
MATH4512 – Fundamentals of Mathematical Finance

Topic Three — Capital asset pricing model and factor models

3.1 Capital asset pricing model and beta values

3.2 Interpretation and uses of the capital asset pricing model

3.3 Arbitrage pricing theory and factor models

3.4 Portfolio performance analysis
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3.1 Capital asset pricing model and beta values

Capital market line (CML)

The CML is the tangent line drawn from the risk free point to the

feasible region for risky assets. This line shows the relation between

rP and σP for efficient portfolios (risky assets plus the risk free

asset). The tangency point M represents the market portfolio.

• Every investor is a mean-variance investor and they all have ho-

mogeneous expectations on means and variances, then everyone

buys the same portfolio. The proportional weights of this port-

folio would be the same as those of the market portfolio. Prices

adjust to drive the market to efficiency when market equilibrium

prevails.
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All portfolios on the CML are efficient, and they are composed of

various mixes of the market portfolio and the risk free asset.

Based on the risk level that an investor can take, she combines the

market portfolio of risky assets with the risk free asset.
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Equation of the CML:

r = r +
rM − r

σM
σ,

where r and σ are the mean and standard deviation of the rate of

return of an efficient portfolio.

Slope of the CML =
rM − r

σM
= price of risk of an efficient portfolio.

The market price of risk (Sharpe ratio) indicates how much the

expected rate of return above the riskless interest rate should be

demanded when the standard deviation increases by one unit.

The CML does not apply to an individual asset or portfolios that

are inefficient.
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Example Consider an oil drilling venture; current share price of the

venture = $875, expected to yield $1,000 in one year. The standard

deviation of return, σ = 40%; and r = 10%. Also, rM = 17% and

σM = 12% for the market portfolio.

Question How does this venture compare with the investment on

efficient portfolios on the CML?

Given this level of σ, the expected rate of return as predicted by the

CML is

r = 0.10+
0.17− 0.10

0.12
× 0.40 = 33

1

3
%.

The actual expected rate of return =
1,000

875
− 1 = 14%, which is

well below 331
3%. This venture does not constitute an efficient

portfolio. It bears certain type of risk that does not contribute to

the expected rate of return.
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Sharpe ratio

One index that is commonly used in performance measure is the

Sharpe ratio, defined as

ri − r

σi
=

excess expected rate of return above riskfree rate

standard deviation
.

We expect

Sharpe ratio ≤ slope of CML.

When the Sharpe ratio is closer to the slope of CML, the better the

performance of the fund in terms of return against risk.

In the previous example,

Slope of CML =
17%− 10%

12%
=

7

12
= 0.583

Sharpe ratio =
14%− 10%

40%
= 0.1 < Slope of CML.
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Capital Asset Pricing Model

Let M be the market portfolio M , then the expected rate of return

ri of any asset i satisfies

ri − r = βi(rM − r)

where

βi =
σiM
σ2M

.

Here, σiM = cov(ri, rM) is the covariance between the rate of return

of risky asset i and the rate of return of the market portfolio M .

Remark

Expected excess rate of return of a risky asset above r is related to

the correlation of ri with rM .
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Assumptions underlying the standard CAPM

1. No transaction costs.

2. Assets are infinitely divisible.

3. Absence of capital gain tax.

4. An individual cannot affect the price of a stock by his buying or

selling action. All investors are price takers.

5. Unlimited short sales are allowed.

6. Unlimited long and short holding of the riskfree asset.
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7. Investors are assumed to be concerned with the mean and vari-

ance of returns, and all investors set the same investment hori-

zon.

8. All investors are assumed to have identical parameter estimation

of the covariance matrix and expected rate of return vector in

the mean-variance portfolio choice model.

Both (7) and (8) are called the “homogeneity of expectations”.

The CAPM relies on the mean-variance approach, homogeneity of

expectation of investors, and no market frictions. In equilibrium,

every investor must invest in the same fund of risky assets (market

portfolio) and the risk free asset.
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Proof

Consider the portfolio with α portion invested in asset i and 1 − α

portion invested in the market portfolio M . The expected rate of

return of this portfolio is

rα = αri + (1− α)rM

and its variance is

σ2α = α2σ2i +2α(1− α)σiM + (1− α)2σ2M .

As α varies, (σα, rα) traces out a curve in the σ − r diagram. The

market portfolio M corresponds to α = 0.

