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1. (a) Candidate i’s expected payoff is given by

fi(si, s−i) =


1

2
v, s1 = s2 = 0

si
s1 + s2

v − si =

(
v

s1 + s2

− 1

)
si, otherwise

,

specifically,

f1(s1, s2) =


1

2
v, s1 = s2 = 0(

v

s1 + s2

− 1

)
s1, otherwise

and

f2(s1, s2) =


1

2
v, s1 = s2 = 0(

v

s1 + s2

− 1

)
s2, otherwise

.

• For a given s2 = 0,

f1(s1) =


1

2
v, s1 = 0

v − s1, s1 > 0
,

which does not have maximum value. Therefore, the best-response function for
player 1 given s2 = 0 is s1(0) = 0+. Intuitively, player 1 spends slightly larger than
zero and still wins. The similar fact also holds for player 2.
Alternatively: Or you can say the best-response functions for both players do
not exist when the other player’s spending level is zero.

• For a given s2 > 0, taking the first-order derivative and setting it to zero, we get
the best-response function of player 1:

∂f1

∂s1

=
vs2

(s1 + s2)2
− 1 = 0 =⇒ s1(s2) =

√
vs2 − s2.

To verify, we calculate the second-order derivative:

∂2f1

∂s2
1

= − 2vs2

(s1 + s2)3
< 0.

Similarly,
s2(s1) =

√
vs1 − s1, s1 > 0.

(b) • When either s1 = 0 or s2 = 0, according to (a), the best-response function for at
least one of the players does not exist. We thus cannot find any Nash equilibrium
in this case.

• When s1s2 > 0, the unique Nash equilibrium is given by the intersection of the two
best-response functions:{

s1 =
√
vs2 − s2

s2 =
√
vs1 − s1

=⇒ s∗1 = s∗2 =
v

4
.
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(c) In this case, the expected payoff of player 2 changes to

f2(s2) =


1

2
kv, s1 = s2 = 0(
kv

s1 + s2

− 1

)
s2, otherwise

.

Her best-response function changes to

s2(s1) =
√
kvs1 − s1, s1 > 0.

Together with s1(s2) =
√
vs2−s2, s2 > 0, we find s∗′1 = k

(k+1)2
v < v

4
and s∗′2 =

(
k
k+1

)2
v >

v
4
. Therefore, the Nash equilibrium spending level decreases for player 1 but increases

for player 2.

2. (a) Suppose Γ >
∑N

j=1 qj. Take the first-order derivative and set it to zero:

∂ui
∂qi

= Γ− 2qi −
N∑
j 6=i

qj − ci = 0 =⇒ qi(q−i) =
Γ−

∑N
j 6=i qj − ci
2

, i = 1, 2, · · · , N.

To verify the critical point is a maximum, we check the second-order derivative is
negative:

∂2ui
∂q2

i

= −2 < 0.

Using the relation

2qi +
N∑
j 6=i

qj = Γ− ci, i = 1, 2, · · · , N,

we get the following equation
2 1 1 · · · 1
1 2 1 · · · 1
...

...
...

...
...

1 1 1 · · · 2




q1

q2
...
qN

 =


Γ− c1

Γ− c2
...

Γ− cN

 ,

which yields
q1

q2
...
qN

 =
1

N + 1


N −1 −1 · · · −1
−1 N −1 · · · −1
...

...
...

...
...

−1 −1 −1 · · · N




Γ− c1

Γ− c2
...

Γ− cN

 =


Γ−Nc1+

∑N
j 6=1 cj

N+1
Γ−Nc2+

∑N
j 6=2 cj

N+1
...

Γ−NcN+
∑N

j 6=N cj

N+1

 .

Therefore, the optimal quantity produced by firm i is given by

q∗i =
Γ−Nci +

∑N
j 6=i cj

N + 1
, i = 1, 2, · · · , N.

We argue that the optimal strategy profile (q∗i , q
∗
−i) we get forms a Nash equilibrium.

