f(y, ti) if y ≥ 0

, i = n, n− 1, · · · ,1;

f(y, t−n+1) = f(T, y) = (ey − α)+.
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The formulation for floating strike lookback option is very similar to

that of the fixed strike lookback option under S(t) ≥ K, except that

the terminal condition at T is changed to (ey − α)+.

Remark

All options with α ≤ 1 are guaranteed to be “in-the-money”. For

α < 1, the European option contract has a value that equals the

value of the counterpart with α = 1 plus S(t)(1− α)e−q(T−t). This is

easily seen since

F (t) = e−r(T−t)E
Q
t [S(T )− αS(T )]

= e−r(T−t)E
Q
t

[{
S(T )− S(T )

}
+ (1− α)S(T )

]
= e−r(T−t)E

Q
t [S(T )− S(T )] + (1− α)S(t)e−q(T−t).

In other words, once the lookback option price for α = 1 is known,

the option price for α < 1 can be obtained by adding an extra term

(1− α)S(t)e−q(T−t).
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We perform the usual finite difference calculations as those of the

vanilla option models, except that we impose the auxiliary condition:

f(y, t−i ) = f(0, ti) for y < 0, i = n, n− 1, · · · ,1.
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The parameters are: r = 0.05, q = 0.0, σ = 0.2, T = 1.0, t = 0.0, n = 10,
S(0) = 100.0, ti = 0.1i. MC refers to Monte Carlo solution, and FD refers to
finite-difference solution. The different I’s refer to the number of time steps and
also to the number of steps in the y-direction. The Monte Carlo prices are based
on 105 simulations with a control variate technique. The standard deviation of the
Monte Carlo option prices is approximately 3.0× 10−3.

• Option prices drop drastically with increasing value of α.
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