The curve must lie within the feasible region consisting of risky

assets. As α passes through zero, the curve traced out by (σα, rα)

must be tangent to the CML at M since the CML intersects the

dotted curve at one single point M .
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Tangency condition Slope of the curve at M = slope of the CML.
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First, we obtain
drα

dα
= ri− rM , which has no dependence on α since

rα is linear in α. Also,

dσα

dα
=

ασ2i + (1− 2α)σiM + (α− 1)σ2M
σα

so that
dσα

dα

∣∣∣∣∣
α=0

=
σiM − σ2M

σM
.

Next, we apply the relation
drα

dσα
=

drα
dα
dσα
dα

to obtain

drα

dσα

∣∣∣∣∣
α=0

=
(ri − rM)σM
σiM − σ2M

.

However,
drα

dσα

∣∣∣∣∣
α=0

should be equal to the slope of the CML, that is,

(ri − rM)σM
σiM − σ2M

=
rM − r

σM
.
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Solving for ri, we obtain

ri = r +
σiM
σ2M︸ ︷︷ ︸
βi

(rM − r) = r + βi(rM − r).

Now, βi =
ri − r

rM − r

=
expected excess rate of return of asset i over r

expected excess rate of return of market portfolio over r
.

Predictability of equilibrium return

The CAPM implies that in equilibrium the expected excess rate

of return on any single risky asset is proportional to the expected

excess rate of return on the market portfolio. The constant of

proportionality is called the beta of the risky asset.
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Alternative proof of CAPM

Recall w∗
M =

Ω−1(µ− r1)

b− ar
so that for any portfolio P , we have

σPM = wT
PΩw∗

M =
wT

P (µ− r1)

b− ar
=

µP − r

b− ar
.

Taking P to be M , we obtain

σ2M =
µM − r

b− ar
.

By eliminating the common term b − ar in σPM and σ2M , we then

deduce a similar formula of the CAPM for any portfolio P , where

µP − r =
σPM

σ2M
(µM − r).

The CAPM remains valid if we take the portfolio P to consist of a

single asset i only. This gives the same result as in the earlier proof:

ri − r =
σiM
σ2M

(rM − r).
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Beta of a portfolio

Consider a portfolio containing n risky assets with weights w1, · · · , wn.

Since rP =
n∑

i=1

wiri, we have cov(rP , rM) =
n∑

i=1

wicov(ri, rM) so that

βP =
cov(rP , rM)

σ2M
=

∑n
i=1wicov(ri, rM)

σ2M
=

n∑
i=1

wiβi.

The portfolio beta is given by the weighted average of the beta

values of the risky assets in the portfolio.

Since rP =
n∑

i=1

wiri and βP =
n∑

i=1

wiβi, and for each asset i, the

CAPM gives: ri − r = βi(rM − r). Noting
n∑

i=1

wi = 1, we then have

rP − r = βP (rM − r).
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Various interpretations of the CAPM

• If we write σiM = ρiMσiσM , then the CAPM can be rewritten as

ri − r

σi
= ρiM

rM − r

σM
.

The Sharpe ratio of asset i is given by the product of ρiM and the

slope of CML. When ρiM is closer to one, the asset is closer to

(but remains to stay below) the CML. For an efficient portfolio

e that lies on the CML, we then deduce that ρeM = 1.

• For any two risky assets i and j, we have

ri − r

βi
=

rj − r

βj
= rM − r.

Under the CAPM, the expected excess rate of return above r

normalized by the beta value is constant for all assets. On the

other hand, the Sharpe ratios of two assets are related by

(Sharpe ratio)i
ρiM

=
ri − r

ρiMσi
=

rj − r

ρjMσj
=

(Sharpe ratio)j
ρjM

=
rM − r

σM
.
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Beta of an efficient portfolio

Let P be an efficient portfolio on the CML, then

rP = αrM + (1− α)r

where α is the proportional weight of the market portfolio M . Con-

sider

cov(rP , rM) = cov(αrM + (1− α)r, rM) = αvar(rM) = ασ2M

var(rP ) = α2σ2M ; hence

ρPM =
cov(rP , rM)

σPσM
=

ασ2M
ασMσM

= 1,

thus verifying the earlier claim. Furthermore, it is seen that

βP =
cov(rP , rM)

var(rM)
= α

var(rM)

var(rM)
= α.

