
MATH 4321 – Game Theory

Solution to Homework Four

Course instructor: Prof. Y.K. Kwok

1. To show equivalence of the game vectors, it suffices to consider the set of winning
coalitions for each of the voting systems and check whether they are the same. It is
seen that all of the 3-person games lead to the same set of winning coalitions, namely,
W = {AB,AC,ABC}. Hence, all these 3-person games are equivalent.

2. Express the yes-no system as a weighted voting system.
We let the voting weight of the jth nonpermanent member Nj and the ith permanent
member Pi be 1 and w, respectively. Also, we let q denote the quota. According to the
rule of passage of a bill, where each of Pi has veto power, we deduce the following pair of
inequalities:

3w + 4 ≥ q and 2w + 8 < q.

Combining the inequalities, we obtain

3w + 4 > 2w + 8 giving w > 4.

Suppose we set w = 5, then q satisfies

19 ≥ q > 18,

giving q = 19. The corresponding weighted voting system is given by

[19; 5, 5, 5, 1, 1, 1, 1, 1, 1, 1, 1].

3. (a) Reasonable. Adding more voters in a winning coalition X to form Y gives the
enlarged coalition Y that remains winning.

(b) Non-reasonable. Quote a counter-example. Consider the 3-person voting game in
which approval is by majority vote. Take X = {A,B} and Y = {B,C}, both are
winning. However, X ∩ Y = {B} is losing.

(c) Reasonable. If X and Y are disjoint, then Y is a subset of the complement of X.
Suppose both X and Y are winning, the complement of X is also winning [by virtue
of (a)]. However, it is not reasonable to have both X and its complement to be both
winning.

(d) Reasonable. Since X∪Y ⊇ X and X is winning, by virtue of (a), X∪Y is winning.

(e) Non-reasonable. Quote a counter-example. Consider the 3-person voting game
in which approval is by majority vote. Take X = {A,B}, Y = {A} and Z = {B}.
Obviously, both Y and Z are not winning coalitions.

4. (a) Consider the weighted voting system [5; 4, 2, 1, 1, 1]:
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(i) Shapley-Shubik indexes
The 4-vote player is pivotal if there are one to three other players entering into
a coalition before he enters. The number of such orderings is

O4 =
3∑

n=1

c4nn!(4− n)! = 72.

The 2-vote player is pivotal if the 4-vote player joins earlier or all three 1-vote
player join earlier in a coalition. The number of such orderings is

O2 = 1!3! + 3!1! = 12.

The 1-vote player is pivotal if either (1) the 4-vote player joins earlier, or (2)
the 2-vote player and two 1-vote players join earlier in a coalition. The number
of such orderings is

O1 = 3(2!) + 3(2!) = 12.

The individual Shapley-Shubik indexes are

Φ4 =
72

5!
=

3

5
,Φ2 =

12

120
=

1

10
and Φ1 =

12

120
=

1

10
.

Surprisingly, the 2-vote player and the three 1-vote players are equally powerful
under the Shapley-Shubik power index.

(ii) Banzhaf indexes
The 4-vote player is marginal in the winning coalition if the winning coalition
contains one to three other players. The number of such coalitions is

B4 =
3∑

n=1

c4n = 14.

The 2-vote player is marginal in the winning coalition if the winning coalition
contains either (1) the 4-vote player only, or (2) all the three 1-vote players.
The number of such coalitions is B2 = 2. Lastly, any one of the 1-vote players
is marginal if the winning coalition contains either (1) the 4-vote player or (2)
the 2-vote player and both of the other two 1-vote players. The number of such
coalitions is B1 = 1 + 1 = 2. The individual Banzhaf indexes are given by

β4 =
14

14 + 2 + 2× 3
=

7

11
, β2 =

1

11
and β1 =

1

11
.

Surprisingly, the 2-vote player is equally powerful as any one of the three 1-vote
players under the Banzhaf power index.

