
MATH4512 – Fundamentals of Mathematical Finance

Topic Two — Mean variance portfolio theory

2.1 Mean and variance of portfolio return

2.2 Markowitz mean-variance formulation

2.3 Two-fund Theorem

2.4 Inclusion of the risk free asset: One-fund Theorem
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2.1 Mean and variance of portfolio return

Single-period investment model – Asset return

Suppose that you purchase an asset at time zero, and 1 year later

you sell the asset. The total return on your investment is defined

to be

total return =
amount received

amount invested
.

If X0 and X1 are, respectively, the amounts of money invested and

received and R is the total return, then

R =
X1

X0
.

The rate of return is defined by

r =
amount received − amount invested

amount invested
=

X1 −X0

X0
.

It is clear that

R = 1+ r and X1 = (1+ r)X0.
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• Amount received X1 = dividend received during the investment

period + terminal asset value.

Note that both dividends and terminal asset value are uncertain.

• We treat r as a random variable, characterized by its probability

distribution. For example, in the discrete case, we have

rate of return r1 r2 · · · rn
probability of occurrence p1 p2 · · · pn

• Two important statistics (discrete random variable)

mean = r =
n∑

i=1

ripi

variance = σ2(r) =
n∑

i=1

(ri − r)2pi.
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Statement of the problem

• A portfolio is defined by allocating fractions of initial wealth to

individual assets. The fractions (or weights) must sum to one

(some of these weights may be negative, corresponding to short

selling).

• Return is quantified by portfolio’s expected rate of return;

Risk is quantified by variance of portfolio’s rate of return.

Goal: Maximize return for a given level of risk;

or minimize risk for a given level of return.

(i) How do we determine the optimal portfolio allocation?

(ii) The characterization of the set of optimal portfolios (mini-

mum variance funds and efficient funds).
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Limitations in the mean variance portfolio theory

• Only the mean and variance of rates of returns are taken in-

to consideration in the mean-variance portfolio analysis. The

higher order moments (like the skewness) of the probability dis-

tribution of the rates of return are irrelevant in the formulation.

• Indeed, only the Gaussian (normal) distribution is fully specified

by its mean and variance. Unfortunately, the rates of return of

risky assets are not Gaussian in general.

• Calibration of parameters in the model is always challenging.

– Sample mean: r̂ = 1
n

∑n
t=1 rt.

– Sample variance σ̂2 = 1
n−1

∑n
t=1(rt − r̂)2,

where rt is the historical rate of return observed at time t, t =

1,2, · · · , n.
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Short sales

• It is possible to sell an asset that you do not own through the

process of short selling, or shorting, the asset. You then sell

the borrowed asset to someone else, receiving an amount X0.

At a later date, you repay your loan by purchasing the asset

for, say, X1 and return the asset to your lender. Short selling is

profitable if the asset price declines.

• When short selling a stock, you are essentially duplicating the

role of the issuing corporation. You sell the stock to raise im-

mediate capital. If the stock pays dividends during the period

that you have borrowed it, you too must pay that same dividend

to the person from whom you borrowed the stock.
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Return associated with short selling

We receive X0 initially and pay X1 later, so the outlay ( ) is −X0

and the final receipt ( ) is −X1, and hence the total return

is

R =
−X1

−X0
=

X1

X0
.

The minus signs cancel out, so we obtain the same expression as

that for purchasing the asset. The return value R applies alge-

braically to both purchases and short sales.

We can write

−X1 = −X0R = −X0(1 + r)

to show how the final receipt is related to the initial outlay.
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Example of short selling transaction

Suppose I short 100 shares of stock in company CBA. This stock

is currently selling for $10 per share. I borrow 100 shares from my

broker and sell these in the stock market, receiving $1,000. At the

end of 1 year the price of CBA has dropped to $9 per share. I buy

back 100 shares for $900 and give these shares to my broker to

repay the original loan. Because the stock price fell, this has been

a favorable transaction for me. I made a profit of $100.

The rate of return is clearly negative as r = −10%.

Shorting converts a negative rate of return into a profit because the

original investment is also negative.
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Portfolio weights

Suppose now that n different assets are available. We form a port-

folio of these n assets. Suppose that this is done by apportion-

ing an amount X0 among the n assets. We then select amounts

X0i, i = 1,2, · · · , n, such that
n∑

i=1

X0i = X0, where X0i represents the

amount invested in the ith asset. If we are allowed to sell an asset

short, then some of the X0i’s can be negative.

We write

X0i = wiX0, i = 1,2, · · · , n

where wi is the weight of asset i in the portfolio. Clearly,

n∑
i=1

wi = 1

and some wi’s may be negative if short selling is allowed.
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Portfolio return

Let Ri denote the total return of asset i. Then the amount of money

generated at the end of the period by the ith asset is RiX0i = RiwiX0.

The total amount received by this portfolio at the end of the period

is therefore
n∑

i=1

RiwiX0. The overall total return of the portfolio is

RP =

∑n
i=1RiwiX0

X0
=

n∑
i=1

wiRi.

Since
n∑

i=1

wi = 1, we have

rP = RP − 1 =
n∑

i=1

wi(Ri − 1) =
n∑

i=1

wiri.
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Covariance of a pair of random variables

When considering two or more random variables, their mutual de-

pendence can be summarized by their covariance.

Let x1 and x2 be a pair random variables with expected values x1
and x2, respectively. The covariance of this pair of random variables

is defined to be the expectation of the product of deviations from

the respective mean of x1 and x2:

cov(x1, x2) = E[(x1 − x1)(x2 − x2)].

The covariance of two random variables x and y is denoted by σxy.

We write cov(x1, x2) = σ12. By symmetry, σ12 = σ21, where

σ12 = E[x1x2 − x1x2 − x1x2 + x1x2] = E[x1x2]− x1x2.
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Correlation

• If the two random variables x1 and x2 have the property that

σ12 = 0, then they are said to be uncorrelated.

• If the two random variables are independent, then they are un-

correlated. When x1 and x2 are independent, E[x1x2] = x1x2 so

that cov(x1, x2) = 0.

• If σ12 > 0, then the two variables are said to be positively

correlated. In this case, if one variable is above its mean, the

other is likely to be above its mean as well.

• On the other hand, if σ12 < 0, the two variables are said to be

negatively correlated.
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When x1 and x2 are positively correlated, a positive deviation from

mean of one random variable has a higher tendency to have a pos-

itive deviation from mean of the other random variable.
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The correlation coefficient of a pair of random variables is defined

as

ρ12 =
σ12
σ1σ2

.

It can be shown that |ρ12| ≤ 1.

This would imply that the covariance of two random variables sat-

isfies

|σ12| ≤ σ1σ2.

If σ12 = σ1σ2, the variables are perfectly correlated. In this situa-

tion, the covariance is as large as possible for the given variance. If

one random variable were a fixed positive multiple of the other, the

two would be perfectly correlated.

Conversely, if σ12 = −σ1σ2, the two variables exhibit perfect neg-

ative correlation.
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Mean rate of return of a portfolio

Suppose that there are N assets with (random) rates of return

r1, r2, · · · , rN , and their expected values E[r1] = r1, E[r2] = r2, · · · ,
E[rN ] = rN . The rate of return of the portfolio in terms of the rate

of return of the individual assets is

rP = w1r1 + w2r2 + · · ·+ wnrN ,

so that

E[rP ] = rP = w1E[r1] + w2E[r2] + · · ·+ wnE[rN ]

= w1r1 + w2r2 + · · ·+ wnrN .

The portfolio’s mean rate of return is simply the weighted average

of the mean rates of return of the assets. Note that a negative

rate of return ri of asset i with negative weight wi (short selling)

contributes positively to rP .
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Variance of portfolio’s rate of return

We denote the variance of the return of asset i by σ2i , the variance

of the return of the portfolio by σ2P , and the covariance of the return

of asset i with that of asset j by σij. Portfolio variance is given by

σ2P = E[(rP − rP )
2]

= E


 N∑
i=1

wiri −
N∑

i=1

wiri

2


= E

 N∑
i=1

wi(ri − ri)

 N∑
j=1

wj(rj − rj)


= E

 N∑
i=1

N∑
j=1

wiwj(ri − ri)(rj − rj)


=

N∑
i=1

N∑
j=1

wiwjσij.
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Zero correlation

Suppose that a portfolio is constructed by taking equal portions of

N of these assets; that is, wi =
1
N for each i. The overall rate of

return of this portfolio is

rP =
1

N

N∑
i=1

ri.