The beta value of an efficient portfolio is equal to the proportional

weight α of the market portfolio in the efficient portfolio. This is

obvious since rP−r is contributed only by the α proportion of market

portfolio in the efficient portfolio.
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Some special cases of beta values

1. When βi = 0, ri = r. A risky asset (with σi > 0) that is uncor-

related with the market portfolio will have an expected rate of

return equal to the risk free rate. There is no expected excess

return over r even the investor bears some risk in holding a risky

asset with zero beta.

2. When βi = 1, ri = rM . The risky asset has the same expected

rate of return as that of the market portfolio. The risk as

quantified by σi is higher than σM .

3. When βi > 1, the expected excess rate of return of the risky

asset is higher than that of market portfolio. It is considered

as an aggressive asset. When βi < 1, the asset is said to be

defensive.

4. When βi < 0, ri < r. Such an asset is considered inferior.
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Representation of the risky assets or portfolios of risky assets with

β = 0 and β = 1 in the σ − r diagram.
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Example

Assume that the expected rate of return on the market portfolio is

12% per annum and the rate of return on the riskfree asset is 7%

per annum. The standard deviation of the market portfolio is 32%

per annum.

(a) What is the equation of the capital market line?

CML is given by

r = r +

(
rM − r

σM

)
σ = 0.07+ 0.1562σ.

(b) (i) If an expected return of 18% is desired for an efficient port-

folio, what is the standard deviation of this portfolio?

Substituting r = 0.18 into the CML equation, we obtain

σ =
(0.18− 0.07)

0.1562
= 0.704.
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(ii) If you have $1,000 to invest, how should you allocate the wealth

among the market portfolio and the riskfree asset to achieve the

above portfolio?

Recall

rP = αrM + (1− α)r

so that

α =
rP − r

rM − r
=

0.18− 0.07

0.12− 0.07
=

0.11

0.05
= 2.2.

Note that 1 − α = −1.2. The investor should short sell $1,200

of the riskfree asset and long $2,200 of the market portfolio.

(iii) What is the beta value of this portfolio?

The beta value equals the weight of investment on the market

portfolio in the efficient portfolio, so

β = α = 2.2.

21



(c) If you invest $300 in the riskfree asset and $700 in the market

portfolio, how much money should you expect to have at the

end of the year?

The expected rate of return per annum is given by

E[rP ] = 0.3r +0.7rM = 0.105.

The expected amount of money at the end of the year is

($300+ $700)(1 + E[rP ]) = $1,105.
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Extension of CAPM – reference to an efficient portfolio

1. Let P be any efficient portfolio lying along the CML and Q be

any portfolio. An extension of the CAPM gives

rQ − r = βQP (rP − r), βQP =
σQP

σ2P
, (A)

that is, we may replace the market portfolio M by an efficient

portfolio P .

2. More generally, the random rates of return rP and rQ are related

by

rQ − r = βQP (rP − r) + ϵQP (B)

with cov(rP , ϵQP ) = E[ϵQP ] = 0. The residual ϵQP has zero

expected value and it is uncorrelated with rP .
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Proof

Since Portfolio P is efficient (lying on the CML), then

rP = αrM + (1− α)r, α > 0.

The first result (A) can be deduced from the CAPM by observing

σQP = cov(rQ, αrM + (1− α)r) = αcov(rQ, rM) = ασQM , α > 0

σ2P = α2σ2M and rP − r = α(rM − r).

Putting the results together, we have

rQ − r = βMQ(rM − r) =
σQM

σ2M
(rM − r)

=
σQP/α

σ2P/α
2
(rP − r)/α = βQP (rP − r).
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By performing the linear regression of rQ on rP , the relationship

among rQ and rP can be formally expressed as

rQ = α̂+ β̂rP + ϵQP , (C)

where α̂ and β̂ are the resulting coefficients estimated from the

linear regression. The residual ϵQP is taken to have zero expected

value. If not, the mean of EQP can be absorbed into α̂. Observe

that

rQ = α̂+ β̂rP

and from result (A), we obtain

rQ = βQP rP + r(1− βQP )

so that

α̂ = r(1− βQP ) and β̂ = βPQ.

