MATH 4512 - Fundamentals of Mathematical Finance
 Solution to Homework Four

Course Instructor: Prof. Y.K. Kwok

1. If outcome j occurs, then the corresponding gain is given by

$$
G_{j}=\sum_{i=1}^{m} g_{i j} \alpha_{i}
$$

where $\alpha_{i}=\frac{\frac{1}{1+d_{i}}}{1-\sum_{i=1}^{m} \frac{1}{1+d_{i}}}$ and $g_{i j}=\left\{\begin{array}{rr}d_{i} & \text { if } j=i \\ -1 & \text { if } j \neq i\end{array}\right.$.
We then have

$$
\begin{aligned}
G_{j} & =g_{j j} \alpha_{j}-\sum_{\substack{i=1 \\
i \neq j}}^{m} \alpha_{i} \\
& =\left(1+g_{j j}\right) \alpha_{j}-\sum_{i=1}^{m} \alpha_{i} \\
& =\left(1+d_{j}\right) \alpha_{j}-\sum_{i=1}^{m} \alpha_{i} \\
& =\frac{1}{1-\sum_{i=1}^{m} \frac{1}{1+d_{i}}}-\frac{\sum_{i=1}^{m} \frac{1}{1-\sum_{i=1}^{m} \frac{1}{1+d_{i}}}}{1, \quad \text { for } j=1,2, \cdots, m .}
\end{aligned}
$$

Therefore, the betting game will always yield a gain of exactly 1 .
2. Suppose we hold ($\alpha_{1}, \alpha_{2}, \alpha_{3}$) units of the three securities, with $\sum_{i=1}^{3} \alpha_{i} \leq 1, \alpha_{i} \geq 0$. In this problem, we can set $\sum_{i=1}^{3} \alpha_{i}=1$ since the random returns are greater than one under all states of world. Using the log-utility criterion, the growth factor is

$$
\begin{aligned}
m=E[\ln R] & =\frac{1}{2} \ln \left(4 \alpha_{1}+2 \alpha_{2}+3\left(1-\alpha_{1}-\alpha_{2}\right)\right)+\frac{1}{2} \ln \left(2 \alpha_{1}+4 \alpha_{2}+3\left(1-\alpha_{1}-\alpha_{2}\right)\right) \\
& =\frac{1}{2} \ln \left(3+\alpha_{1}-\alpha_{2}\right)+\frac{1}{2} \ln \left(3-\alpha_{1}+\alpha_{2}\right)
\end{aligned}
$$

Applying the first order condition, we obtain

$$
\begin{aligned}
\frac{\partial m}{\partial \alpha_{1}}=\frac{1}{2} \frac{1}{3+\alpha_{1}-\alpha_{2}}-\frac{1}{2} \frac{1}{3-\alpha_{1}+\alpha_{2}}=0 & \Leftrightarrow 3-\alpha_{1}+\alpha_{2}=3+\alpha_{1}-\alpha_{2} \\
& \Leftrightarrow \alpha_{1}=\alpha_{2} ; \\
\frac{\partial m}{\partial \alpha_{2}}=\frac{1}{2} \frac{(-1)}{3+\alpha_{1}-\alpha_{2}}+\frac{1}{2} \frac{1}{3-\alpha_{1}+\alpha_{2}}=0 & \Leftrightarrow 3+\alpha_{1}-\alpha_{2}=3-\alpha_{1}+\alpha_{2} \\
& \Leftrightarrow \alpha_{1}=\alpha_{2} .
\end{aligned}
$$

Two possible optimal strategies are $\left(\begin{array}{ccc}\frac{1}{2} & \frac{1}{2} & 0\end{array}\right)$ and $\left(\begin{array}{lll}\frac{1}{3} & \frac{1}{3} & \frac{1}{3}\end{array}\right)$.
In fact, for any portfolio choice with $\alpha_{2}=\alpha_{1}, \alpha_{3}=1-2 \alpha_{1}, \alpha_{1} \geq 0$, the portfolio's return is either

$$
4 \alpha_{1}+2 \alpha_{2}+3 \alpha_{3}=4 \alpha_{1}+2 \alpha_{1}+3\left(1-2 \alpha_{1}\right)=3 \text { if the first state occurs }
$$

or

$$
2 \alpha_{1}+4 \alpha_{2}+3 \alpha_{3}=2 \alpha_{1}+4 \alpha_{2}+3\left(1-2 \alpha_{1}\right)=3 \text { if the second state occurs. }
$$

