MATH 4321 - Game Theory

Final Exam Solution, 2019

(a) Candidate i’s expected payoff is given by
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e For a given s, = 0,
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which does not have maximum value. Therefore, the best-response function for
player 1 given sy = 0 is s1(0) = 07. Intuitively, player 1 spends slightly larger than
zero and still wins. The similar fact also holds for player 2.

Alternatively: Or you can say the best-response functions for both players do
not exist when the other player’s spending level is zero.

e For a given s, > 0, taking the first-order derivative and setting it to zero, we get
the best-response function of player 1:
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To verify, we calculate the second-order derivative:
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Similarly,
So(s1) = /vs1 — s1, s3> 0.

(b) e When either s; = 0 or s, = 0, according to (a), the best-response function for at
least one of the players does not exist. We thus cannot find any Nash equilibrium
in this case.

e When s;55 > 0, the unique Nash equilibrium is given by the intersection of the two
best-response functions:



(c) In this case, the expected payoff of player 2 changes to
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Her best-response function changes to
So(s1) = Vkvsy — s1,  s1> 0.

Together with s1(s2) = \/US2— 82, $2 > 0, we find s}’ = ﬁv < fand sy = (%)zv >

7- Therefore, the Nash equilibrium spending level decreases for player 1 but increases
for player 2.

(a) Suppose I' > Z;V:l q;. Take the first-order derivative and set it to zero:

N N
ou; D=3 —c
LT — 2 — —a=0 = q(q) = i . i=1,2-- N.
P, G =24 gi(q-+) 5
J#i
To verify the critical point is a maximum, we check the second-order derivative is
negative:
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we get the following equation
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Therefore, the optimal quantity produced by firm ¢ is given by
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We argue that the optimal strategy profile (¢}, ¢*,
For any firm ¢, the profit it gets under the strategy profile (¢, ¢
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Suppose player i deviates from the profile to a quantity ¢; # ¢ and others do not
change, her profit function changes to
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Then player i will not deviate from the profile (¢}, ¢*;), otherwise she will be worse off.

Therefore, we conclude that (¢f, ¢*;) is a Nash equilibrium.

Assuming ¢; = ¢y = -+ = ¢y = ¢, we have
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When N — oo, the optimal quantity ¢* — 0 for each firm.

According to the charity auction rule, the expected payment for each bidder is equal
to her bidding amount, namely,
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Since F'(v) is uniform over [vmin, Vmaz), We have
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Bidder 1’s expected payoff is expressed by
(z;v) = vF*(2) = D(a) = 0P (a) = fla), = =B70)

for the charity auction. Since b* = f(v), we have z = v at b = b*.

To maximize II(v) with respect to the bidding amount b, we take the first-order deriva-
tive and set it to zero:
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Since II(x; vpin )| = Um,-nFNfl(vmm) — B(Vmin) = 0, we have
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which maximizes bidder 1’s expected payoff. Then bidder 1 will always get a lower
payoff if she deviates to any bidding rule other than b* = 5(v). Therefore, the bidding
rule we calculated above is exactly a Nash equilibrium.
(a) (i) When z > y, player 1 shoots earlier than player 2, her expected payoff is given by
M(z,y) = (1)Pi(z) + (D[ = Pi(z)] = 2P (z) — L.

(ii) When z = y, the two players shoot simultaneously, the expected payoff for player
1is

M(z,y) = (D) Pi(2)[1 = Po(2)] + (=D[1 — Pi(2)]|P(2) = Pi(z) — Pa(x).
(iii) When x < y, player 2 shoots first, the expected payoff for player 1 is given by

M(z,y) = (=1)Pa(y) + (D)[1 = Pa(y)] =1 — 2P (y).

Therefore, we have

2P (z) — 1, x>y
M(z,y) = § Pi(z) — Pa(x), r=y.
1 —2P(y), <y

(b) Method I: For player 1, she chooses x to maximize M (x,y). Since it is a zero-sum
game, she takes into account min M (z,y). When z < y, player 2 minimizes M (z,y) by
y

choosing y = x+. Then player 1 considers the following maximin problem:

max min M (z,y) = maxmin[2P(z) — 1, P (z) — Pa(z), 1 — 2Py (x)].
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e When z < z*, we have P(z) + P»(x) > 1. Then
2P (z) = 1> Pi(x) — Pa(z) > 1 —2Py(x)

and
max min M (z,y) = max[l — 2P,(z)],

T Y <z
which equals Pj(x) — Po(z) when x = z*.
e When = > 2%, we have P(x) + Py(x) < 1. Then

and

max min M (z,y) = max[2P (z) — 1],
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which equals Pj(x) — Po(x) when x = z*.



e When z = z*, we have Pj(x) + Py(z) = 1. Then

and and
maxmin M (z,y) = Pi(z*) — Py(z™).
v
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In conclustion, player 1’s expected payoff M(x,y) is maximized at x = z* taking into

account min M (z,y). Similarly, player 2 will also choose the distance y* satisfying
y

P (y*)+ P2(y*) = 1 to maximize her own payoff given that player 1 is trying to minimize

it.

