MATH 4512 - Fundamentals of Mathematical Finance

Solution to Homework Two

Course Instructor: Prof. Y.K. Kwok

1. (a) The portfolio variance σ_{P}^{2} is given by

$$
\sigma_{P}^{2}=\alpha^{2} \sigma_{A}^{2}+(1-\alpha)^{2} \sigma_{B}^{2}+2 \alpha(1-\alpha) \rho \sigma_{A} \sigma_{B} .
$$

Differentiating σ_{P}^{2} with respect to α, we have

$$
\frac{d \sigma_{P}^{2}}{d \alpha}=2 \alpha \sigma_{A}^{2}-2(1-\alpha) \sigma_{B}^{2}+(2-4 \alpha) \rho \sigma_{A} \sigma_{B} .
$$

Setting $\frac{d \sigma_{P}^{2}}{d \alpha}=0$, we obtain

$$
\alpha=\frac{\sigma_{B}^{2}-\rho \sigma_{A} \sigma_{B}}{\sigma_{A}^{2}+\sigma_{B}^{2}-2 \rho \sigma_{A} \sigma_{B}}=0.8261
$$

(b) Substituting $\alpha=0.8261$ into σ_{P}^{2}, the portfolio variance of the optimal portfolio is

$$
\sigma_{P}^{2}=\alpha^{2} \sigma_{A}^{2}+(1-\alpha)^{2} \sigma_{B}^{2}+2 \alpha(1-\alpha) \rho \sigma_{A} \sigma_{B}=0.01937
$$

so that $\sigma_{P}=0.1392$.
(c) The expected rate of return of the optimal portfolio:

$$
\mu_{P}=\alpha \bar{r}_{A}+(1-\alpha) \bar{r}_{B}=0.1139
$$

2. (a) The expected rate of return is given by

$$
E[r]=\frac{0.5 \times 3 \times 10^{6}+0.5 \times u}{10^{6}+0.5 u}-1 .
$$

(b) It is seen that buying 3 million units of insurance eliminates all uncertainty regarding the return, resulting in zero variance. The corresponding expected rate of return is

$$
E[r]=\frac{0.5 \times 3 \times 10^{6}+0.5 \times 3 \times 10^{6}}{10^{6}+0.5 \times 3 \times 10^{6}}-1=\frac{3}{2.5}-1=0.2 .
$$

3. (a)

The expected portfolio rate of return always remains to be \bar{r}. The set of minimum variance portfolio (also called the efficient set) reduces to one portfolio, which is represented by the minimum variance point in the above $\sigma_{P-} \mu_{P}$ diagram.
(b) The minimum variance point is the global minimum variance portfolio. Recall

$$
\boldsymbol{w}_{g}=\frac{\Omega^{-1} \mathbf{1}}{\mathbf{1}^{T} \Omega^{-1} \mathbf{1}}, \quad \text { where } \quad \Omega=\left(\begin{array}{ccc}
\sigma_{1}^{2} & \cdots & 0 \\
\vdots & \sigma_{2}^{2} & \vdots \\
0 & \cdots & \sigma_{n}^{2}
\end{array}\right)
$$

Note that

$$
\Omega^{-1} \mathbf{1}=\left(\begin{array}{c}
1 / \sigma_{1}^{2} \\
1 / \sigma_{2}^{2} \\
\vdots \\
1 / \sigma_{n}^{2}
\end{array}\right) \quad \text { and } \quad \mathbf{1}^{T} \Omega^{-1} \mathbf{1}=\sum_{i=1}^{n} \frac{1}{\sigma_{i}^{2}}
$$

The minimum variance is given by

$$
\sigma_{P}^{2}=\frac{1}{\mathbf{1}^{T} \Omega^{-1} \mathbf{1}}=\frac{1}{\sum_{i=1}^{n} \frac{1}{\sigma_{i}^{2}}}=\bar{\sigma}^{2} .
$$

Note that $\bar{\sigma}^{2}$ is the harmonic mean of $\sigma_{i}^{2}, i=1,2, \cdots, n$. Hence, the minimum variance point is $(\bar{\sigma}, \bar{r})$.
4. (a) Solve for \mathbf{v}_{g} such that

$$
\Omega \mathbf{v}_{g}=\mathbf{1} \quad \text { or } \quad\left(\begin{array}{ccc}
2 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 2
\end{array}\right)\left(\begin{array}{c}
v_{g}^{1} \\
v_{g}^{2} \\
v_{g}^{3}
\end{array}\right)=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) .
$$