Let σ2i be the variance of the rate of return of asset i. When the

rates of return are uncorrelated, the corresponding variance is

var(rP ) =
1

N2

N∑
i=1

σ2i =
σ2aver
N

.

The variance decreases rapidly as N increases.
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Uncorrelated assets

When the rates of return of assets are uncorrelated, the variance of

a portfolio can be made very small.
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Non-zero correlation

We form a portfolio by taking equal portions of wi = 1
N of these

assets. In this case,

var(rP ) = E

 N∑
i=1

1

N
(ri − r)

2

=
1

N2
E


 N∑
i=1

(ri − r)

  N∑
j=1

(rj − r)


=

1

N2

∑
i,j

σij =
1

N2

∑
i=j

σij +
∑
i̸=j

σij


=

1

N2
{N(σ2i )aver + (N2 −N)(σij)aver}

=
1

N

[
(σ2i )aver − (σij)aver

]
+ (σij)aver.

The covariance terms remain when we take N → ∞. Also, var(rP )

may be decreased by choosing assets that are negatively correlated

by noting the presence of the term
(
1−

1

N

)
(σij)aver.
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Correlated assets

If returns of assets are correlated, there is likely to be a lower limit

to the portfolio variance that can be achieved. This is because the

term (σij)aver remains in var(rP ) even when N → ∞.
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2.2 Markowitz mean-variance formulation

We consider a single-period investment model. Suppose there are N

risky assets, whose rates of return are given by the random variables

r1, · · · , rN , where

rn =
Sn(1)− Sn(0)

Sn(0)
, n = 1,2, · · · , N.

Here, time-0 stock price Sn(0) is known while time-1 stock price

Sn(1) is random, n = 1,2, · · · , N . Let w = (w1 · · ·wN)T , wn denotes

the proportion of wealth invested in asset n, with
N∑

n=1

wn = 1. The

rate of return of the portfolio rP is

rP =
N∑

n=1

wnrn.
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Assumption

The two vectors µ = (r1 r2 · · · rN)T and 1 = (1 1 · · ·1)T are

linearly independent. If otherwise, the mean rates of return are

equal and so the portfolio return can only be the common mean

rate of return. Under this degenerate case, the portfolio choice

problem becomes a simpler minimization problem.

The first two moments of rP are

µP = E[rP ] =
N∑

n=1

E[wnrn] =
N∑

n=1

wnµn, where µn = rn,

and

σ2P = var(rP ) =
N∑

i=1

N∑
j=1

wiwjcov(ri, rj) =
N∑

i=1

N∑
j=1

wiwjσij.
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Covariance matrix

Let Ω denote the covariance matrix so that

σ2P = wTΩw,

where Ω is symmetric and (Ω)ij = σij = cov(ri, rj). For example,

when n = 2, we have

(w1 w2)

(
σ11 σ12
σ21 σ22

)(
w1
w2

)
= w2

1σ
2
1 + w1w2(σ12 + σ21) + w2

2σ
2
2.

Since portfolio variance σ2P must be non-negative, so the covari-

ance matrix must be symmetric and semi-positive definite. The

eigenvalues are all real non-negative.

• Recall that detΩ = product of eigenvalues and Ω−1 exists if

and only if detΩ ̸= 0. In our later discussion, we always assume

Ω to be symmetric and positive definite (avoiding the unlikely

event where one of the eigenvalues is zero) so that Ω−1 always

exists. Note that Ω−1 is also symmetric and positive definite.
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Sensitivity of σ2P with respect to wk

By the product rule in differentiation

∂σ2P
∂wk

=
N∑

j=1

N∑
i=1

∂wi

∂wk
wjσij +

N∑
i=1

N∑
j=1

wi
∂wj

∂wk
σij

=
N∑

j=1

wjσkj +
N∑

i=1

wiσik.

Since σkj = σjk, we obtain

∂σ2P
∂wk

= 2
N∑

j=1

wjσkj = 2(Ωw)k,

where (Ωw)k is the kth component of the vector Ωw. Alternatively,

we may write

▽σ2P = 2Ωw,

where ▽ is the gradient operator. This partial derivative gives the

sensitivity of the portfolio variance with respect to the weight of a

particular asset.
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Remarks

1. The portfolio risk of return is quantified by σ2P . In the mean-

variance analysis, only the first two moments are considered in

the portfolio investment model. Earlier investment theory prior

to Markowitz only considered the maximization of µP without

σP .

2. The measure of risk by variance would place equal weight on the

upside and downside deviations. In reality, positive deviations

should be more welcomed.

3. The assets are characterized by their random rates of return,

ri, i = 1, · · · , N . In the mean-variance model, it is assumed that

their first and second order moments: µi, σi and σij are all known.

In the Markowitz mean-variance formulation, we would like to

determine the choice variables: w1, · · · , wN such that σ2P is min-

imized for a given preset value of µP .
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Two-asset portfolio

Consider a portfolio of two assets with known means r1 and r2,

variances σ21 and σ22, of the rates of return r1 and r2, together with

the correlation coefficient ρ, where cov(r1, r2) = ρσ1σ2.

Let 1− α and α be the weights of assets 1 and 2 in this two-asset

portfolio, so w = (1− α α)T .

Portfolio mean: rP = (1− α)r1 + αr2,

Portfolio variance: σ2P = (1− α)2σ21 +2ρα(1− α)σ1σ2 + α2σ22.

Note that rP is not affected by ρ while σ2P is dependent on ρ.
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assets’ mean and variance
Asset A Asset B

Mean return (%) 10 20
Variance (%) 10 15

Portfolio meana and varianceb for weights and asset correlations
weight ρ = −1 ρ = −0.5 ρ = 0.5 ρ = 1

wA wB = 1− wA Mean Variance Mean Variance Mean Variance Mean Variance
1.0 0.0 10.0 10.00 10.0 10.00 10.0 10.00 10.0 10.00
0.8 0.2 12.0 3.08 12.0 5.04 12.0 8.96 12.0 10.92
0.5 0.5 15.0 0.13 15.0 3.19 15.0 9.31 15.0 12.37
0.2 0.8 18.0 6.08 18.0 8.04 18.0 11.96 18.00 13.92
0.0 1.0 20.0 15.00 20.0 15.00 20.0 15.00 20.0 15.00

a The mean is calculated as E(R) = wA10+ (1− wA)20.

b The variance is calculated as σ2
P = w2

A10+(1−wA)215+2wA(1−wA)ρ
√
10

√
15

where ρ is the assumed correlation coefficient and
√
10 and

√
15 are standard

deviations of the returns of the two assets, respectively.

Observation: A lower variance is achieved for a given mean when

the correlation of the pair of assets’ returns becomes more negative.
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We represent the two assets in a mean-standard deviation diagram

As α varies, (σP , rP ) traces out a conic curve in the σ-r plane. With

ρ = −1, it is possible to have σP = 0 for some suitable choice of

weight α. Note that P1(σ1, r1) corresponds to α = 0 while P2(σ2, r2)

corresponds to α = 1.
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Consider the special case where ρ = 1,

σP (α; ρ = 1) =
√
(1− α)2σ21 +2α(1− α)σ1σ2 + α2σ22

= (1− α)σ1 + ασ2.

Since rP and σP are linear in α, and if we choose 0 ≤ α ≤ 1, then

the portfolios are represented by the straight line joining P1(σ1, r1)

and P2(σ2, r2).

When ρ = −1, we have

σP (α; ρ = −1) =
√
[(1− α)σ1 − ασ2]

2 = |(1− α)σ1 − ασ2|.