Hence, we obtain result (B).
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The use of the term β in CAPM arises from the terminology in linear

regression. Mutual fund managers are considered to be α (alpha)

seekers since they try hard to raise α. Considering cov(rP , rQ) and

noting

βQP = cov(rP , rQ)/var(rP ),

together with eq. (C), we obtain

cov(rP , rQ) = βQPvar(rP ) + cov(rP , ϵQP )

so that cov(rP , ϵQP ) = 0. The residual ϵQP has zero mean and it is

uncorrelated with rP . This is expected since the residual ϵQP is the

component of rQ that has no linear dependence on rP .
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Zero-beta CAPM: no reference to the risk free asset

There exists a minimum variance portfolio ZM whose beta is zero.

Since βMZM
= 0, we have rZM

= r. Consider the following relation

from CAPM

rQ = r + βQM(rM − r),

it can be expressed in terms of the market portfolio M and its zero-

beta counterpart ZM as follows

rQ = rZM
+ βQM(rM − rZM

).

In this form, the role of the riskfree asset is replaced by the zero-

beta portfolio ZM . However, this version of the CAPM formula is

still referencing the market portfolio.

The more general version of the CAPM allows the choice of any

efficient (mean-variance) portfolio and its zero-beta counterpart.
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The generalized CAPM (in terms of the given efficient portfolio of

risky assets only and its uncorrelated counterpart) is given by

µQ − µZP
= βQP (µP − µZP

).

This generalized CAPM shows a two-step extension of the classical

CAPM:

1. Use any efficient portfolio P (consisting of risky assets only) to

replace the market portfolio M .

2. Use the expected rate of return of the uncorrelated counterpart

ZP instead of the riskfree rate of return r.
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Zero-beta counterpart of a given efficient portfolio

Let P and Q be any two frontier portfolios of risky assets. Since

both P and Q are frontier portfolios, they admit the following rep-

resentation:

w∗
P = Ω−1(λP11+ λP2µ) and w∗

Q = Ω−1(λQ11+ λ
Q
2µ)

where

λP1 =
c− bµP

∆
, λP2 =

aµP − b

∆
, λ

Q
1 =

c− bµQ

∆
, λ

Q
2 =

aµQ − b

∆
,

a =1T
Ω−11, b =1T

Ω−1µ, c = µTΩ−1µ, ∆ = ac− b2.
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The covariance between rP and rQ is given by

cov(rP , rQ) = w∗T
P Ωw∗

Q =
[
Ω−1(λP11+ λP2µ)

]T
(λQ11+ λ

Q
2µ)

= λP1 λ
Q
1 a+ (λP1 λ

Q
2 + λ

Q
1 λ

P
2 )b+ λP2 λ

Q
2 c

=
a

∆

(
µP −

b

a

)(
µQ −

b

a

)
+

1

a
. (A)

We are able to express cov(rP , rQ) in terms of µP and µQ. This is in

similar spirit as the CAPM, where covariance of a pair of portfolios

is related to expected rates of return.
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Setting Q to be P , we obtain

σ2P =
a

∆

(
µP −

b

a

)2
+

1

a
=

aµ2P − 2bµP + c

∆
.

This is the familiar equation that relates µP and σ2P for any efficient

portfolio P . We find the frontier portfolio Z such that cov(rP , rZ) =

0. The corresponding µZ is given by [see Eq. (A)]

a

∆

(
µP −

b

a

)(
µZ −

b

a

)
+

1

a
= 0.

This gives

µZ =
b

a
−

∆
a2

µP − b
a

.

• µZ is defined provided that µP ̸= µg = b/a.

• Since (µP − µg)(µZ − µg) = −
∆

a2
< 0, where µg =

b

a
, so when

one portfolio is efficient, then its zero-covariance counterpart is

non-efficient.
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Geometric construction of the zero-covariance counterpart Z

Slope of the tangent at P to the frontier curve:

dµP
dσP

=
∆σP

aµP − b
.

The intercept of the tangent line at the vertical axis is

µP −
dµP
dσP

σP = µP −
∆σ2P

aµP − b

= µP −
aµ2P − 2bµP + c

aµP − b
=

b

a
−

∆/a2

µP − b/a
= µZ.