The optimal strategies always yield a return of 3 for all values of α_{1}.
3. Recall that the class of the power utility functions includes the logarithm utility since

$$
\lim _{\gamma \rightarrow 0^{+}}\left[\frac{1}{\gamma} x^{\gamma}-\frac{1}{\gamma}\right]=\ln x
$$

This class of functions has the same recursive property as the log utility; that is, the structure is preserved from period to period. This is seen from

$$
\begin{aligned}
E\left[U\left(X_{k}\right)\right] & =\frac{1}{\gamma} E\left[\left(R_{k} R_{k-1} \cdots R_{1} X_{0}\right)^{\gamma}\right]=\frac{1}{\gamma} E\left[R_{k}^{\gamma} R_{k-1}^{\gamma} \cdots R_{1}^{\gamma}\right] X_{0}^{\gamma} \\
& =\frac{1}{\gamma} E\left[R_{k}^{\gamma}\right] E\left[R_{k-1}^{\gamma}\right] \cdots E\left[R_{1}^{\gamma}\right] X_{0}^{\gamma}
\end{aligned}
$$

where the last equality follows from the fact that the expected value of a product of independent random variables is equal to the product of their expected values. To maximize $E\left[U\left(X_{k}\right)\right]$ with a fixed-proportions strategy it is only necessary to maximize $E\left[\left(R_{1} X_{0}\right)^{\gamma}\right]$. Therefore, again if one wants to maximize $E\left[U\left(X_{k}\right)\right]$, one needs only to maximize $E\left[U\left(X_{1}\right)\right]$.
4. Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right) \in B$.

Reflexivity: $x_{1}=x_{1}$ and $y_{1} \geq y_{1}$ so that $\left(x_{1}, y_{1}\right) \succeq\left(x_{1}, y_{1}\right)$
Comparability: If $x_{1}>x_{2}$, then $\left(x_{1}, y_{1}\right) \succeq\left(x_{2}, y_{2}\right)$.
If $x_{2}>x_{1}$, then $\left(x_{2}, y_{2}\right) \succeq\left(x_{1}, y_{1}\right)$.
If $x_{1}=x_{2}$, then
if $y_{1} \geq y_{2}$, then $\left(x_{1}, y_{1}\right) \succeq\left(x_{2}, y_{2}\right)$
if $y_{2} \geq y_{1}$, then $\left(x_{2}, y_{2}\right) \succeq\left(x_{1}, y_{1}\right)$.
Transitivity: Given $\left(x_{1}, y_{1}\right) \succeq\left(x_{2}, y_{2}\right),\left(x_{2}, y_{2}\right) \succeq\left(x_{3}, y_{3}\right)$. If $x_{1}=x_{2}>x_{3}$, with $y_{1} \geq y_{2}$, then $x_{1}>x_{3}$ so that $\left(x_{1}, y_{1}\right) \succeq\left(x_{3}, y_{3}\right)$.

If $x_{1}>x_{2}=x_{3}$, with $y_{2} \geq y_{3}$, then $x_{1}>x_{3}$ so that $\left(x_{1}, y_{1}\right) \succeq\left(x_{3}, y_{3}\right)$.
If $x_{1}=x_{2}=x_{3}$, with $y_{1} \geq y_{2} \geq y_{3}$, then $x_{1}=x_{3}, y_{1} \geq y_{3}$, so that $\left(x_{1}, y_{1}\right) \succeq\left(x_{3}, y_{3}\right)$.
If $x_{1}>x_{2}>x_{3}$, then $x_{1}>x_{3}$, so that $\left(x_{1}, y_{1}\right) \succeq\left(x_{3}, y_{3}\right)$.
5. Suppose $\left(x_{1}, y_{1}\right) \succeq\left(x_{2}, y_{2}\right)$.

Case I: $x_{1}>x_{2}$
1: $\alpha\left(x_{1}, y_{1}\right)+(1-\alpha)\left(x_{2}, y_{2}\right)=\left(1+\alpha\left(x_{1}-x_{2}\right), 1+\alpha\left(y_{1}-y_{2}\right)\right)$
2: $\beta\left(x_{1}, y_{1}\right)+(1-\beta)\left(x_{2}, y_{2}\right)=\left(1+\beta\left(x_{1}-x_{2}\right), 1+\beta\left(y_{1}-y_{2}\right)\right)$.
$\alpha>\beta \Leftrightarrow 1+\alpha\left(x_{1}-x_{2}\right)>1+\beta\left(x_{1}-x_{2}\right)$ and since $x_{1}-x_{2}>0$, so

$$
\alpha>\beta \Leftrightarrow \alpha\left(x_{1}, y_{1}\right)+(1-\alpha)\left(x_{2}, y_{2}\right) \succeq \beta\left(x_{1}, y_{1}\right)+(1-\beta)\left(x_{2}, y_{2}\right) .
$$