Since both rP and σP are also linear in α, (σP , rP ) traces out linear

line segments. When α is small (close to zero), the corresponding

point is close to P1(σ1, r1). The line AP1 corresponds to

σP (α; ρ = −1) = (1− α)σ1 − ασ2.

The point A corresponds to α =
σ1

σ1 + σ2
. It is a point on the vertical

axis which has zero value of σP . Also, see point 5 in the Appendix.
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The quantity (1 − α)σ1 − ασ2 remains positive until α =
σ1

σ1 + σ2
.

When α >
σ1

σ1 + σ2
, the locus traces out the upper line AP2 cor-

responding to σP (α; ρ = −1) = ασ2 − (1 − α)σ1. In summary, we

have

σP (α; ρ = −1) =

{
(1− α)σ1 − ασ2 α ≤ σ1

σ1+σ2
ασ2 − (1− α)σ1 α > σ1

σ1+σ2

.

Suppose −1 < ρ < 1, the minimum variance point on the curve that

represents various portfolio combinations is determined by

∂σ2P
∂α

= −2(1− α)σ21 +2ασ22 +2(1− 2α)ρσ1σ2 = 0

giving

α =
σ21 − ρσ1σ2

σ21 − 2ρσ1σ2 + σ22
.
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Mean-standard deviation diagram
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Formulation of Markowitz’s mean-variance analysis

minimize
1

2

N∑
i=1

N∑
j=1

wiwjσij

subject to
N∑

i=1

wiri = µP and
N∑

i=1

wi = 1. Given the target expected

rate of return of portfolio µP , we find the optimal portfolio strategy

that minimizes σ2P . The constraint:
N∑

i=1

wi = 1 refers to the strategy

of putting all wealth into investment of risky assets.

Solution

We form the Lagrangian

L =
1

2

N∑
i=1

N∑
j=1

wiwjσij − λ1

 N∑
i=1

wi − 1

− λ2

 N∑
i=1

wiri − µP

 ,

where λ1 and λ2 are the Lagrangian multipliers.
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We differentiate L with respect to wi and the Lagrangian multipliers,

then set all the derivatives be zero.

∂L

∂wi
=

N∑
j=1

σijwj − λ1 − λ2ri = 0, i = 1,2, · · · , N ; (1)

∂L

∂λ1
=

N∑
i=1

wi − 1 = 0; (2)

∂L

∂λ2
=

N∑
i=1

wiri − µP = 0. (3)

From Eq. (1), we deduce that the optimal portfolio vector weight

w∗ admits solution of the form

Ωw∗ = λ11+ λ2µ or w∗ = Ω−1(λ11+ λ2µ)

where 1 = (1 1 · · ·1)T and µ = (r1 r2 · · · rN)T .
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Degenerate case

Consider the case where all assets have the same expected rate

of return, that is, µ = h1 for some constant h. In this case,

the solution to Eqs. (2) and (3) gives µP = h. The assets are

represented by points that all lie on the horizontal line: r = h.

In this case, the expected portfolio return cannot be arbitrarily pre-

scribed. Actually, we have to take µP = h, so the constraint on the

expected portfolio return becomes irrelevant.
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Solution procedure

To determine λ1 and λ2, we apply the two constraints:

1 = 1T
Ω−1Ωw∗ = λ11

T
Ω−11+ λ21

T
Ω−1µ

µP = µTΩ−1Ωw∗ = λ1µ
TΩ−11+ λ2µ

TΩ−1µ.

Writing a = 1T
Ω−11, b = 1T

Ω−1µ and c = µTΩ−1µ, we have two

equations for λ1 and λ2:

1 = λ1a+ λ2b and µP = λ1b+ λ2c.

Solving for λ1 and λ2:

λ1 =
c− bµP

∆
and λ2 =

aµP − b

∆
,

where ∆ = ac − b2. Provided that µ ̸= h1 for some scalar h, we

then have ∆ ̸= 0.
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Solution to the minimum portfolio variance

• Both λ1 and λ2 have dependence on µP , where µP is the target

mean prescribed in the variance minimization problem.

• The minimum portfolio variance for a given value of µP is given

by

σ2P = w∗TΩw∗ = w∗T (λ11+ λ2µ)

= λ1 + λ2µP =
aµ2P − 2bµP + c

∆
.

• σ2P = wTΩw ≥ 0, for all w, so Ω is guaranteed to be semi-

positive definite. In our subsequent analysis, we assume Ω to be

positive definite. Given that Ω is positive definite, so does Ω−1,

we have a > 0, c > 0 and Ω−1 exists. By virtue of the Cauchy-

Schwarz inequality, ∆ > 0. Since a and ∆ are both positive, the

quantity aµ2P − 2bµP + c is guaranteed to be positive (since the

quadratic equation has no real root, a result from highschool

mathematics).
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The set of minimum variance portfolios is represented by a parabolic

curve in the σ2P − µP plane. The parabolic curve is generated by

varying the value of the parameter µP . Note that
1

a
> 0 while

b

a
may become negative under some extreme adverse cases of negative

mean rates of return.

Non-optimal portfolios are represented by points which must fall on

the right side of the parabolic curve.
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Global minimum variance portfolio

Given µP , we obtain λ1 =
c− bµP

∆
and λ2 =

aµP − b

∆
, and the optimal

weight w∗ = Ω−1(λ11+ λ2µ) =
c− bµP

∆
Ω−11+

aµP − b

∆
Ω−1µ.

To find the global minimum variance portfolio, we set

dσ2P
dµP

=
2aµP − 2b

∆
= 0

so that µP = b/a and σ2P = 1/a. Correspondingly, λ1 = 1/a and

λ2 = 0. The weight vector that gives the global minimum variance

portfolio is found to be

wg = λ1Ω
−11 =

Ω−11
a

=
Ω−11

1T
Ω−11

.

Note that wg is independent of µ. Obviously, wT
g1 = 1 due to the

normalization factor 1T
Ω−11 in the denominator. As a check, we

have µg = µTwg =
b

a
and σ2g = wT

g Ωwg =
1

a
.
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Example

Given the variance matrix

Ω =

 2 0.5 0
0.5 3 0.5
0 0.5 2

 ,

find wg. This can be obtained effectively by solving

2v1 +0.5v2 = 1

0.5v1 +3v2 +0.5v3 = 1

0.5v2 +2v3 = 1.

Here, v = (v1 v2 v3)
T gives Ω−11. Due to symmetry between asset

1 and asset 3 since σ21 = σ23 and σ12 = σ32, etc., we expect v1 = v3.
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The above system reduces to

2v1 +0.5v2 = 1

v1 +3v2 = 1

giving v1 = v3 = 5
11 and v2 = 2

11. Lastly, by normalization to sum

of weights equals 1, we obtain

wg =
(

5

12

2

12

5

12

)T
.
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Two-parameter (λ1 − λ2) family of minimum variance portfolios

Recall w∗ = λ1Ω
−11+λ2Ω

−1µ, so the minimum variance portfolios

(frontier funds) are seen to be generated by a linear combination

of Ω−11 and Ω−1µ, where µ ̸= h1 so that Ω−11 and λ−1µ are

independent.

It is not surprising to see that λ2 = 0 corresponds to w∗
g since the

constraint on the target mean vanishes when λ2 is taken to be zero.

In this case, we minimize risk while paying no regard to the target

mean, thus the global minimum variance portfolio is resulted.

Suppose we normalize Ω−1µ by b and define

wd =
Ω−1µ

b
=

Ω−1µ

1T
Ω−1µ

.

Obviously, wd also lies on the frontier since it is a member of the

family of minimum variance portfolio with λ1 = 0 and λ2 =
1

b
.
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The corresponding expected rate of return µd and σ2d are given by

µd = µTwd =
c

b

σ2d =

(
Ω−1µ

)T
Ω
(
Ω−1µ

)
b2

=
µTΩ−1µ

b2
=

c

b2
.