We obtain

$$
\mathbf{v}_{g}=\left(\begin{array}{c}
0.5 \\
0 \\
0.5
\end{array}\right) .
$$

It happens that the sum of components in \mathbf{v}_{g} is already equal to 1 . So, the optimal weight vector corresponding to the global minimum variance portfolio is $\boldsymbol{w}_{g}=\left(\begin{array}{lll}0.5 & 0 & 0.5\end{array}\right)^{T}$.
(b) The other efficient portfolio is obtained by first solving for

$$
\Omega \mathbf{v}_{d}=\overline{\boldsymbol{r}}
$$

and normalize the components so that the sum of components equals 1. Consider

$$
\left(\begin{array}{lll}
2 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 2
\end{array}\right)\left(\begin{array}{l}
v_{d}^{1} \\
v_{d}^{2} \\
v_{d}^{3}
\end{array}\right)=\left(\begin{array}{c}
0.4 \\
0.8 \\
0.8
\end{array}\right),
$$

we obtain

$$
\mathbf{v}_{d}=\left(\begin{array}{lll}
0.1 & 0.2 & 0.3
\end{array}\right)^{T} .
$$

Upon normalization, we obtain the weight vector of another efficient portfolio to be

$$
\boldsymbol{w}_{d}=\left(\begin{array}{lll}
\frac{1}{6} & \frac{1}{3} & \frac{1}{2}
\end{array}\right)^{T} .
$$

(c) With the inclusion of the riskfree asset, we solve for

$$
\Omega \mathbf{v}=\bar{r}-r_{f} \mathbf{1}
$$

and normalize the components so that the condition on target expected rate of return of the portfolio is met. It is seen that

$$
\begin{aligned}
\mathbf{v} & =\mathbf{v}_{g}-r_{f} \mathbf{v}_{d} \\
& =\left(\begin{array}{llll}
0.1 & 0.2 & 0.3
\end{array}\right)^{T}-0.2\left(\begin{array}{lll}
0.5 & 0 & 0.5
\end{array}\right)^{T} \\
& =\left(\begin{array}{lll}
0 & 0.2 & 0.2
\end{array}\right)^{T} .
\end{aligned}
$$

The optimal weight vector $\boldsymbol{w}^{*}=\lambda \mathbf{v}$, where λ is determined by enforcing

$$
\lambda \sum_{j=1}^{3}\left(\bar{r}_{j}-r_{f}\right) v_{j}=\mu_{P}-r_{f}, \quad \text { where } \quad \mu_{P}=0.4 .
$$

We then obtain

$$
\lambda(0.6 \times 0.2+0.6 \times 0.2)=0.4-0.2=0.2
$$

so that $\lambda=\frac{1}{1.2}$. The weights of the risky assets are

$$
w_{1}=0, \quad w_{2}=\frac{0.2}{1.2}=\frac{1}{6} \quad \text { and } \quad w_{3}=\frac{0.2}{1.2}=\frac{1}{6} .
$$

The weight of the risk free asset is $1-\frac{1}{6}-\frac{1}{6}=\frac{2}{3}$.
5. Consider the betting wheel which has n segments. Let Y be the random variable of the outcome, where $Y=i$ if the outcome of the wheel is i. The payoff of a $\$ 1$ bet on the segment i is given by $A_{i} I_{\{Y=i\}}$, where the indicator function $I_{\{Y=i\}}=\left\{\begin{array}{l}1, \text { if } Y=i \\ 0, \text { otherwise }\end{array}\right.$.
By using the strategy stated in the question, the payoff is

$$
\sum_{i=1}^{n} \frac{1}{A_{i}} A_{i} I_{\{Y=i\}}=1,
$$

which is independent of the outcome of the wheel. Following this strategy, the initial total amount betted $=\sum_{i=1}^{n} \frac{1}{A_{i}}$ and the final payoff is always 1 (risk free). Therefore, the corresponding deterministic rate of return is given by

$$
\frac{1}{\sum_{i=1}^{n} \frac{1}{A_{i}}}-1 .
$$

For example, suppose the wheel has 4 segments with $A_{1}=3, A_{2}=4, A_{3}=5, A_{6}=6$. The betting strategy is to bet $\frac{1}{3}$ on segment $1, \frac{1}{4}$ on segment $2, \frac{1}{5}$ on segment 3 , and $\frac{1}{6}$ on segment 4. The riskfree return is

$$
\frac{1}{\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}}-1=\frac{1}{\frac{57}{60}}-1=\frac{3}{57} .
$$