Case II: $x_{1}=x_{2}, y_{1} \geq y_{2}$
$\alpha>\beta \Leftrightarrow 1+\alpha\left(x_{1}-x_{2}\right)=1=1+\beta\left(x_{1}-x_{2}\right)$. However, we have $1+\alpha\left(y_{1}-y_{2}\right) \geq 1+\beta\left(y_{1}-y_{2}\right)$ and since $y_{1}-y_{2} \geq 0$, so

$$
\alpha>\beta \Leftrightarrow \alpha\left(x_{1}, y_{1}\right)+(1-\alpha)\left(x_{2}, y_{2}\right) \succeq \beta\left(x_{1}, y_{1}\right)+(1-\beta)\left(x_{2}, y_{2}\right)
$$

6. Let $u(x, y)=\ln (x+y)$, and consider $(1,0)$ and $(0,1) \in B$, we have $(1,0) \succ(0,1)$. But $u(1,0)=\ln 1=u(0,1)$. Hence, u cannot be a utility function representing the Dictionary Order.
7. Consider the HARA class of utility functions

$$
\begin{align*}
U(x) & =\frac{1-\gamma}{\gamma}\left(\frac{a x}{1-\gamma}+b\right)^{\gamma} \\
& =\left(\left(\frac{1-\gamma}{\gamma}\right)^{\frac{1}{\gamma}} \frac{a}{1-\gamma} x+\left(\frac{1-\gamma}{\gamma}\right)^{\frac{1}{\gamma}} b\right)^{\gamma} \tag{1}
\end{align*}
$$

(a) Let $a=(1-\gamma)\left(\frac{\gamma}{1-\gamma}\right)^{\frac{1}{\gamma}}, b \rightarrow 0^{+}$. Then

$$
U(x)=x^{\gamma} \rightarrow x \quad \text { as } \quad \gamma \rightarrow 1
$$

(b) Let $\gamma=2$. Then
$U(x)=-\frac{1}{2}(-a x+b)^{2}=-\frac{b^{2}}{2}+a b x-\frac{a^{2}}{2} x^{2}$ which is equivalent with $V(x)=a b x-$ $\frac{a^{2}}{2} x^{2}$ since they differ by only a constant. Now let $a^{2}=c, b=1 / a$,

$$
U(x)=x-\frac{1}{2} c x^{2} .
$$

(c) Note that $\left(1+\frac{\alpha x}{n}\right)^{n} \rightarrow e^{\alpha x}$ as $n \rightarrow \infty$. Let $b=\left(\frac{\gamma}{1-\gamma}\right)^{\frac{1}{\gamma}} \cdot a=\frac{1-\gamma}{\gamma}\left(\frac{\gamma}{1-\gamma}\right)^{\frac{1}{\gamma}}(-\alpha)$. Then

$$
U(x)=\left(\frac{-\alpha x}{\gamma}+1\right)^{\gamma} \rightarrow e^{-\alpha x} \quad \text { as } \quad \gamma \rightarrow \infty .
$$

(d) Let $b \rightarrow 0^{+}, a=c^{1 / \gamma}(1-\gamma)\left(\frac{r}{1-\gamma}\right)^{1 / \gamma}$. Then

$$
U(x)=\left(c^{1 / \gamma} c\right)^{\gamma}=c x^{\gamma}
$$

(e) Take $c=\frac{1}{\gamma}$ from part (d). $U(x)$ is equivalent to $\frac{x^{\gamma}-1}{\gamma} \rightarrow \ln x$ as $\gamma \rightarrow 0^{+}$.
8. By setting $U(c)=E[U(x)]$, where c is the certainty equivalent, we obtain

$$
U^{\prime}(x)(c-\bar{x}) \approx \frac{U^{\prime \prime}(\bar{x})}{2} \operatorname{var}(x)
$$

so that

$$
c \approx \bar{x}+\frac{U^{\prime \prime}(\bar{x})}{2 U^{\prime}(\bar{x})} \operatorname{var}(x) .
$$

9. (a)