(b) Consider the weighted voting system [9; 5, 4, 3, 2, 1]:

(i) Shapley-Shubik indexes
The 5-vote player is pivotal if players “4” or “4, 1” or “4, 2” or “4, 3” or “4, 1,
2” or “4, 1, 3” or “3, 1” or “3, 2” or “3, 1, 2” entering into a coalition before he
enters. The number of such orderings is

O5 = 1!3! + 5× 2!2! + 3× 3!1! = 44.
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The 4-vote player is pivotal if players “5” or “5, 1” or “5, 2” or “5, 3” or “5, 1,
2” or “3, 2” or “3, 1, 2” entering into a coalition before he enters. The number
of such orderings is

O4 = 1!3! + 4× 2!2! + 2× 3!1! = 34.

The 3-vote player is pivotal if players “5, 1” or “5, 2” or “5, 1, 2” or “4, 2” or “4,
1, 2” entering into a coalition before he enters. The number of such orderings is

O3 = 3× 2!2! + 2× 3!1! = 24.

(ii) Banzhaf indexes
The 5-vote player is marginal in a winning coalition if the winning coalition
contains either “4” or “4, 1” or “4, 2” or “4, 3” or “4, 1, 2” or “4, 1, 3” or “3,
1” or “3, 2” or “3, 1, 2”. The number of such coalitions is B5 = 9.
The 4-vote player is marginal in a winning coalition if the winning coalition
contains either “5” or “5, 1” or “5, 2” or “5, 3” or “5, 1, 2” or “3, 2” or “3, 1,
2”. The number of such coalition is B4 = 7.
The 3-vote player is marginal in a winning coalition if the winning coalition
contains either “5, 1” or “5, 2” or “5, 1, 2” or “4, 2” or “4, 1, 2”. The number
of such coalitions is B3 = 5.
The 2-vote player is marginal in a winning coalition if the winning coalition
contains either “5, 3” or “4, 3” or “4, 3, 1”. The number of such coalitions is
B2 = 3.
The 1-vote player is marginal in a winning coalition if the winning coalition
contains either “5, 3” only. The number of such coalitions is B1 = 1.
The individual Banzhaf indexes are given by

β5 =
9

9 + 7 + 5 + 3 + 1
=

9

25
, β4 =

7

25
, β3 =

5

25
=

1

5
,

β2 =
3

25
and β1 =

1

25
.

5. Let p be the voting probability of each of the four players, assuming homogeneity. We
have

πA(p) = P (B say “yes”, zero, one or two of C and D say “yes”)

+ P (B say “no”, both of C and D say “yes”)

= p[(1− p)2 + 2p(1− p) + p2] + (1− p)p2 = p+ p2 − p3;

πB(p) = P (A say “yes” and zero or one of C and D say “yes”);

= p[(1− p)2 + 2p(1− p)] = p− p3;

πC(p) = P (A say “yes”, B say “no”, D say “yes”) = p2(1− p) = p2 − p3;

πD(p) = πC(p) = p2 − p3.

The Shapley-Shubik indexes and Banzhaf indexes of the players are found to be

β =

(
πA

(
1

2

)
, πB

(
1

2

)
, πC

(
1

2

)
, πD

(
1

2

))
=

(
5

8
,
3

8
,
1

8
,
1

8

)
;

Φ =

(∫ 1

0

πA(p) dp,

∫ 1

0

πB(p) dp,

∫ 1

0

πC(p) dp,

∫ 1

0

πD(p) dp

)
=

(
7

12
,
1

4
,
1

12
,
1

12

)
.
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6. According to the voting rule, the passage of a bill requires support from at least 4 members
in the entire legislature and at least 2 votes from the 3-person committee.

(i) Shapley-Shubik indexes
A committee member A is pivotal if there are either (1) two other “A”s and exactly
one “b”, or (2) exactly one “A” and at least two “b”s entering into a coalition before
A enters. The number of such orderings is

OA = c413!3! +
4∑

n=2

c21c
4
n(n+ 1)!(4− n+ 1)! = 4!× 50.