Since Ω−11 = awg and Ω−1µ = bwd, the weight of any frontier

fund (minimum variance fund) can be represented by

w∗ = (λ1a)wg + (λ2b)wd =
c− bµP

∆
awg +

aµP − b

∆
bwd.

This provides the motivation of the Two-Fund Theorem. The above

representation indicates that the optimal portfolio weight w∗ de-

pends on µP set by the investor.

• Any minimum variance fund can be generated by an appropriate

combination of the two funds corresponding to wg and wd (see

Sec. 2.3: Two-fund Theorem).
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Feasible set

Given N risky assets, we can form various portfolios from these N

assets. We plot the point (σP , rP ) that represents a particular port-

folio in the σ−r diagram. The collection of these points constitutes

the feasible set or feasible region.
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Argument to show that the collection of the points representing

(σP , rP ) of a 3-asset portfolio generates a solid region in the σ-r

plane

• Consider a 3-asset portfolio, the various combinations of assets

2 and 3 sweep out a curve between them (the particular curve

taken depends on the correlation coefficient ρ23).

• A combination of assets 2 and 3 (labelled 4) can be combined

with asset 1 to form a curve joining 1 and 4. As 4 moves

between 2 and 3, the family of curves joining 1 and 4 sweep out

a solid region.
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Properties of the feasible regions

1. For a portfolio with at least 3 risky assets (not perfectly cor-

related and with different means), the feasible set is a solid

two-dimensional region.

2. The feasible region is convex to the left. Any combination of

two portfolios also lies in the feasible region. Indeed, the left

boundary of a feasible region is a hyperbola (as solved by the

Markowitz constrained minimization model).
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Locate the efficient and inefficient investment strategies

• Since investors prefer the lowest variance for the same expected

return, they will focus on the set of portfolios with the small-

est variance for a given mean, or the mean-variance frontier

(collection of minimum variance portfolios).

• The mean-variance frontier can be divided into two parts: an

efficient frontier and an inefficient frontier.

• The efficient part includes the portfolios with the highest mean

for a given variance.
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Minimum variance set and efficient funds

The left boundary of a feasible region is called the minimum variance

set. The most left point on the minimum variance set is called the

global minimum variance point. The portfolios in the minimum

variance set are called the frontier funds.

For a given level of risk, only those portfolios on the upper half of

the efficient frontier with a higher return are desired by investors.

They are called the efficient funds.

A portfolio w∗ is said to be mean-variance efficient if there exists no

portfolio w with µP ≥ µ∗P and σ2P ≤ σ∗
2

P , except itself. That is, you

cannot find a portfolio that has a higher return and lower risk than

those of an efficient portfolio. The funds on the inefficient frontier

do not exhibit the above properties.
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Example – Uncorrelated assets with short sales constraint

Suppose there are three uncorrelated assets. Each has variance 1,

and the mean rates of return are 1,2 and 3 (in percentage points),

respectively. We have σ21 = σ22 = σ23 = 1 and σ12 = σ23 = σ13 = 0;

that is Ω = I.

The first order conditions give Ωw = λ11+ λ2µ, µTw = µP and

1T
w = 1, so we obtain

w1 − λ2 − λ1 = 0

w2 − 2λ2 − λ1 = 0

w3 − 3λ2 − λ1 = 0

w1 +2w2 +3w3 = µP

w1 + w2 + w3 = 1.

By eliminating w1, w2, w3, we obtain two equations for λ1 and λ2

14λ2 +6λ1 = µP

6λ2 +3λ1 = 1.
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These two equations can be solved to yield λ2 =
µP
2

− 1 and λ1 =

2
1

3
− µP . The portfolio weights are expressed in terms of µP :

w1 =
4

3
−

µP
2

w2 =
1

3

w3 =
µP
2

−
2

3
.

The standard deviation of rP at the solution is
√
w2
1 + w2

2 + w2
3,

which by direct substitution gives

σP =

√
7

3
− 2µP +

µ2P
2

.

The minimum-variance point is, by symmetry, at µP = 2, with

σP =
√
3/3 = 0.58. When µP = 2, we obtain

w1 = w2 = w3 =
1

3
.
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Short sales not allowed (adding the constraints: wi ≥ 0, i = 1,2,3)

Unlike the unrestricted case of allowing short sales, we now impose

wi ≥ 0, i = 1,2,3. As a result, µP can only lie between 1 ≤ µP ≤ 3

[recall µP = w1 +2w2 +3w3]. The lower bound is easily seen since

µP = (w1+w2+w3)+ (w2+2w3) = 1+w2+2w3 ≥ 1 since w2 ≥ 0

and w3 ≥ 0. Also, µP cannot go above 3 as the maximum value

of µP can only be achieved by choosing w3 = 1, w1 = w2 = 0.

For certain range of µP , some of the optimal portfolio weights may

become negative when there is no short sales constraint.
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It is instructive to consider seperately, the following 3 intervals for

µP :
[
1,

4

3

]
,
[
4

3
,
8

3

]
and

[
8

3
,3
]
.

1 ≤ µP ≤ 4
3

4
3 ≤ µP ≤ 8

3
8
3 ≤ µP ≤ 3

w1 = 2− µP
4
3 − µP

2 0

w2 = µP − 1 1
3 3− µP

w3 = 0 µP
2 − 2

3 µP − 2

σP =
√
2µ2P − 6µP +5

√
7
3 − 2µP +

µ2P
2

√
2µ2P − 10µP +13.
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• From w3 = µP
2 −2

3, we deduce that when 1 ≤ µP < 4
3, w3 becomes

negative in the minimum variance portfolio when short sales are

allowed. This is truly an inferior investment choice as the in-

vestor sets µP to be too low while asset 3 has the highest mean

rate of return. When short sales are not allowed, we expect to

have “w3 = 0” in the minimum variance portfolio. The prob-

lem reduces to two-asset portfolio model and the corresponding

optimal weights w1 and w2 can be easily obtained by solving

w1 +2w2 = µP

w1 + w2 = 1.

• Similarly, when 8
3 ≤ µP ≤ 3, it is optimal to choose w1 = 0. In

this case, the investor sets µP to be too high while asset 1 has

the lowest mean rate of return.

• When 4
3 ≤ µP ≤ 8

3, we have the same solution as the case without

the short sales constraint. This is because the solutions to

the weights happen to be non-negative under the unconstrained

case. The short sales constraint becomes redundant.
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2.3 Two-fund Theorem

Take any two frontier funds (portfolios), then any combination of

these two frontier funds remains to be a frontier fund. Indeed, any

frontier portfolio can be duplicated, in terms of mean and variance,

as a combination of these two frontier funds. In other words, all

investors seeking frontier portfolios need only invest in various com-

binations of these two funds. This property can be extended to a

combination of efficient funds (frontier funds that lie on the upper

portion of the efficient frontier)?

Remark

This is analogous to the concept of a basis of R2 with two indepen-

dent basis vectors. Any vector in R2 can be expressed as a unique

linear combination of the basis vectors. Choices of bases of R2 can

be

{(
1
0

)
,

(
0
1

)}
,

{(
1
1

)
,

(
2
1

)}
, etc.
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Proof of the Two-fund Theorem

Let w1 = (w1
1 · · ·w1

n), λ
1
1, λ

1
2 and w2 = (w2

1 · · ·w2
n)

T , λ21, λ
2
2 be two

known solutions to the minimum variance formulation with expected

rates of return µ1P and µ2P , respectively. By setting µP equal µ1P and

µ2P successively, both solutions satisfy

n∑
j=1

σijwj − λ1 − λ2ri = 0, i = 1,2, · · · , n (1)

n∑
i=1

wiri = µP (2)

n∑
i=1

wi = 1. (3)

We would like to show that αw1+(1−α)w2 is a solution corresponds

to the expected rate of return αµ1P + (1− α)µ2P .

For example, µ1P = 2%, µ2P = 4%, and we set µP to be 2.5%, then

α = 0.75.
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1. The new weight vector αw1+(1−α)w2 is a legitimate portfolio

with weights that sum to one.