Outcomes (\%)	F_{A}	$\int F_{A}$	F_{B}	$\int F_{B}$	F_{C}	$\int F_{C}$
4	0.7	0.7	0	0	0	0
5	0.7	1.4	0.1	0.1	0.1	0.1
6	0.8	2.2	0.3	0.4	0.1	0.2
7	0.9	3.1	0.3	0.7	0.2	0.4
8	0.9	4.0	0.4	1.1	0.4	0.8
9	1.0	5.0	0.6	1.7	0.6	1.4
10	1.0	6.0	1.0	2.7	0.6	2.0
11	1.0	7.0	1.0	3.7	1.0	3.0

$F_{A}>F_{B}>F_{C}$, for all outcomes; $\int F_{A} \geq \int F_{B} \geq \int F_{C}$, for all outcomes.
(b) Consider the geometric average of the 3 investments:

$$
\begin{aligned}
& \bar{X}_{\text {geo }}(A)=3^{0.4} 4^{0.3} 6^{0.1} 7^{0.1} 9^{0.1}=4.2581 \\
& \bar{X}_{\text {geo }}(B)=5^{0.1} 6^{0.2} 8^{0.1} 9^{0.2} 10^{0.4}=8.0665 \\
& \bar{X}_{\text {geo }}(C)=5^{0.1} 7^{0.1} 8^{0.2} 9^{0.2} 11^{0.4}=8.7585 .
\end{aligned}
$$

Hence, C is preferred to B and A, and B is preferred to A, according to the geometric mean criterion.
10. We would like to show that $F(x)$ dominates $G(x)$ by the $3^{\text {th }}$ order stochastic dominance (TSD) if
(i) $\int_{a}^{x} \int_{a}^{t} F(y) d y d t \leq \int_{a}^{x} \int_{a}^{t} G(y) d y d t \quad$ for all $x \in[a, b]$
and

$$
\text { (ii) } \int_{a}^{b} F(t) d t \leq \int_{a}^{b} G(t) d t
$$

According to the above definition, $F(x)$ dominates $G(x)$ in TSD if and only if

$$
\begin{equation*}
\int_{c} u(x) d F(x) \geq \int_{c} u(x) d G(x) \tag{*}
\end{equation*}
$$

for all utility functions with $u^{\prime}(x)>0, u^{\prime \prime}(x)<0$ and $u^{\prime \prime \prime}(x)>0$ for all $x \in C$, where C is the set of all possible outcomes.

Let a and b be the smallest and largest values F and G can take on, where $F(a)=G(a)=$ $0, F(b)=G(b)=1$. Consider

$$
\begin{aligned}
& \int_{a}^{b} u(x) d(F(x)-G(x))=\left.u(x)[F(x)-G(x)]\right|_{a} ^{b}-\int_{a}^{b} u^{\prime}(x)[F(x)-G(x)] d x \\
= & -\int_{a}^{b} u^{\prime}(x)[F(x)-G(x)] d x \\
= & -\left.u^{\prime}(x) \int_{a}^{x}[F(y)-G(y)] d y\right|_{a} ^{b}+\int_{a}^{b} u^{\prime \prime}(x) \int_{a}^{x}[F(y)-G(y)] d y d x \\
= & -u^{\prime}(b) \int_{a}^{b}[F(y)-G(y)] d y+\int_{a}^{b} u^{\prime \prime}(x) \int_{a}^{x}[F(y)-G(y)] d y d x .
\end{aligned}
$$

By parts integration, we obtain

$$
\begin{aligned}
& \int_{a}^{b} u^{\prime \prime}(x) \int_{a}^{x}[F(y)-G(y)] d y d x=\left.u^{\prime \prime}(x) \int_{a}^{x} \int_{a}^{t}[F(y)-G(y)] d y d t\right|_{a} ^{b} \\
&-\int_{a}^{b} u^{\prime \prime \prime}(x) \int_{a}^{y} \int_{a}^{t}[F(y)-G(y)] d y d t d x
\end{aligned}
$$

By property (i), we have

$$
\int_{a}^{b} u^{\prime \prime}(x) \int_{a}^{y}[F(y)-G(y)] d y d x \geq 0
$$

Here, we assume that both

$$
\int_{a}^{x} \int_{a}^{t} F(y) d y d t \text { and } \int_{a}^{x} \int_{a}^{t} G(y) d y d t
$$

are continuous function of x, otherwise $\left(^{*}\right)$ holds only at discontinuous point, since $u^{\prime \prime}(x)<$ 0 and $u^{\prime \prime \prime}(x)>0$. Also, by (ii) and $u^{\prime}(x)>0$, we obtain

$$
-u^{\prime}(b) \int_{a}^{b}[F(y)-G(y)] d y \geq 0
$$

Hence, the combination of properties (i) and (ii) implies TSD.