The Shapley-Shubik indexes of A and b are given by

ΦA =
4!× 50

7!
=

5

21
and Φb =

1

4
(1− 3ΦA) =

1

14
.

Note that we have used the relation: sum of all Shapley-Shubik indexes equals
one. The ratio of power (Shapley-Shubik) between a committee member and a non-

committee member is
5/21

1/14
=

10

3
.

(ii) Banzhaf indexes
A committee member A is marginal in a winning coalition if the coalition contains
either (1) other two “A”s and exactly one “b”, or (2) exactly one “A” and at least
two “b”s. The number of such coalitions is

BA = c41 +
4∑

n=2

c21c
4
n = 26.

A non-committee member is marginal in the winning coalition if the coalition also
contains n “A”s and exactly 3 − n other “b”s, where n ≥ 2. The number of such
coalitions is

Bb =
3∑

n=2

c3nc
3
3−n = 10.

The individual Banzhaf indexes are given by

βA =
26

26× 3 + 10× 4
=

13

59
and βb =

10

26× 3 + 10× 4
=

5

59
.

The ratio of power (Banzhaf) between a committee member and a non-committee

member is
13

5
.

7. (a) With 5 other equally split stockholders, the proportion of shares held by each of

these 5 stockholders is
100%− 40%

5
= 12%. Together with the major stockholder,

there are 6 players in the voting game.

(i) Shapley-Shubik indexes
L is pivotal if there are one, two, three or four other small stockholders (S)
entering into the coalition before L enters. Out of 6 possible ordering of entry of
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L, there are 4 orderings that L pivots, so the individual Shapley-Shubik indexes
are given by

ΦL =
4× 5!

6!
=

2

3
, ΦS =

1

5
(1− ΦL) =

1

15
.

(ii) Banzhaf indexes
L is marginal in the winning coalition if the coalition also contains 1 ∼ 4 other
stockholders. The number of such coalitions is bL =

∑4
n=1 c

5
n = 30.

S is marginal in the winning coalition if the coalition also contains either (1) L
only or (2) exactly 4 S’s. The number of such coalitions is bS = 1+ c44 = 2. The
Banzhaf indexes are given by

βL =
30

30 + 5× 2
=

3

4
, βS =

2

30 + 5× 2
=

1

20
.

(b) With 7 other equally split stockholders, the proportion of shares held by each of

these 7 stockholders is
100%− 40%

7
= 8.57%.

(i) Shapley-Shubik indexes
L is pivotal if there are two, three, four or five other small stockholders (S)
entering into the coalition before L enters. The number of such orderings is 4
out of 8 possible orderings, so the individual Shapley-Shubik indexes are given
by

ΦL =
4× 7!

8!
=

1

2
, ΦS =

1

7
(1− ΦL) =

1

14
.

(ii) Banzhaf indexes
L is marginal in a winning coalition if the coalition also contains two, three, four
or five small stockholders. The number of such coalitions is

BL =
5∑

n=2

c7n = 112.

S is marginal in a winning coalition if the coalition also contains either (1) L
and exactly one other “S”, or (2) exactly five other small stockholders. The
number of such coalition is B5 = c61 + c65 = 12.
The individual Banzhaf indexes are given by

βL =
112

112 + 7× 12
=

4

7
and βS =

12

112 + 7× 12
=

3

49
.

When the remaining proportion of shares are split among a large number of
stockholders, the chance of forming a winning coalitions among the small stock-
holders against the major stockholder is less, so the major stockholder is less
powerful when there are more equally split small stockholders.

8. (a) Let the voting weight of each small state be 1 and the voting weight of each big state
be x. The quota q must satisfy

3x+ 2 ≥ q and q > 2x+ 6.

Solving the inequalities yields x > 4. Suppose we take x = 5, then q satisfies
17 ≥ q > 16, so q = 17. The yes-no voting system can be written as the weighted
voting system with voting vector specified as [17; 5, 5, 5, 1, 1, 1, 1, 1, 1].
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(b) πb(p) = P (other 2 big states say “yes” and at least 2 small states say “yes”)

= p2

[
6∑

k=2

c6kp
k(1− p)6−k

]
= 15p4 − 40p5 + 45p6 − 24p7 + 5p8;

πs(p) = P (all 3 big states say “yes” and exactly one other small state says “yes”)

= c51p
3
[
p(1− p)4

]
.