For any firm i, the profit it gets under the strategy profile (q∗i , q
∗
−i) is given by

ui(q
∗
i , q
∗
−i) =

(
Γ−Nci +

∑N
j 6=i cj

N + 1

)2

.
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Suppose player i deviates from the profile to a quantity q′i 6= q∗i and others do not
change, her profit function changes to

ui(q
′
i, q
∗
−i) = q′i

(
2Γ− 2Nci + 2

∑N
j 6=i cj

N + 1
− q′i

)

= −

(
q′i −

Γ−Nci +
∑N

j 6=i cj

N + 1

)2

+

(
Γ−Nci +

∑N
j 6=i cj

N + 1

)2

<

(
Γ−Nci +

∑N
j 6=i cj

N + 1

)2

= ui(q
∗
i , q
∗
−i).

Then player i will not deviate from the profile (q∗i , q
∗
−i), otherwise she will be worse off.

Therefore, we conclude that (q∗i , q
∗
−i) is a Nash equilibrium.

(b) Assuming c1 = c2 = · · · = cN = c, we have

q∗ =
Γ− c
N + 1

.

When N →∞, the optimal quantity q∗ → 0 for each firm.

3. (a) According to the charity auction rule, the expected payment for each bidder is equal
to her bidding amount, namely,

β(v) = D(v) = vFN−1(v)−
∫ v

vmin

FN−1(u) du.

Since F (v) is uniform over [vmin, vmax], we have

β(v) = v

(
v − vmin

vmax − vmin

)N−1

−
∫ v

vmin

(
u− vmin

vmax − vmin

)N−1

du

= v

(
v − vmin

vmax − vmin

)N−1

− 1

N

(
v − vmin

vmax − vmin

)N
(vmax − vmin)

=

(
v − vmin

vmax − vmin

)N−1(
v − v − vmin

N

)
, v ∈ [vmin, vmax]

(b) Bidder 1’s expected payoff is expressed by

Π(x; v) = vFN−1(x)−D(x) = vFN−1(x)− β(x), x = β−1(b)

for the charity auction. Since b∗ = β(v), we have x = v at b = b∗.

To maximize Π(v) with respect to the bidding amount b, we take the first-order deriva-
tive and set it to zero:

dΠ

db

∣∣∣∣
b∗=β(v)

= v
dFN−1

dx

∣∣∣∣
x=v

dx

db

∣∣∣∣
b∗=β(v)

− dβ

dx

∣∣∣∣
x=v

dx

db

∣∣∣∣
b∗=β(v)

= 0

⇐⇒ v
dFN−1(v)

dv
=

dβ(v)

dv
⇐⇒

∫
v dFN−1(v) =

∫
dβ(v)

⇐⇒ vFN−1(v)− vminFN−1(vmin)−
∫
FN−1(u) du = β(v)− β(vmin)
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Since Π(x; vmin)|x=vmin
= vminF

N−1(vmin)− β(vmin) = 0, we have

b∗ = β(v) = vFN−1(v)−
∫ v

vmin

FN−1(u) du,

which maximizes bidder 1’s expected payoff. Then bidder 1 will always get a lower
payoff if she deviates to any bidding rule other than b∗ = β(v). Therefore, the bidding
rule we calculated above is exactly a Nash equilibrium.

4. (a) (i) When x > y, player 1 shoots earlier than player 2, her expected payoff is given by

M(x, y) = (1)P1(x) + (−1)[1− P1(x)] = 2P1(x)− 1.

(ii) When x = y, the two players shoot simultaneously, the expected payoff for player
1 is

M(x, y) = (1)P1(x)[1− P2(x)] + (−1)[1− P1(x)]P2(x) = P1(x)− P2(x).

(iii) When x < y, player 2 shoots first, the expected payoff for player 1 is given by

M(x, y) = (−1)P2(y) + (1)[1− P2(y)] = 1− 2P2(y).

Therefore, we have

M(x, y) =


2P1(x)− 1, x > y

P1(x)− P2(x), x = y

1− 2P2(y), x < y

.

(b) Method I: For player 1, she chooses x to maximize M(x, y). Since it is a zero-sum
game, she takes into account min

y
M(x, y). When x < y, player 2 minimizes M(x, y) by

choosing y = x+. Then player 1 considers the following maximin problem:

max
x

min
y
M(x, y) = max

x
min[2P1(x)− 1, P1(x)− P2(x), 1− 2P2(x)].