2. Check the condition on the expected rate of return

n∑
i=1

[
αw1

i + (1− α)w2
i

]
ri

= α
n∑

i=1

w1
i ri + (1− α)

n∑
i=1

w2
i ri

= αµ1P + (1− α)µ2P .

3. Eq. (1) is satisfied by αw1 + (1 − α)w2 since the system of

equations is linear. The corresponding λ1 and λ2 are given by

λ1 = αλ11 + (1− α)λ21 and λ2 = αλ12 + (1− α)λ22.

4. Given µP , the appropriate portion α is determined by

µP = αµ1P + (1− α)µ2P .
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Global minimum variance portfolio wg and the counterpart wd

For convenience, we choose the two frontier funds to be wg and

wd. To obtain the optimal weight w∗ for a given µP , we solve for α

using αµg+(1−α)µd = µP and w∗ is then given by αwg+(1−α)wd.

Recall µg = b/a and µd = c/b, so α =
(c− bµP )a

∆
.

Proposition

Any minimum variance portfolio with the target mean µP can be

uniquely decomposed into the sum of two portfolios

w∗
P = αwg + (1− α)wd

where α =
c− bµP

∆
a.
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Indeed, any two minimum variance portfolios wu and wv on the

frontier can be used to substitute for wg and wd. Suppose

wu = (1− u)wg + uwd

wv = (1− v)wg + vwd

we then solve for wg and wd in terms of wu and wv. Recall

w∗
P = λ1Ω

−11+ λ2Ω
−1µ

so that

w∗
P = λ1awg + (1− λ1a)wd

=
λ1a+ v − 1

v − u
wu +

1− u− λ1a

v − u
wv,

whose sum of coefficients remains to be 1 and λ1 =
c− bµP

∆
.
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Convex combination of efficient portfolios

Any convex combination (that is, weights are non-negative) of effi-

cient portfolios is also an efficient portfolio.

Proof

Let wi ≥ 0 be the weight of the efficient fund i whose random rate

of return is rie. Recall that
b

a
is the expected rate of return of the

global minimum variance portfolio.

It suffices to show that such convex combination has an expected

rate of return greater than b
a in order that the combination of funds

remains to be efficient.

Since E
[
rie
]
≥

b

a
for all i as all these funds are efficient and wi ≥ 0,

i = 1,2, . . . , n, we have

n∑
i=1

wiE
[
rie
]
≥

n∑
i=1

wi
b

a
=

b

a
.
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Example

Means, variances, and covariances of the rates of return of 5 risky

assets are listed:

Security covariance, σij mean, ri
1 2.30 0.93 0.62 0.74 −0.23 15.1
2 0.93 1.40 0.22 0.56 0.26 12.5
3 0.62 0.22 1.80 0.78 −0.27 14.7
4 0.74 0.56 0.78 3.40 −0.56 9.02
5 −0.23 0.26 −0.27 −0.56 2.60 17.68

Recall that w∗ has the following closed form solution

w∗ =
c− bµP

∆
Ω−11+

aµP − b

∆
Ω−1µ

= αwg + (1− α)wd,

where α = (c− bµP )
a

∆
. Here, α satisfies

µP = αµg + (1− α)µd = α

(
b

a

)
+ (1− α)

c

b
.
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We compute w∗
g and w∗

d through finding Ω−11 and Ω−1µ, then

normalize by enforcing the condition that their weights are summed

to one.

1. To find v1 = Ω−11, we solve the system of equations

5∑
j=1

σijv
1
j = 1, i = 1,2, · · · ,5.

Normalize the component v1i ’s so that they sum to one

w1
i =

v1i∑5
j=1 v

1
j

.

After normalization, this gives the solution to wg. Why?
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We first solve for v1 = Ω−11 and later divide v1 by the sum of

components, 1T
v1. This sum of components is simply equal to a,

where

a =1T
Ω−11 =

N∑
j=1

v1j .

2. To find v2 = Ω−1µ, we solve the system of equations:

5∑
j=1

σijv
2
j = ri, i = 1,2, · · · ,5.

Normalize v2i ’s to obtain w2
i . After normalization, this gives the

solution to wd. Also, b = 1T
Ω−1µ =

N∑
j=1

v2j and c = µTΩ−1µ =

N∑
j=1

rjv
2
j .
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security v1 v2 wg wd
1 0.141 3.652 0.088 0.158
2 0.401 3.583 0.251 0.155
3 0.452 7.284 0.282 0.314
4 0.166 0.874 0.104 0.038
5 0.440 7.706 0.275 0.334

mean 14.413 15.202
variance 0.625 0.659

standard deviation 0.791 0.812

Recall v1 = Ω−11 and v2 = Ω−1µ so that

• sum of components in v1 =1T
Ω−11 = a

• sum of components in v2 =1T
Ω−1µ = b.

Note that wg = v1/a and wd = v2/b.
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Relation between wg and wd

Both wg and wd are frontier funds with

µg =
µTΩ−11

a
=

b

a
and µd =

µTΩ−1µ

b
=

c

b
.

Their variances are

σ2g = wT
g Ωwg =

(Ω−11)TΩ(Ω−11)

a2
=

1

a
,

σ2d = wT
dΩwd =

(Ω−1µ)TΩ(Ω−1µ)

b2
=

c

b2
.

Difference in expected returns = µd − µg =
c

b
−

b

a
=

∆

ab
. Note that

µd > µg if and only if b > 0.

Also, difference in variances = σ2d − σ2g =
c

b2
−

1

a
=

∆

ab2
> 0.
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Covariance of the portfolio returns for any two minimum vari-

ance portfolios

The random rates of return of u-portfolio and v-portfolio are given

by

ruP = wT
ur and rvP = wT

v r,

where r = (r1 · · · rN)T is the random rate of return vector. First, for

the two special frontier funds, wg and wd, their covariance is given

by

σgd = cov(rgP , r
d
P ) = cov

 N∑
i=1

w
g
i ri,

N∑
j=1

wd
j rj


=

N∑
i=1

N∑
j=1

w
g
iw

d
jcov(ri, rj) (bilinear property of covariance)

= wT
g Ωwd =

Ω−11
a

T

Ω

(
Ω−1µ

b

)

=
1T

Ω−1µ

ab
=

1

a
since b =1T

Ω−1µ.
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In general, consider the two portfolios parametrized by u and v:

wu = (1− u)wg + uwd and wv = (1− v)wg + vwd

so that

ru = (1− u)rg + urd and rv = (1− v)rg + vrd.

The covariance of their random rates of portfolio return is given by

cov(ruP , r
v
P ) = cov((1− u)rg + urd, (1− v)rg + vrd)

= (1− u)(1− v)σ2g + uvσ2d + [u(1− v) + v(1− u)]σgd

=
(1− u)(1− v)

a
+

uvc

b2
+

u+ v − 2uv

a

=
1

a
+

uv∆

ab2
.

For any portfolio wP , we always have

cov(rg, rP ) = wT
g ΩwP =

1T
Ω−1ΩwP

a
=

1

a
= var(rg).
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Minimum variance portfolio and its uncorrelated counterpart

For any frontier portfolio u, we can find another frontier portfolio v

such that these two portfolios are uncorrelated. This can be done

by setting

1

a
+

uv∆

ab2
= 0,

and solve for v, provided that u ̸= 0. Portfolio v is the uncorrelated

counterpart of portfolio u.

The case u = 0 corresponds to wg. We cannot solve for v when

u = 0, indicating that the uncorrelated counterpart of the glob-

al minimum variance portfolio does not exist. This observation is

consistent with the result that cov(rg, rP ) = var(rg) = 1/a ̸= 0,

indicating that the uncorrelated counterpart of wg does not exist.
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2.4 Inclusion of the risk free asset: One-fund Theorem

Consider a portfolio with weight α for the risk free asset (say, US

Treasury bonds) and 1−α for a risky asset. The risk free asset has

the deterministic rate of return rf . The expected rate of portfolio

return is

rP = αrf + (1− α)rj (note that rf = rf).