These calculations verify that the uncorrelated counterpart Z can

be obtained by drawing a tangent to the frontier curve at P and

finding the intercept of the tangent line at the vertical axis. Draw

a horizontal line from the intercept to hit the frontier curve at Z.
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Intuition behind the geometric construction of the uncorrelated

counterpart of a frontier portfolio

• Given the riskfree point, we determine the market portfolio by

the tangency method. Subsequently, all zero-beta funds (uncor-

related with the market portfolio) lie on the same horizonal line

through the riskfree point in the σ − µ diagram.

• Conversely, we consider the scenario where the riskfree point

is NOT specified. Actually, the riskfree asset is absent in the

present context. Apparently, given an efficient fund, we deter-

mine the corresponding “riskfree point” such that the efficient

fund is the market portfolio with reference to the riskfree point.

In this case, the frontier fund with the same return as this pseudo

“riskfree point” will have its random rate of return uncorrelat-

ed with that of the efficient fund. The pseudo “riskfree point”

and this uncorrelated counterpart (itself is a minimum variance

portfolio) lie on the same horizontal line in the σ-r diagram.
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Let P be a frontier portfolio other than the global minimum variance

portfolio and Q be any portfolio, then

cov(rP , rQ) = wT
PΩwQ =

[
Ω−1

(
λP11+ λP2µ

)]T
ΩwQ

= λP11
T
wQ + λP2µ

TwQ = λP1 + λP2µQ.

Solving for µQ and substituting λP1 =
c− bµP

∆
and λP2 =

aµP − b

∆
, we

obtain

µQ =
bµP − c

aµP − b
+ cov(rP , rQ)

∆

aµP − b
.

We then recall the definition of βQP in terms of cov(rP , rQ) and σ2P
and substitute the relation between σ2P and µP . This gives

µQ =
b

a
−

∆/a2

µP − b/a
+

cov(rP , rQ)

σ2P


(
µP − b

a

)2
∆/a

+
1

a

 ∆

aµP − b

= µZP
+ βQP

(
µP −

b

a
+

∆/a2

µP − b/a

)
= µZP

+ βQP (µP − µZP
).
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3.2 Interpretation and uses of the capital asset pricing model

Security market line (SML)

From the two relations:

r = rf +
rM−rf
σ2M

σiM

r = rf + (rM − rf)βi
,

we can plot either r against σiM or r against βi.
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Example

Consider the following set of data for 3 risky assets, market portfolio

and risk free asset; Here, P0 and P1 are the price of the asset at

t = 0 and t = 1, respectively; D1 is the value at t = 1 of the dividend

paid during the investment period.

portfolio/security σi ρiM βi actual expected rate of return

=
E[P1 +D1]

P0
− 1.0

1 10% 1.0 0.5 13%
2 20% 0.9 0.9 15.4%
3 20% 0.5 0.5 13%
market portfolio 20% 1.0 1.0 16%
risk free asset 0 0.0 0.0 10%

• Note that β can be computed using the data given for ρiM , σi
and σM . For example, β1 = ρ1Mσ1/σM = 0.5. Also, recall the

CAPM formula:
ri − r

σi
= ρiM

rM − r

σM
.
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Use of the CML

The CML identifies expected rates of return which are available

for efficient portfolios at all possible risk levels. Portfolios 2 and 3

lie below the CML. The market portfolio, the risk free asset and

Portfolio 1 all lie on the CML. Hence, Portfolio 1 is efficient while

Portfolios 2 and 3 are non-efficient.

For Portfolio 1, we observe ρ1M = 1. For σ = 10%, so

r = 10%︸ ︷︷ ︸
rf

+10%︸ ︷︷ ︸
σ

×
(16− 10)%

20%︸ ︷︷ ︸
(rM−rf)/σM

= 13%.

Portfolio 1 and portfolio 3 have the same expected rates of return,

while σ1 = 10% is less than σ3 = 20%.
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Note that Asset 2 is closer to the CML since ρ2M is 0.9, which

is sufficiently close to 1. Asset 3 has high non-systematic or firm

specific risk (risk that does not contribute to expected return) as

ρ3M = 0.5 is seen to have a low value.
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Use of the SML

The SML asks whether the portfolio provides a return equal to what

equilibrium conditions suggest should be earned.
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The expected rates of return of the portfolios for the given values

of beta are given by

r1 = r3 = 10%︸ ︷︷ ︸
r

+0.5︸︷︷︸
β

×(16%− 10%︸ ︷︷ ︸
rM−r

) = 13%

r2 = 10%+ 0.9× (16%− 10%) = 15.4%.