• When x ≤ x∗, we have P1(x) + P2(x) ≥ 1. Then

2P1(x)− 1 ≥ P1(x)− P2(x) ≥ 1− 2P2(x)

and
max
x

min
y
M(x, y) = max

x≤x∗
[1− 2P2(x)],

which equals P1(x)− P2(x) when x = x∗.

• When x ≥ x∗, we have P1(x) + P2(x) ≤ 1. Then

2P1(x)− 1 ≤ P1(x)− P2(x) ≤ 1− 2P2(x)

and
max
x

min
y
M(x, y) = max

x≥x∗
[2P1(x)− 1],

which equals P1(x)− P2(x) when x = x∗.
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• When x = x∗, we have P1(x) + P2(x) = 1. Then

2P1(x)− 1 = P1(x)− P2(x) = 1− 2P2(x)

and and
max
x

min
y
M(x, y) = P1(x∗)− P2(x∗).

In conclustion, player 1’s expected payoff M(x, y) is maximized at x = x∗ taking into
account min

y
M(x, y). Similarly, player 2 will also choose the distance y∗ satisfying

P1(y∗)+P2(y∗) = 1 to maximize her own payoff given that player 1 is trying to minimize
it.

Method II: We argue that the strategy profile (x∗, y∗) forms a Nash equilibrium, under
which player 1’s payoff is given by

M(x∗, y∗) = P1(x∗)− P2(x∗) = P1(y∗)− P2(y∗)

since x∗ = y∗.

• When x ≤ x∗ = y∗, M(x, y∗) = 1− 2P2(y∗) = P1(y∗)− P2(y∗) = M(x∗, y∗).

• When x > x∗ = y∗, M(x, y∗) = 2P1(x)− 1 < P1(x∗)− P2(x∗) = M(x∗, y∗).

• When y ≤ y∗ = x∗, M(x∗, y) = 2P1(x∗)− 1 = P1(x∗)− P2(x∗) = M(x∗, y∗).

• When y > y∗ = x∗, M(x∗, y) = 1− 2P2(y) > P1(y∗)− P2(y∗) = M(x∗, y∗).

In conclusion, M(x, y∗) ≤ M(x∗, y∗) ≤ M(x∗, y) for all x and y, which implies that
(x∗, y∗) is a saddle point for the zero-sum game and therefore a Nash equilibrium.

5. (a) A non-permanent member can be marginal in the following condition:

• The “big five” approve and there are other 3 non-permanent countries approving.

There are C9
3 such coalitions. Therefore, the probability for a non-permanent member

to make a difference is given by

π(p) = C9
3 · p8(1− p)6.

(b) Under the assumption of homogeneity and uniform distribution of the probability p,
the power index is equal to the Shapley-Shubik index, so the Shapley-Shubik index for
a non-permanent member is given by

φs =

∫ 1

0

π(p)f(p) dp =

∫ 1

0

C9
3 · p8(1− p)6 dp = C9

3 ·
8! · 6!

15!
.

(c) Let p1, · · · , p5 be the voting probability for the “big five” and q6, · · · , q15 be the voting
probability for the non-permanent members. The probability that a non-permanent
member (say player 6) can make a difference is given by

π(p1, · · · , p5, q7, · · · , q15) =
5∏
j=1

pj · q7q8q9(1− q10) · · · (1− q15) + · · ·

+
5∏
j=1

pj · (1− q7) · · · (1− q12)q13q14q15,

where there are totally C9
3 terms, choosing 3 non-permanent members from the remain-

ing 9 members with probability qj and the other 6 members with probability 1− qj.
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Under the assumption of independence together with mean value of voting probability
equals 1

2
, the absolute Banzhaf index for a non-permanent member (say player 6) is

given by

β′6 =

∫ 1

0

π(p1, · · · , p5, q7, · · · , q15)f1(p1) · · · f15(q15) dp1 · · · dq15

=
5∏
j=1

∫ 1

0

pjfj(pj) dpj ·
∫ 1

0

q7f7(q7) dq7

∫ 1

0

q8f8(q8) dq8 · · ·

=
C9

3

214
.