6. (a) Consider the variance of the difference of $r-r_{M}$

$$
\begin{aligned}
& \operatorname{var}\left(r-r_{M}\right) \\
= & \operatorname{var}(r)+\operatorname{var}\left(r_{M}\right)-2 \operatorname{cov}\left(r, r_{M}\right) \\
= & \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} \sigma_{i j}+\sigma_{M}^{2}-2 \sum_{i=1}^{n} \alpha_{i} \sigma_{i M}, \text { where } \sigma_{i M}=\operatorname{cov}\left(r_{i}, r_{M}\right) .
\end{aligned}
$$

To minimize $\operatorname{var}\left(r-r_{M}\right)$ subject to $\sum_{i=1}^{n} \alpha_{i}=1$, we set up the Lagrangian

$$
L=\frac{1}{2}\left[\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} \sigma_{i j}+\sigma_{M}^{2}-2 \sum_{i=1}^{n} \alpha_{i} \sigma_{i M}\right]-\lambda\left(\sum_{i=1}^{n} \alpha_{i}-1\right) .
$$

Differentiating L with respect to α_{i} and λ, we obtain

$$
\begin{gathered}
\sum_{j=1}^{n} \alpha_{j} \sigma_{i j}-\sigma_{i M}-\lambda=0, \quad i=1,2, \cdots, n, \\
\sum_{i=1}^{n} \alpha_{i}=1 .
\end{gathered}
$$

In matrix form:

$$
\begin{aligned}
\Omega \boldsymbol{\alpha}-\boldsymbol{\sigma}_{M}-\lambda \mathbf{1} & =0 \\
\mathbf{1}^{T} \boldsymbol{\alpha} & =1,
\end{aligned}
$$

where $\boldsymbol{\sigma}_{M}=\left(\begin{array}{llll}\sigma_{1 M} & \sigma_{2 M} & \cdots & \sigma_{n M}\end{array}\right)^{T}$. Assuming Ω^{-1} exists, we have

$$
\boldsymbol{\alpha}=\Omega^{-1} \boldsymbol{\sigma}_{M}+\lambda \Omega^{-1} \mathbf{1}
$$

Applying the constraint: $\mathbf{1}^{T} \boldsymbol{\alpha}=1$, we obtain

$$
\mathbf{1}^{T} \Omega^{-1} \boldsymbol{\sigma}_{M}+\lambda \mathbf{1}^{T} \Omega^{-1} \mathbf{1}=1
$$

so that

$$
\lambda=\frac{1-\mathbf{1}^{T} \Omega^{-1} \boldsymbol{\sigma}_{M}}{\mathbf{1}^{T} \Omega^{-1} \mathbf{1}}
$$

Finally, we obtain

$$
\boldsymbol{\alpha}=\Omega^{-1} \boldsymbol{\sigma}_{M}+\frac{1-\mathbf{1}^{T} \Omega^{-1} \boldsymbol{\sigma}_{M}}{\mathbf{1}^{T} \Omega^{-1} \mathbf{1}} \Omega^{-1} \mathbf{1}
$$

(b) The modified Lagrangian is given by

$$
L=\frac{1}{2}\left[\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} \sigma_{i j}-2 \sum_{i=1}^{n} \alpha_{i} \sigma_{i M}+\sigma_{M}^{2}\right]-\lambda_{1}\left(\sum_{i=1}^{n} \alpha_{i}-1\right)-\lambda_{2}\left(\sum_{i=1}^{n} \alpha_{i} \bar{r}_{i}-m\right),
$$

where m is the target mean. Differentiating L with respect to $\alpha_{i}, \lambda_{1}, \lambda_{2}$, we obtain

$$
\begin{aligned}
\sum_{j=1}^{n} \alpha_{j} \sigma_{i j}-\sigma_{i M}-\lambda_{1}-\lambda_{2} \bar{r}_{i} & =0, \quad i=1,2, \cdots, n \\
\sum_{i=1}^{n} \alpha_{i} & =1 \\
\sum_{i=1}^{n} \alpha_{i} \bar{r}_{i} & =m
\end{aligned}
$$