These expected rates of return suggested by the SML agree with

the actual expected rates of return. Hence, each investment is fairly

priced.

• Portfolio 1 has unit value of ρiM , that is, it is perfectly correlated

with the market portfolio.

• Portfolios 2 and 3 both have ρiM less than one. Portfolio 2 has

ρiM closer to one and so it lies closer to the CML.

41



Under the equilibrium conditions assumed by the CAPM, every asset

should fall on the SML. The SML expresses the risk reward structure

of assets against risk (quantified as βi or σiM) according to the

CAPM.

• Point O′ represents an under-priced security. This is because

the expected return is higher than the return with reference to

the risk. In this case, the demand for such security will increase

and this results in price increase and lowering of the expected

return.
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Regression and characteristic line

We perform the regression of ri − r on rM − r (rate of returns in

excess of the riskfree rate are used). The regression line is called the

characteristic line, which shows the sensitivity of an asset’s excess

return to market’s excess return. Formally, we write

ri − r = αi + βi(rM − r) + ϵi,

where ϵi is the deviation from the line. The error term ϵi is a random

variable with mean E[ϵi] = 0 and variance σ2ϵi. Note that βi is the

slope of the characteristic (regression) line and αi is the intercept

of the characteristic line.

Taking the expectation, we obtain

αi = (ri − r)− βi(rM − r)

since E[ϵi] = 0. Hence, αi measures the abnormal return or pricing

error above the expected rate of return based on the CAPM (or the

normal return).

43



The SML implies that all alphas should equal zero: αi = 0 for all

asset i.

If αi > 0, then the asset lies above the SML and it has a positive

pricing error. In other words, the asset is underpriced; the expected

return is too high and the price should rise. By contrast, if αi < 0,

then the asset lies below the SML and it is overpriced.

In order for the market portfolio to be mean-variance efficient, the

individual assets should lie on the SML. Similarly, if at least one

asset lies above or below the SML, then the market is inefficient.

Put differently, the SML gives a necessary and sufficient condition

for mean-variance efficiency of risky assets in the market.
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Plot of the SML

The SML represents equilibrium, i.e. the situation where all in-

vestors hold their optimal portfolio and hence there is no reason to

further demand or supply assets. If some assets deviate from the

SML, then the market is in disequilibrium.
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For example, asset A lies below the SML, its expected return is too

low relative to its beta, while the expected return of asset B is too

high. The vertical distance of the assets from the SML measures

the alpha or the pricing error, the difference between the actual

expected rate of return and the equilibrium rate.

Investors can improve the risk-return characteristics of their portfolio

by selling asset A (which has negative alpha and is overpriced) and

buying asset B (which has a positive alpha and is underpriced). By

selling asset A, investors will lower the price and raise the expected

return of asset A; by buying asset B, they will raise the price and

lower the expected return of asset B.

The selling and buying will continue until further transactions do not

improve the risk-return characteristics of the investors’ portfolios.

In this case, all assets lie on the SML, the alphas are zero and the

capital market is in equilibrium.
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Decomposition of risks

Suppose we write the random rate of return ri of asset i formally as

ri = r + βi(rM − r) + ϵi.

The CAPM tells us something about the residual term ϵi.

(i) Taking expectation on both sides

E[ri] = r + βi(rM − r) + E[ϵi]

while ri = r + βi(rM − r) so that E[ϵi] = 0.

(ii) Taking the covariance of ri with rM

cov(ri, rM) =

zero︷ ︸︸ ︷
cov(r, rM)+βi

cov(rM , rM)− cov(r, rM)︸ ︷︷ ︸
zero


+ cov(ϵi, rM)

so that cov(ϵi, rM) = 0.
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(iii) Consider the variance of ri

var(ri) = β2
i cov(rM − r, rM − r)︸ ︷︷ ︸

var(rM)

+ var(ϵi)

so that σ2i = β2
i σ

2
M + var(ϵi).

The total risk consists of systematic risk β2
i σ

2
M and firm-specific

(idiosyncratic) risk var(ϵi).

Systematic risk = β2
i σ

2
M , this risk cannot be reduced by diversifica-

tion because every asset with nonzero beta contains this risk.