The covariance σfj between the risk free asset and any risky asset

j is zero since

E[(rj − rj) (rf − rf)︸ ︷︷ ︸
zero

] = 0.

Therefore, the variance of portfolio return σ2P is

σ2P = α2 σ2f︸︷︷︸
zero

+(1− α)2σ2j +2α(1− α) σfj︸︷︷︸
zero

so that

σP = |1− α|σj.
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Since both rP and σP are linear functions of α, so (σP , rP ) lies on

a pair of line segments in the σ-r diagram. Normally, we expect

rj > rf since an investor should expect to have expected rate of

return of a risky asset higher than rf to compensate for the risk.

1. For 0 < α < 1, the points representing (σP , rP ) for varying values

of α lie on the straight line segment joining (0, rf) and (σj, rj).
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2. If borrowing of the risk free asset is allowed, then α can be

negative. In this case, the line extends beyond the right side of

(σj, rj) (possibly up to infinity).

3. When α > 1, this corresponds to short selling of the risky asset.

In this case, the portfolios are represented by a line with slope

negative to that of the line segment joining (0, rf) and (σj, rj)

(see the lower dotted-dashed line).

• The lower dotted-dashed line can be seen as the mirror image

with respect to the vertical r-axis of the upper solid line segment

that would have been extended beyond the left side of (0, rf).

This is due to the swapping in sign in |1− α|σj when α > 1.

• The holder bears the same risk, like long holding of the risky

asset, while µP falls below rf . This is highly insensible for the

investor. An investor would short sell a risky asset when rj < rf .
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Consider a portfolio that starts with N risky assets originally, what

is the impact of the inclusion of a risk free asset on the feasible

region?

Lending and borrowing of the risk free asset is allowed

For each portfolio formed using the N risky assets, the new combi-

nations with the inclusion of the risk free asset trace out the pair of

symmetric half-lines originating from the risk free point and passing

through the point representing the original portfolio.

The totality of these lines forms an infinite triangular feasible region

bounded by a pair of symmetric half-lines through the risk free point,

one line is tangent to the original feasible region while the other line

is the mirror image about the horizontal line: r = rf . The infinite

triangular wedge contains the original feasible region.
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We consider the more realistic case where rf < µg (a risky portfolio

should demand an expected rate of return high than rf). For rf <
b

a
,

the upper line of the symmetric double line pair touches the original

feasible region.

The new efficient set is the single straight line on the top of the

new triangular feasible region. This tangent line touches the original

feasible region at a point F , where F lies on the efficient frontier of

the original feasible set.
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No shorting of the risk free asset (rf < µg)

The line originating from the risk free point cannot be extended

beyond the points in the original feasible region (otherwise entails

borrowing of the risk free asset). The upper half line is extended up

to the tangency point only while the lower half line can be extended

to infinity.
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One-fund Theorem

Any efficient portfolio (represented by a point on the upper tangent

line) can be expressed as a combination of the risk free asset and

the portfolio (or fund) represented by M .

“There is a single fund M of risky assets such that any efficient

portfolio can be constructed as a combination of the fund M and

the risk free asset.”

The One-fund Theorem is based on the assumptions that

• every investor is a mean-variance optimizer

• they all agree on the probabilistic structure of asset returns

• a unique risk free asset exists.

Then everyone purchases a single fund, which then becomes the

market portfolio.
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The proportion of wealth invested in the risk free asset is 1−
N∑

i=1

wi.

Write r as the constant rate of return of the risk free asset.

Modified Lagrangian formulation

minimize
σ2P
2

=
1

2
wTΩw

subject to µTw + (1−1T
w)r = µP .

Define the Lagrangian: L =
1

2
wTΩw + λ[µP − r − (µ− r1)Tw]

∂L

∂wi
=

N∑
j=1

σijwj − λ(µi − r) = 0, i = 1,2, · · · , N (1)

∂L

∂λ
= 0 giving (µ− r1)Tw = µP − r. (2)

(µ − r1)Tw is interpreted as the weighted sum of the expected

excess rate of return above the risk free rate r.
74



Remark

In the earlier mean-variance model without the risk free asset, we

have
N∑

j=1

wjrj = µP .

However, with the inclusion of the risk free asset, the corresponding

relation is modified to become

N∑
j=1

wj(rj − r) = µP − r.

In the new formulation, we now consider rj − r, which is the excess

expected rate of return of asset j above the riskfree rate of return r.

This is more convenient since the contribution of the riskfree asset

to this excess expected rate of return is zero so that the weight

of the riskfree asset becomes immaterial in the new formulation.

Hence, in the current context, it is not necessary to impose the

constraint that sum of weights of the risky assets equals one.
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Solution to the constrained optimization model

Comparing to the earlier Markowitz model without the riskfree asset,

the new formulation considers the expected rate of return above the

riskfree rate of the risky assets. There is no constraint on ”sum of

weights of the risky assets“ equals one.

The governing systems of algebraic equations are given by

(1): Ωw∗ = λ(µ− r1) and (2): wT (µ− r1) = µP − r.

Solving (1): w∗ = λΩ−1(µ−r1). There is only one Lagrangian mul-

tiplier λ. As usual, we substitute into eq.(2) (constraint equation)

to determine λ. This gives

µP − r = λ(µ− r1)TΩ−1(µ− r1) = λ(c− 2br + ar2).
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We would like to relate the target expected portfolio rate of re-

turn µP set by the investor and the resulting portfolio variance σ2P .

By eliminating λ, the relation between µP and σP is given by the

following pair of half lines ending at the risk free asset point (0, r):

σ2P = w∗TΩw∗ = λ(w∗Tµ− rw∗T1)

= λ(µP − r) = (µP − r)2/(c− 2br + ar2),

or

σP = ±
µP − r√

ar2 − 2br + c
.
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With the inclusion of the risk free asset, the set of minimum variance

portfolios are represented by portfolios on the two half lines

Lup : µP − r = σP

√
ar2 − 2br + c (3a)

Llow : µP − r = −σP

√
ar2 − 2br + c. (3b)

Recall that ar2−2br+ c > 0 for all values of r since ∆ = ac− b2 > 0.

The pair of half lines give the frontier of the feasible region of the

risky assets plus the risk free asset?

The minimum variance portfolios without the risk free asset lie on

the hyperbola in the (σP , µP )-plane

σ2P =
aµ2P − 2bµP + c

∆
.
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We expect r < µg since a risk averse investor should demand the

expected rate of return from a risky portfolio to be higher than the

risk free rate of return.

When r < µg =
b

a
, one can show geometrically that the upper half

line is a tangent to the hyperbola. The tangency portfolio is the

tangent point to the efficient frontier (upper part of the hyperbolic

curve) through the point (0, r).
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What happen when r >
b

a
?

The lower half line touches the feasible region with risky assets only.

• Any portfolio on the upper half line involves short selling of the

tangency portfolio and investing the proceeds in the risk free

asset. It makes good sense to short sell the tangency portfolio

since it has an expected rate of return that is lower than the

risk free asset.
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Solution of the tangency portfolio when r < µg

The tangency portfolio M is represented by the point (σP,M , µMP ),

and the solution to σP,M and µMP are obtained by solving simultane-

ously

σ2P =
aµ2P − 2bµP + c

∆

µP = r + σP

√
ar2 − 2br + c.

From the first order conditions that are obtained by differentiating

the Lagrangian by the control variables w, we obtain

w∗ = λΩ−1(µ− r1), (a)

where λ is then determined by the constraint condition:

µP − r = (µ− r1)Tw. (b)
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Recall that the tangency portfolio M lies in the feasible region that

corresponds to the absence of the riskfree asset, so 1T
wM = 1.

Note that wM should satisfy eq. (a) but eq. (b) has less relevance

since µMp is not yet known (not to be set as target return but has

to be determined as part of the solution).