In matrix form:

$$
\begin{align*}
\Omega \boldsymbol{\alpha}-\boldsymbol{\sigma}_{M}-\lambda_{1} \mathbf{1}-\lambda_{2} \overline{\boldsymbol{r}} & =0 \tag{i}\\
\mathbf{1}^{T} \boldsymbol{\alpha} & =1 \tag{ii}\\
\overline{\boldsymbol{r}}^{T} \boldsymbol{\alpha} & =m . \tag{iii}
\end{align*}
$$

We write $a=\mathbf{1}^{T} \Omega^{-1} \mathbf{1}, b=\mathbf{1}^{T} \Omega^{-1} \overline{\boldsymbol{r}}, c=\overline{\boldsymbol{r}}^{T} \Omega^{-1} \overline{\boldsymbol{r}}, s_{1}=\mathbf{1}^{T} \Omega^{-1} \boldsymbol{\sigma}_{M}, s_{2}=\overline{\boldsymbol{r}}^{T} \Omega^{-1} \boldsymbol{\sigma}_{M}$. Assuming Ω^{-1} exists, eq. (i) can be expressed as

$$
\begin{equation*}
\boldsymbol{\alpha}=\Omega^{-1} \boldsymbol{\sigma}_{M}+\lambda_{1} \Omega^{-1} \mathbf{1}+\lambda_{2} \Omega^{-1} \overline{\boldsymbol{r}} . \tag{iv}
\end{equation*}
$$

Invoking conditions (ii) and (iii), we obtain the following pair of algebraic equations for λ_{1} and λ_{2} :

$$
\begin{aligned}
1 & =s_{1}+\lambda_{1} a+\lambda_{2} b \\
m & =s_{2}+\lambda_{1} b+\lambda_{2} c .
\end{aligned}
$$

Solving for $\lambda_{1} \& \lambda_{2}$:

$$
\begin{aligned}
& \lambda_{1}=\frac{\left|\begin{array}{cc}
1-s_{1} & b \\
m-s_{2} & c
\end{array}\right|}{\left|\begin{array}{ll}
a & b \\
b & c
\end{array}\right|}=\frac{c\left(1-s_{1}\right)-b\left(m-s_{2}\right)}{a c-b^{2}}, \\
& \lambda_{2}=\frac{\left|\begin{array}{cc}
a & 1-s_{1} \\
b & m-s_{2}
\end{array}\right|}{\left|\begin{array}{ll}
a & b \\
b & c
\end{array}\right|}=\frac{a\left(m-s_{2}\right)-b\left(1-s_{1}\right)}{a c-b^{2}} .
\end{aligned}
$$

Both λ_{1} and λ_{2} are linear functions of m. We are able to express $\boldsymbol{\alpha}$ in terms of m [see eq. (iv)].
7. (a) Recall $\boldsymbol{w}_{0}=\frac{\Omega^{-1} \mathbf{1}}{\mathbf{1}^{T} \Omega^{-1} \mathbf{1}}, \sigma_{0}^{2}=\boldsymbol{w}_{0}^{T} \Omega \boldsymbol{w}_{0}=\frac{1}{\mathbf{1}^{T} \Omega^{-1} \mathbf{1}}$, so that

$$
\operatorname{cov}\left(r_{0}, r_{1}\right)=\boldsymbol{w}_{0}^{T} \Omega \boldsymbol{w}_{1}=\frac{\mathbf{1}^{T} \Omega^{-1} \Omega \boldsymbol{w}_{1}}{\mathbf{1}^{T} \Omega^{-1} \mathbf{1}}=\frac{1}{\mathbf{1}^{T} \Omega^{-1} \mathbf{1}}=\sigma_{0}^{2}
$$