(c) The Shapley-Shubik index and Banzhaf index of any of the big states are given by

Φb =

∫ 1

0

πb(p) dp =

∫ 1

0

(15p4 − 40p5 + 45p6 − 24p7 + 5p8) dp =
20

63
;

Φs =

∫ 1

0

πs(p) dp

=

∫ 1

0

c51p
4(1− p)4 dp = c51

4!4!

9!
=

1

126
;

β′
b = πb

(
1

2

)
=

57

256
;

β′
s = πs

(
1

2

)
=

5

256
.

As a check, 3Φb + 6Φs = 3× 20
63

+ 6× 1
126

= 1.

Normalizing the Banzhaf indexes, we obtain βb =
57

201
and βs =

5

201
.

(d) Assume that the 3 big states vote independently and the 6 smaller states vote as a
homogeneous group. Let p1, p2 and p3 be the voting probabilities of the 3 big states,
respectively, and p be the common voting probability of the small states. We first
compute πbk(p, p1, p2, p3), k = 1, 2, 3, and πs(p, p1, p2, p3) in terms of p1, p2, p3, p as
follows:

(i) πb1(p, p2, p3) = P (other 2 big states say “yes” and at least 2 small states say
“yes”)

= p2p3

[
6∑

k=2

c6kp
k(1− p)6−k

]
;

(ii) πb2(p, p1, p3) = p1p3

[
6∑

k=2

c6kp
k(1− p)6−k

]
;

(iii) πb3(p, p1, p2) = p1p2

[
6∑

k=2

c6kp
k(1− p)6−k

]
;

(iv) πs(p, p1, p2, p3) = P (3 big states say “yes” and exactly one small state say “yes”)
= p1p2p3[c

5
1p(1− p)4].
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The power index of the big state “1” and any small state are given by

Φb1 = E[πb1(p, p1, p2, p3)]

=

∫ 1

0

∫ 1

0

∫ 1

0

p2p3

[
6∑

k=2

c6kp
k(1− p)6−k

]
dp2dp3dp

=

∫ 1

0

p2 dp2

∫ 1

0

p3 dp3

[∫ 1

0

c62p
2(1− p)4 dp+

∫ 1

0

c63p
3(1− p)3 dp

+

∫ 1

0

c64p
4(1− p)2 dp+

∫ 1

0

c65p
5(1− p) dp+

∫ 1

0

c66p
6 dp

]
=

(
1

2

)2 [
c62
2!4!

7!
+ c63

3!3!

7!
+ c64

4!2!

7!
+ c65

5!

7!
+ c66

6!

7!

]
;

Φs = E[πs(p, p1, p2, p3)] =

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

p1p2p3
[
c51p(1− p)4

]
dp1dp2dp3dp

=

(
1

2

)3

c51

∫ 1

0

p(1− p)4 dp =
c51
8

4!

6!
=

1

40
.

9. (a) The payoff matrices of the corresponding zero-sum games are A =

(
1
2

0
1 0

)
, BT = A.

Performing the standard calculations gives

value(A) = value(BT ) = 0.

Hence, the security point is (0, 0). The Nash bargaining problem is then

Maximize uv

subject to u+ v ≤ 1, 0 ≤ u ≤ 1, 0 ≤ v ≤ 1.

By calculus, the solution is ū = 1
2
, v̄ = 1

2
. The bargaining solution is that each

contestant should split. That seems fair and natural. Note that the slope of the
line joining the security point and bargaining solution is negative to that of the
Pareto-optimal boundary line.

7



How to achieve the negotiated outcome (1
2
, 1
2
)?

(i) Both cooperate to play (split, split) to get (1
2
, 1
2
).