This crucial observation that wM has zero weight on the risk free

asset leads to

1 = λM [1T
Ω−1µ− r1T

Ω−11]

so that λM = 1
b−ar (provided that r ̸= b

a). The corresponding µMP
and σ2P,M can be determined as follows:

µMP = µTw∗
M =

1

b− ar
(µTΩ−1µ− rµTΩ−11) =

c− br

b− ar
,

σ2P,M = w∗T
MΩw∗

M =
1

(b− ar)2
(µ− r1)TΩ−1(µ− r1)

=
ar2 − 2br + c

(b− ar)2
,

or σP,M =

√
ar2 − 2br + c

|b− ar|
.
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Recall µg =
b

a
. When r <

b

a
, we can establish µMP > µg as follows:

(
µMP −

b

a

)(
b

a
− r

)
=

(
c− br

b− ar
−

b

a

)
b− ar

a

=
c− br

a
−

b2

a2
+

br

a

=
ac− b2

a2
=

∆

a2
> 0,

so we deduce that µMP >
b

a
> r.

Similarly, when r > b
a, we have µMp < b

a < r.

Also, we can deduce that σP,M > σg as expected. This is because

both Portfolio M and Portfolio g are portfolios generated by the

same set of risky assets (with no inclusion of the riskfree asset),

and g is the global minimum variance portfolio.
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Example (5 risky assets and one riskfree asset)

Data of the 5 risky assets are given in the earlier example, and

r = 10%.

The system of linear equations to be solved is

5∑
j=1

σijvj = ri − r = 1× ri − r × 1, i = 1,2, · · · ,5.

Recall that v1 and v2 in the earlier example are solutions to

5∑
j=1

σijv
1
j = 1 and

5∑
j=1

σijv
2
j = ri, respectively, i = 1,2, . . . ,5.

Hence, vj = v2j − rv1j , j = 1,2, · · · ,5 (numerically, we take r = 10%).

In matrix representation, we have

v1 = Ω−11 and v2 = Ω−1µ.
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Now, we have obtained v where

v = Ω−1(µ− r1) = v1 − rv2

Note that the optimal weight vector for the 5 risky assets satisfies

w = λv for some scalar λ.

We determine λ by enforcing (µ− r1)Tw = µP − r, or equivalently,

λ(µ− r1)Tv = λ(c− 2br + ar2) = µP − r,

where µP is the target rate of return of the portfolio.

Recall a =1T
Ω−11 =

5∑
j=1

v1j , b =1T
Ω−1µ =

5∑
j=1

v2j , and

c = µTΩ−1µ =
5∑

j=1

rjv
2
j . We find λ by setting

λ =
µP − r

ar2 − 2br + c
.

The weight of the risk free asset is then given by 1−
5∑

j=1

wj.
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Properties of the minimum variance portfolios for r < b/a

1. Efficient portfolios

Any portfolio on the upper half line

µP = r + σP

√
ar2 − 2br + c

within the segment FM joining the two points F (0, r) and M

involves long holding of the market portfolio M and the risk free

asset F , while those outside FM involves short selling of the risk

free asset and long holding of the market portfolio.

2. Any portfolio on the lower half line

µP = r − σP

√
ar2 − 2br + c

involves short selling of the market portfolio and investing the

proceeds in the risk free asset. This represents a non-optimal

investment strategy since the investor faces risk but gains no

extra expected return above r.
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Location of the tangency portfolio with regard to r < b/a or r > b/a

Note that µMP − r = ar2−2br+c
b−ar and σP,M =

√
ar2−2br+c
|b−ar| . One can

show that

(i) when r < b
a, we obtain

µMP − r = σP,M

√
ar2 − 2br + c (equation of Lup);

(ii) when r > b
a, we have |b− ar| = ar − b and obtain

µMP − r = −σP,M

√
ar2 − 2br + c (equation of Llow).

Interestingly, the flip of sign in b − ar with respect to r < µg or

r > µg would dictate whether the point (σP,M , µMP ) representing the

tangency portfolio lies in the upper or lower half line, respectively.
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Degenerate case occurs when µg =
b

a
= r

• What happens when r = b/a? The pair of half lines become

µP = r ± σP

√
c− 2

(
b

a

)
b+

b2

a
= r ± σP

√
∆

a
,

which correspond to the asymptotes of the hyperbolic left bound-

ary of the feasible region with risky assets only. The tangency

portfolio does not exist, consistent with the mathematical re-

sult that λM =
1

b− ar
is not defined when r =

b

a
. The tangency

point
(
σP,M , µMP

)
=


√
ar2 − 2br + c

b− ar
,
c− br

b− ar

 tends to infinity

when r =
b

a
, consistent with the property of the half lines being

asymptotes.

• Under the scenario: r =
b

a
, efficient funds still lie on the upper

half line, though the tangency portfolio does not exist.
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Recall that

w∗ = λΩ−1(µ− r1)

so that the sum of weights of the risky assets is

1T
w∗ = λ(1T

Ω−1µ− r1T
Ω−11) = λ(b− ra).

When r = b/a, sum of weights of the risky assets =1T
w∗ = 0 as λ

is finite. Since the portfolio weights are proportional dollar amounts,

“sum of weight being zero” means the sum of values of risky asset

held in the portfolio is zero. Any minimum variance portfolio involves

investing everything in the riskfree asset and holding a zero-value

portfolio of risky assets.

Suppose we specify µP to be the target expected rate of return of

the efficient portfolio, then the multiplier λ is determined by (see

p.76)

λ =
µP − r

c− 2br + ar2

∣∣∣∣∣
r=b/a

=
µP − r

c− 2
(
b
a

)
b+ b2

a

=
a(µP − r)

∆
.
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Financial interpretation

Given the target expected rate of portfolio return µP , the corre-

sponding optimal portfolio is to hold 100% on the riskfree asset

and wj on the jth risky asset, j = 1,2, · · · , N , where wj is given by

the jth component of a(µP−r)
∆ Ω−1(µ− r1).

One should check whether the expected rate of return of the whole

portfolio equals µP .

The expected rate of return from all the risky assets is

a(µP − r)

∆
µT [Ω−1(µ− r1)] =

a(µP − r)

ac− b2

(
c−

b2

a

)
= µP − r.

The overall expected rate of return of the portfolio is

w0r +
N∑

j=1

wjrj = r + (µP − r) = µP , where w0 = 1.
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One-fund Theorem under r = µg = b/a

In this degenerate case, r = b/a, the tangency fund does not exist.

The universe of risky assets just provide an expected rate of return

that is the same as the riskfree return r at its global minimum

variance portfolio g. Since the global minimum variance portfolio of

risky assets g has the same expected rate of return as that of the

riskfree asset, a sensible investor would place 100% weight on the

riskfree asset to generate the level of expected rate of return equals

r.

The optimal portfolio is to invest 100% on the riskfree asset and a

scalar multiple λ of the fund z whose weight vector is

wz = Ω−1(µ− r1).

The scalar λ is determined by the investor’s target expected rate of

return µP , where λ =
a(µP − r)

∆
. The value of the portfolio wz is

zero. The role of the tangency fund is replaced by the z-fund.
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Nature of the portfolio z: wz = Ω−1(µ− r1), where r = b/a

1. Recall wd = Ω−1µ/b and wg = Ω−11/a, so

wz = bwd −
b

a
(awg) = b(wd −wg).

Its sum of weights is seen to be zero since it longs b units of wd

and short the same number of units of wg.

2. Location of the portfolio z in the mean-variance plot

σ2z = wT
z Ωwz = b2(wd −wg)

TΩ(wd −wg)

= b2(σ2d − 2σgd + σ2g ) = b2
(
c

b2
−

2

a
+

1

a

)
= b2

∆

ab2
=

∆

a
;

µz = µTwz = b(µd − µg) = b

(
c

b
−

b

a

)
=

∆

a
.

We have σz =
√

∆
a and µz = ∆

a ; so any scalar multiple of z lies

on the line: µP =
√

∆
a σP .
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3. Location of efficient portfolios in the mean-variance diagram

Suppose the investor specifies her target rate of return to be µP .

The target expected rate of portfolio return above r is produced

by longing λ units of portfolio z whose sum of weights in this

risky portfolio equals zero. The scalar λ is determined by setting

µP = r + λµz = r + λ
∆

a
giving λ =

a(µP − r)

∆
.