giving $A=1$. Consider the variance σ_{α}^{2}

$$
\begin{aligned}
\sigma_{\alpha}^{2} & =\operatorname{cov}\left((1-\alpha) r_{0}+\alpha r_{1},(1-\alpha) r_{0}+\alpha r_{1}\right) \\
& =(1-\alpha)^{2} \sigma_{0}^{2}+2 \alpha(1-\alpha) \operatorname{cov}\left(r_{0}, r_{1}\right)+\alpha^{2} \sigma_{1}^{2} \\
& =(1-\alpha)^{2} \sigma_{0}^{2}+2 \alpha(1-\alpha) \sigma_{0}^{2}+\alpha^{2} \sigma_{1}^{2} \\
& =\sigma_{0}^{2}+\alpha^{2}\left(\sigma_{1}^{2}-\sigma_{0}^{2}\right)
\end{aligned}
$$

The result agrees with the intuition that variations of the variance of the given portfolio around $\alpha=0$ should be second order in α.
(b) Writing $\boldsymbol{r}=\left(r_{1} \cdots r_{N}\right)^{T}$, consider

$$
\begin{aligned}
\operatorname{cov}\left(r_{1}, r_{z}\right) & =\operatorname{cov}\left(\boldsymbol{w}_{1}^{T} \boldsymbol{r},\left[(1-\alpha) \boldsymbol{w}_{0}+\alpha \boldsymbol{w}_{1}\right]^{T} \boldsymbol{r}\right) \\
& =\operatorname{cov}\left(\boldsymbol{w}_{1}^{T} \boldsymbol{r},(1-\alpha) \boldsymbol{w}_{0}^{T} \boldsymbol{r}+\alpha \boldsymbol{w}_{1}^{T} \boldsymbol{r}\right) \\
& =\operatorname{cov}\left(\boldsymbol{w}_{1}^{T} \boldsymbol{r},(1-\alpha) \boldsymbol{w}_{0}^{T} \boldsymbol{r}\right)+\operatorname{cov}\left(\boldsymbol{w}_{1}^{T} \boldsymbol{r}, \alpha \boldsymbol{w}_{1}^{T} \boldsymbol{r}\right) \\
& =(1-\alpha) \sigma_{0}^{2}+\alpha \sigma_{1}^{2} .
\end{aligned}
$$

Setting $\operatorname{cov}\left(r_{1}, r_{z}\right)=0$, we obtain

$$
0=(1-\alpha) \sigma_{0}^{2}+\alpha \sigma_{1}^{2}
$$

giving

$$
\alpha=-\frac{\sigma_{0}^{2}}{\sigma_{1}^{2}-\sigma_{0}^{2}}<0
$$

(c) We have

$$
\bar{r}_{z}=(1-\alpha) \bar{r}_{0}+\alpha \bar{r}_{1}=\bar{r}_{0}+\alpha\left(\bar{r}_{1}-\bar{r}_{0}\right)
$$

so that $\bar{r}_{z}<\bar{r}_{0}$ (since $\alpha<0$ and $\left.\bar{r}_{1}-\bar{r}_{0}>0\right)$. Now,

$$
\begin{aligned}
\sigma_{z}^{2}=\operatorname{var}\left(r_{z}\right) & =(1-\alpha)^{2} \sigma_{0}^{2}+\alpha^{2} \sigma_{1}^{2}+2 \alpha(1-\alpha) \operatorname{cov}\left(r_{0}, r_{1}\right) \\
& =(1-\alpha)^{2} \sigma_{0}^{2}+2 \alpha(1-\alpha) \sigma_{0}^{2}+\alpha^{2} \sigma_{1}^{2}=\frac{\sigma_{0}^{2} \sigma_{1}^{2}}{\sigma_{1}^{2}-\sigma_{0}^{2}}
\end{aligned}
$$

Note that Portfolio z is a minimum variance portfolio but it is not efficient.

(i) When $2 \sigma_{0}^{2}<\sigma_{1}^{2}$, then $\sigma_{z}^{2}<\sigma_{1}^{2}$

(ii) When $2 \sigma_{0}^{2}>\sigma_{1}^{2}$, then $\sigma_{z}^{2}>\sigma_{1}^{2}$