It is the systematic risk where the investor is rewarded for excess

expected return above the riskfree rate.
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Efficient portfolios: zero non-systematic risk

Consider a portfolio P formed by the combination of the market

portfolio and the risk free asset. This portfolio is an efficient port-

folio (one fund theorem) and it lies on the CML with a beta value

equal to βP (say). Recall that βP equals the weight of M in P , so

its rate of return can be expressed as

rP = (1− βP )r + βP rM = r + βP (rM − r)

so that ϵP = 0. The portfolio variance is β2
Pσ

2
M . This portfolio has

only systematic risk (zero non-systematic risk).

For an efficient portfolio P , we have ρPM = 1 so that βP =
σP
σM

.
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Portfolios not on the CML – non-efficient portfolios

For other portfolios with the same value of βP but not lying on the

CML, they lie below the CML since they are non-efficient portfolios.

With the same value of βP , they all have the same expected rate of

return given by

r = r + βP (rM − r)

but the portfolio variance is greater than β2
Pσ

2
M . The extra part of

the portfolio variance is var(ϵi), which is called the firm-specific or

idiosyncratic risk.
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equation of CML: r = r +
rM − r

σM
σ
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Diversification effect

Note that ϵi is uncorrelated with rM as revealed by cov(ϵi, rM) =

0. The term var(ϵi) is called the non-systematic or specific risk

of asset i. This risk can be reduced by diversification. Consider

ri = (1 − βiM)r + βiMrM + ϵi and observe cov(ϵi, ϵj) ≈ 0 for i ̸= j

(since ϵi and ϵj are firm specific risks) and cov(rM , ϵi) = 0 for all i,

then

σ2P = cov

 n∑
i=1

wiβiMrM ,
n∑

j=1

wjβjMrM

+ cov

 n∑
i=1

wiϵi,
n∑

j=1

wjϵj


≈

 n∑
i=1

wiβiM

 n∑
j=1

wjβjM

σ2M +
n∑

i=1

w2
i σ

2
ϵi
.

Recall βPM =
n∑

i=1

wiβiM , so

σ2P = β2
PMσ2M +

n∑
i=1

w2
i σ

2
ϵi
.
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To illustrate the diversification effect, suppose we take wi = 1/n so

that

σ2P = β2
PMσ2M +

1

n2

n∑
i=1

σ2ϵi = β2
PMσ2M + σ2/n,

where σ2 is the average of σ2ϵ1, · · · , σ
2
ϵn. When n is sufficiently large,

we obtain

σP →

 n∑
i=1

wiβiM

σM = βPMσM .

• The contribution of asset i to the portfolio standard deviation σP
is wiβiMσM , i = 1,2, . . . , n. The contribution from the residual

risk σ2ϵi to the portfolio variance σ2P goes to zero as n → ∞.

• Suppose the covariance terms, cov(ϵi, ϵj), i, j = 1,2, . . . , n, are

finite, we then have n2 covariance terms. The sum of these n2

terms would not become vanishingly small when n → ∞.
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Systematic risk

• The variance of a security’s returns stems from the overall mar-

ket movement and is measured by beta. It is only this risk

that investors are rewarded for bearing (through earning excess

expected rate of return above the riskfree rate).

• Systematic risk is given by β2σ2M .

Nonsystematic (firm specific or idiosyncratic) risk

Diversifiable risk that is unique to a particular stock / portfolio. The

residual risks are uncorrelated to the market portfolio.
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Example

Suppose that the relevant equilibrium model is the CAPM with un-

limited borrowing and lending at the riskless rate of interest. Com-

plete the blanks in the following table.

Stock Expected Return Standard Deviation Beta Residual Variance
1 0.15 — 2.00 0.10
2 — 0.25 0.75 0.04
3 0.09 — 0.50 0.17

Solution

Under the CAPM assumptions, the relationship between the expect-

ed excess rate of return and beta is given by

E[rM ]− r =
E[ri]− r

βi
=

E[rj]− r

βj
.

From the information for stock 1 and 3, we obtain

E[rM ]− r =
E[r1]− E[r3]

β1 − β3
=

0.15− 0.09

2.0− 0.5
= 0.04.
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Once we obtain E[rM ] − r, we can use the information for stock 1

to find the risk-free rate

r = E[r1]− (E[rM ]− r)β1 = 0.15− (0.04)(2.00) = 0.07.