(ii) They agree to play (claim, split) and (split, claim) 50% of the time for each
pair of pure strategies. The expected payoff is

1

2
(0, 1) +

1

2
(1, 0) =

(
1

2
,
1

2

)
.

In a cooperative game, we implicitly assume that the game can be repeated many
times.

(b) With the change of the game matrix, the new zero-sum game matrices are

A =

(
α 0
1 0

)
and BT =

(
1− α 0
1 0

)
.

The values of the games remain the same, where value(A) = 0 and value(BT ) = 0.
Therefore, the formulation of the bargaining game is identical to that of part (a).
The bargaining solution remains to be (1

2
, 1
2
); and for α ̸= 1

2
, it does not correspond

to (split, split) as before.

Aa a summary, the optimal cooperative outcome cannot be achieved by playing
(split, split). It can be achieved by playing 50% of the time for (claim, split) and
(split, claim).

To find the threat strategies, we note that mp = −1 (since the Pareto-optimal
boundary is u+ v = 1). We consider

−mpA−B = A−B =

(
α 0
1 0

)
−
(

1− α 1
0 0

)
=

(
2α− 1 −1

1 0

)
, 0 < α < 1.

Note that (claim, claim) is the saddlepoint of A−B (observing row min and column
max). It is quite natural for both players to choose this optimal threat strategy with
outcome (0, 0) since playing “claim” is the weakly dominant strategy. We obtain the
same bargaining solution (1

2
, 1
2
) as part (a). The Nash bargaining solution improves

the outcomes of both players.

(c) (i) If the second player trusts the first player, the outcome is (1
2
, 1
2
), same as that

of the optimal cooperative outcome.

(ii) If otherwise, the second player should play “claim” as the threat strategy. With-
out trust, the first player responds by playing “claim” as well, which is a weakly
dominant strategy. Since the game is played only once and there is no coopera-
tion, the worse outcome (0,0) is resulted.

10. (a) The Nash bargaining problem is formulated as

Maximize (u− u∗)(v − v∗) = [f(w)− pw][pw + (W − w)p0 −Wp0]

= [f(w)− pw](p− p0)w

with (p, w) ∈ S, where

S = {(u, v)|u ≥ u∗, v ≥ v∗}
= {(u, v)|u ≥ 0, v ≥ Wp0}
= {(p, w)|f(w)− pw ≥ 0, p ≥ p0, 0 ≤ w ≤ W}.
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(b) Set h(p, w) = [f(w)− pw](p− p0)w. The first order conditions are found to be

∂h

∂p
= w[(p0 − 2p)w + f(w)] = 0

∂h

∂w
= (p− p0){f(w) + w[f ′(w)− 2p]} = 0.

Since we seek solution for p > p0, so we can cancel the factor p− p0 in ∂h
∂w

. Solving
the first equation for p gives the relation between the pay level p and size of the work
force w:

p =
wp0 + f(w)

2w
.

Substitute this p into the second equation to obtain

f(w) + w

[
f ′(w)− wp0 + f(w)

w

]
= f(w) + wf ′(w)− p0w − f(w)

= w[f ′(w)− p0] = 0.

This gives f ′(w) = p0. The critical point occurs at which the marginal revenue
f ′(w) is equal to the minimum pay level. The increase of revenue for the last worker
balances the minimum pay to this last worker. Recall that the marginal revenue
f ′(w) is decreasing in w. The management stops hiring worker when the gain in
hiring one more worker becomes lower than the minimum wage paid to the worker.
This gives

p∗ =
w∗p0 + f(w∗)

2w∗ ,

where w∗ = (f ′)−1(p0).

(c) Applying the formula: p0 = f ′(w∗) to f(w) = ln(w + a) + b, we obtain

p0 = f ′(w∗) =
1

w∗ + a
.

This gives the optimal number of workers hired

w∗ =
1

p0
− a > 0

and the optimal salary level

p∗ =
w∗p0 + f(w∗)

2w∗ =
p0[ap0 − ln( 1

p0
− a)− b− 1]

2ap0 − 2
.
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