Also, the standard deviation of the optimal portfolio’s return

arises only from the portfolio z, where σP = λσz = λ
√

∆
a . By

eliminating λ, we observe that the efficient portfolio lies on the

line:

µP − r =

√
∆

a
σP .
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p

p

),0( r

aa
,

Pp
a

r

PP
a

The upper line represents the set of frontier funds generated by

investing 100% on the riskfree asset and
a(µP − r)

∆
units of the z-

fund. The point

√∆

a
,
∆

a

 on the lower line represents the z-fund,

wz.
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“Riskfree” portfolio of risky assets

So far, we have assumed the existence of Ω−1. The corresponding

global minimum portfolio has expected rate of return µg =
b

a
and

portfolio variance σ2g =
1

a
. What would happen when Ω−1 does not

exist (or Ω is singular)?

When the covariance matrix Ω is singular, then detΩ = 0. Accord-

ingly, there exists a non-zero vector wF that satisfies the homoge-

neous system of equations:

ΩwF = 0, wF ̸= 0.

Write rF = wT
Fr, where r = (r1 . . . rN)T , as the random rate of re-

turn of this F -fund. This F -fund would have zero portfolio variance

since

var(rF ) = wT
FΩwF = 0.
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This zero-variance fund can be used as a proxy of the riskfree asset.

The corresponding riskfree point in the σP -rP diagram would be

(0, rF ), where rF = wT
Fµ. We would expect to have the paradoxical

scenario where rF may not be the same as the observed riskfree

rate r in the market. Assuming market efficiency where investors

can take arbitrage on the difference, the two rates rF and r would

tend to each other under market equilibrium.

The Two-fund Theorem for risky assets can be interpreted as the

one-fund version with this F -fund as the (proxy) riskfree asset.

When Ω is singular, the parabolic arc representing the frontier now

becomes a pair of half lines.

How to generate an efficient fund that lies on the upper half line?

It can be done by choosing a combination of two efficient funds

or combination of this F -fund with another efficient fund. In this

sense, the two-fund theorem remains valid.

96



Tangency portfolio under One-fund Theorem and market port-

folio

• The One-fund Theorem states that everyone purchases a single

fund (tangency portfolio) of risky assets and borrow or lend at

the riskfree rate.

• If everyone purchases the same tangency portfolio (applying the

same weights on all risky assets in the market), what must that

fund be? This fund is simply the market portfolio. In other

words, if everyone buys just one fund, and their purchases add

up to the market, then the proportional weights in the tangency

fund must be the same as those of the market portfolio.

• In the situation where everyone follows the mean-variance method-

ology with the same estimates of parameters, the tangency fund

of risky assets will be the market portfolio.
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How can this happen? The answer is based on the equilibrium

argument.

• If everyone else (or at least a large number of people) solves the

problem, we do not need to. The return on an asset depends

on both its initial price and its final price. The other investors

solve the mean-variance portfolio problem using their common

estimates, and they place orders in the market to acquire their

portfolios.

• If orders placed do not match with what is available, the prices

must change. The prices of the assets under heavy demand

will increase while the prices of the assets under light demand

will decrease. These price changes affect the estimates of asset

returns directly, and hence investors will recalculate their optimal

portfolio. This process continues until demand exactly matches

supply, that is, it continues until an equilibrium prevails.
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Summary

• In the idealized world, where every investor is a mean-variance

investor and all have the same estimates, everyone buys the

same portfolio and that would be the market portfolio.

• Prices adjust to drive the market to efficiency. Then after other

people have made the adjustments, we can be sure that the

single efficient portfolio is the market portfolio.

Market Portfolio is a portfolio consisting of a weighted sum of

every asset in the market, with weights in the proportions that they

exist in the market (under the assumption that these assets are

infinitely divisible).

• The Hang Seng index may be considered as a proxy of the market

portfolio of the Hong Kong stock market.
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Appendix: Mathematical properties of covariance matrix Ω

1. It is known that the eigenvalues of a symmetric matrix are real.

We would like to show that all eigenvalues of Ω are non-negative.

If otherwise, suppose λ is a negative eigenvalue of Ω and x is

the corresponding eigenvector. We have

Ωx = λx, x ̸= 0,

so that

xTΩx = λxTx < 0,

a contradiction to the semi-positive definite property of Ω.
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2. Ω is non-singular (Ω−1 exists) if and only if all eigenvalues are

positive

First, we recall:

det Ω = product of eigenvalues.

Let λ1, λ2, . . . , λn be the n eigenvalues of Ω. Note that

det (Ω− λI) = (λ1 − λ)(λ2 − λ) · · · (λn − λ).

Putting λ = 0 on both sides, we obtain det A = λ1λ2 · · ·λn. To

show the main result, note that

Ω is non-singular ⇔ det Ω ̸= 0.
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3. Decomposition of Ω and representation of Ω−1 when Ω is non-

singular

Let λi, i = 1,2, . . . , n, be the eigenvalues of Ω (allowing multi-

plicities) and xi be the corresponding eigenvector of eigenvalue

λi. Since Ω is symmetric, it has a full set of eigenvectors. We

then have

ΩS = SΛ,

where Λ is the diagonal matrix whose entries are the eigenvalues

of Ω and S is the matrix whose columns are the eigenvectors

of Ω (arranged in the corresponding sequential order). The

eigenvectors are orthogonal to each other since Ω is symmetric

and we can always normalize the eigenvectors to be unit length.

That is, S can be constructed to be an orthonormal matrix so

that S−1 = ST . We then have

Ω = SΛS−1 = SΛST .
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Provided that all eigenvalues of Ω are non-zero so that Λ−1

exists, we then have

Ω−1 = (SΛST )−1 = (ST )−1Λ−1S−1 = SΛ−1ST .

4. ∆ = ac− b2 > 0, where µ ̸= h1
Note that

a =1T
Ω−11 = (1T

SΛ−1/2)(Λ−1/2ST1)

b = µTΩ−11 = (µTSΛ−1/2)(Λ−1/2ST1)

c = µTΩ−1µ = (µTSΛ−1/2)(Λ−1/2STµ).

We write x = Λ−1/2ST1 and y = Λ−1/2STµ so that a = xTx,

b = yTx and c = yTy.

The Cauchy-Schwarz inequality gives

|yTx|2 ≤ (xTx)(yTy).

We have equality if and only if x and y are dependent. For

µ ̸= h1, x and y are then linearly independent, we have

∆ = ac− b2 > 0.
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5. Singular covariance matrix. Recall that

Ω is singular ⇔ the set of eigenvalues of Ω contains “zero”.

That is, there exists non-zero vector w0 such that

Ωw0 = 0.

As an example, consider the two-asset portfolio with ρ = −1,

the corresponding covariance matrix is

Ω =

(
σ21 −σ1σ2

−σ1σ2 σ22

)
.

Obviously, Ω is singular since the columns are dependent. Ac-

cordingly, we obtain

w0 =

( σ2
σ1+σ2σ1
σ1+σ2

)
,

where Ωw0 = 0 and wT
01 = 1.
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6. Ω−1 is symmetric and positive definite

Given that Ω is symmetric, where ΩT = Ω. Consider

I = (Ω−1Ω)T = ΩT (Ω−1)T = Ω(Ω−1)T ,

implying that Ω has (Ω−1)T as its inverse. Since inverse of a

square matrix is unique, so (Ω−1)T = Ω−1.

To show the positive definite property of Ω−1, it suffices to

show that all eigenvalues of Ω−1 are all positive. Let λ be an

eigenvalue of Ω, then λv = Ωv, where v is the corresponding

eigenvector. We then have Ω−1v =
1

λ
v, so

1

λ
is an eigenvalue of

Ω−1. Since all eigenvalues of Ω are positive, so do those of Ω−1.

Therefore, Ω−1 is positive definite. As a result, we observe

1T
Ω−11 = a > 0 and µTΩ−1µ = c > 0.

105