Method II: We argue that the strategy profile (z*, y*) forms a Nash equilibrium, under

which player 1’s payoff is given by

M(z*,y") = Pi(z") — Pa(2") = Pi(y*) — P2(y")

since x* = y*.

e When z < z* =y*, M(z,y*) =1—2P(y") = P(y*) — Pa(y*) = M(z*, y").

e When z > z* = y*, M(z,y*) = 2P, () — 1 < Pi(z*) — Py(x*) = M(z*, y*).

e When y < y* =ux*, M(x*,y) = 2P (z*) — 1 = Pi(a*) — Py(a*) = M(x*, y*).

e When y > y* = a*, M(z*,y) =1—2P(y) > Pi(y*) — Pa(y*) = M(z*, y").
In conclusion, M(x,y*) < M(xz*,y*) < M(z*,y) for all x and y, which implies that
(z*,y*) is a saddle point for the zero-sum game and therefore a Nash equilibrium.

A non-permanent member can be marginal in the following condition:
e The “big five” approve and there are other 3 non-permanent countries approving.

There are C§ such coalitions. Therefore, the probability for a non-permanent member
to make a difference is given by

m(p) = C - p*(1 — p)°.

Under the assumption of homogeneity and uniform distribution of the probability p,
the power index is equal to the Shapley-Shubik index, so the Shapley-Shubik index for
a non-permanent member is given by

1 1 8. 6!
0.~ [ @ap= [ 30 -prap=c3-Sor

Let py,--- , ps be the voting probability for the “big five” and gg, - - - , q15 be the voting
probability for the non-permanent members. The probability that a non-permanent
member (say player 6) can make a difference is given by
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where there are totally C§ terms, choosing 3 non-permanent members from the remain-
ing 9 members with probability ¢; and the other 6 members with probability 1 — g;.

5



Under the assumption of independence together with mean value of voting probability

1

equals 3, the absolute Banzhaf index for a non-permanent member (say player 6) is

given by
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6. (a) Under the threat strategy (X3, Y;), the security point changes to (ug, vo) = (X;AY,T, X; BY,T).
Assuming an interior solution, the bargaining solution (@, 7) must be on the Pareto-
optimal boundary v = m,u + b. Therefore, we can transform the objective function
into

f(w) = (u — X; AV, ) (myu + b — X, BY;").

To maximize it, we take the first-order derivative and set it to zero:
f'(u) = 2myu + Xy(—myA — B)YY," +b=0,

which yields
X;(—my,A — B)YT +b
u = t( mp )t+, mp<0.
—2m,,

Correspondingly,
1
v=myu+b= §[b — X;(—m,A — B)Y/].

Both players aim to choose their optimal threat strategies (X; and Y;, respectively)
to maximize their own payoffs (u and v, respectively). From the above equations, we
observe that player 1 can maximize the term X;(—m,A — B)Y,’ to maximize u and
player 2 can minimize the same term X;(—m,A — B)Y;" to maximize v. Therefore, it
changes to a zero-sum game with matrix —m,A — B where the row player (player 1)
chooses X; to maximize the entries while the column player (player 2) chooses Y; to
minimize the entries.

(b) (i) Nash bargaining solution.

o Find the security point.
The individual matrices are as follows:

(42 r (2 2
=G (G

It is easy to calculate that value(A) = 2, value(BT) = 2, so the status quo
security point for this game is at (u*, v*) = (2, 2).

e Find the feasible set and Pareto-optimal boundary.
The feasible set, taking into account the security point, is

S ={(u,0)v < —u+62<u<4,2<v<4}.

The Pareto-optimal boundary is v = —u + 6, 2 < u < 4.
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(2,2)

e Set up and solve the nonlinear programming problem.
The problem we then need to solve is

Maximize g(u,v) = (u — 2)(v — 2)
subject to (u,v) € S*.

If the optimal point (@, v) occurs on the Pareto-optimal boundary v = —u+6,
2 < u < 4, then we maximize

g9(u,v) = f(u) = (u—2)(—u+4).
Take the first-order derivatives of function f(u) and set it to zero:
f(u)y==2u+6=0 = u=3 = ©v=23,
which yields ¢(3,3) = 1. Checking the second-order derivative is negative:
f(u)=-2<0.

o Find the strategies giving the negotiated solution.
The only points in the bimatrix that are of interest are the endpoints of the
Pareto-optimal boundary, namely, (2,4) and (4,2). So the cooperation must
be a linear combination of the strategies yielding these payoffs. Solve

(3,3) = A(2,4) + (1 — N)(4,2)

This says that (I, II) must agree to play the pure strategies
I, I15) half of the time, respectively.

to get A =
(Il, 111) and
(ii) Threat solution.

e [dentify the possible Pareto-optimal boundary.

A~

The Pareto-optimal boundary is given by v = —u + 6 with m, = —1 and
b=06,2<u<A4.

o Construct new matrix —myA — B for a zero sum game.
We look for the value of the game with matrix A — B:

2 3
s (30,
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o [Find the optimal strategies X, Y, for the zero sum game.
We find that value(A — B) = 2 and the optimal threat strategies are X; =

Y; = (1,0). Then we know that the security point is as follows:

uw'=4 and o' =2,

(47 2) -

e Calculate solution (u,v) of the bargaining game.

This point is exactly the vertex of the feasible set. The two players have no
choice but achieve the bargaining solution (u,v) = (4, 2) with threat strategies

Xt — Y; — (1,0)