6. (a) Under the threat strategy (Xt, Yt), the security point changes to (u0, v0) = (XtAY
T
t , XtBY

T
t ).

Assuming an interior solution, the bargaining solution (u, v) must be on the Pareto-
optimal boundary v = mpu + b. Therefore, we can transform the objective function
into

f(u) = (u−XtAY
T
t )(mpu+ b−XtBY

T
t ).

To maximize it, we take the first-order derivative and set it to zero:

f ′(u) = 2mpu+Xt(−mpA−B)Y T
t + b = 0,

which yields

u =
Xt(−mpA−B)Y T

t + b

−2mp

, mp < 0.

Correspondingly,

v = mpu+ b =
1

2
[b−Xt(−mpA−B)Y T

t ].

Both players aim to choose their optimal threat strategies (Xt and Yt, respectively)
to maximize their own payoffs (u and v, respectively). From the above equations, we
observe that player 1 can maximize the term Xt(−mpA − B)Y T

t to maximize u and
player 2 can minimize the same term Xt(−mpA − B)Y T

t to maximize v. Therefore, it
changes to a zero-sum game with matrix −mpA − B where the row player (player 1)
chooses Xt to maximize the entries while the column player (player 2) chooses Yt to
minimize the entries.

(b) (i) Nash bargaining solution.

• Find the security point.
The individual matrices are as follows:

A =

(
4 2
−1 2

)
, BT =

(
2 2
−1 4

)
.

It is easy to calculate that value(A) = 2, value(BT ) = 2, so the status quo
security point for this game is at (u∗, v∗) = (2, 2).

• Find the feasible set and Pareto-optimal boundary.
The feasible set, taking into account the security point, is

S∗ = {(u, v)|v ≤ −u+ 6, 2 ≤ u ≤ 4, 2 ≤ v ≤ 4} .

The Pareto-optimal boundary is v = −u+ 6, 2 ≤ u ≤ 4.
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(2, 2)

• Set up and solve the nonlinear programming problem.
The problem we then need to solve is

Maximize g(u, v) = (u− 2)(v − 2)

subject to (u, v) ∈ S∗.

If the optimal point (u, v) occurs on the Pareto-optimal boundary v = −u+6,
2 ≤ u ≤ 4, then we maximize

g(u, v) = f(u) = (u− 2)(−u+ 4).

Take the first-order derivatives of function f(u) and set it to zero:

f ′(u) = −2u+ 6 = 0 =⇒ u = 3 =⇒ v = 3,

which yields g(3, 3) = 1. Checking the second-order derivative is negative:

f ′′(u) = −2 < 0.

• Find the strategies giving the negotiated solution.
The only points in the bimatrix that are of interest are the endpoints of the
Pareto-optimal boundary, namely, (2, 4) and (4, 2). So the cooperation must
be a linear combination of the strategies yielding these payoffs. Solve

(3, 3) = λ(2, 4) + (1− λ)(4, 2)

to get λ = 1
2
. This says that (I, II) must agree to play the pure strategies

(I1, II1) and (I2, II2) half of the time, respectively.

(ii) Threat solution.

• Identify the possible Pareto-optimal boundary.

The Pareto-optimal boundary is given by v = −u + 6 with mp = −1 and
b = 6, 2 ≤ u ≤ 4.

• Construct new matrix −mpA−B for a zero sum game.
We look for the value of the game with matrix A−B:

A−B =

(
2 3
−3 −2

)
.
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• Find the optimal strategies Xt, Yt for the zero sum game.
We find that value(A − B) = 2 and the optimal threat strategies are Xt =
Yt = (1, 0). Then we know that the security point is as follows:

ut = 4 and vt = 2.

(4, 2)

• Calculate solution (u, v) of the bargaining game.

This point is exactly the vertex of the feasible set. The two players have no
choice but achieve the bargaining solution (u, v) = (4, 2) with threat strategies
Xt = Yt = (1, 0).
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