Once we know r, we obtain E[rM ] = r+0.04 = 0.11. The expected

rate of return for stock 2 is

E[r2] = r + (E[rM ]− r)β2 = 0.07+ (0.04)(0.75) = 0.10.

Calculation of σ2(rM)

The information given for stock 2 allows us to estimate the variance

of returns of the market:

σ2(r2) = β2
2σ

2(rM) + σ2(ϵ2)

σ2(rM) =
σ2(r2)− σ2(ϵ2)

β2
2

=
(0.25)2 − (0.04)

(0.75)2
= 0.04.
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The standard deviations of stock 1 and 3 can now be found:

σ2(r1) = (2.0)2(0.04) + 0.10 = 0.26;σ(r1) = 0.5099.

σ2(r3) = (0.5)2(0.04) + 0.17 = 0.18;σ(r3) = 0.4243.

Stock Expected

Return

Standard

Deviation

Beta Residual

Variance
1 0.15 0.51 2.00 0.10
2 0.10 0.25 0.75 0.04
3 0.09 0.42 0.5 0.17
risk free asset 0.07 0 0 0
market port-

folio

0.11 0.2 1.00 0

Stock 3 has very high firm specific risk; σ(r3) = 0.4243 is much

higher than σ(rM) = 0.2 but the expected rate of return is only 9%

as compared to E[rM ] = 11%. This represents an inferior stock.

57



The link between the security market line and the capital

market line

The SML, which is the relationship between mean and beta, applies

to all individual assets as well as all portfolios, regardless of whether

they are efficient.

By contrast, the CML, which is the relationship between mean and

standard deviation, applies only for efficient portfolios. The CML

does not apply to individual assets or to portfolios that are inefficien-

t, because investors would not receive compensation on expected

rate of return for non-systematic risk.

Recall that

βi =

√
σ2i − σ2ϵi
σM

,

and by the CAPM formula:

ri = r + βi(rM − r)

= r +

√
σ2i − σ2ϵi
σM

(rM − r).
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Efficient portfolios have no non-systematic risk, so σ2ei = 0. Hence,

the above equation reduces to the equation of the CML:

ri = r +
rM − r

σM
σi.

when σ2ei = 0, we have σP = βPσM .

For efficient portfolios, we can measure risk as beta (SML) or

as variance or standard deviation (CML). For inefficient portfolios

(σ2ϵi > 0), only the SML applies.
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Excess expected rate of return E[ri]−r normalized by risk (quantified

by either βi or σi)

The CAPM predicts that under equilibrium the excess expected re-

turn on any stock (portfolio) adjusted for the risk on that stock

(portfolio) should be the same

E[ri]− r

βi
=

E[rj]− r

βj
. (A)

This is in contrast to the Sharpe ratio, where

E[ri]− r

σi
T

E[rj]− r

σj
. (B)

The asset with a lower value of Sharpe ratio is considered inferior.
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Recall σ2i = β2
i σ

2
M+var(εi) and σ2j = β2

j σ
2
M+var(εj). More precisely,

asset i is inferior compared to asset j when its residual variance

normalized by beta squared is higher, that is

var(ϵi)

β2
i

>
var(ϵj)

β2
j

.

To show the claim, given the above condition on residual variances,

it suffices to show that asset i has a lower sharpe ratio. This is

verified as follows:

E[ri]− r√
β2
i σ

2
M + var(ϵi)

=
E[ri]− r

βi

√
σ2M + var(ϵi)

β2
i

=
E[rj]− r

βj

√
σ2M + var(ϵi)

β2
i

<
E[rj]− r

βj

√
σ2M +

var(ϵj)

β2
j

=
E[rj]− r√

β2
j σ

2
M + var(ϵj)

.

Using financial intuition, the asset with a higher value of

specific risk/systematic risk = var(ϵ)/β2σ2M

is considered to be inferior.
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CAPM as a pricing formula

Suppose an asset is purchased at P and later sold at Q. The rate

of return is
Q− P

P
, P is known and Q is random. Using the CAPM,

Q− P

P
= r + β(rM − r) so that P =

Q

1+ r + β(rM − r)
.

Here, P gives the fair price of the asset with expected value Q and

beta β.

The factor
1

1 + r + β(rM − r)
can be regarded as the risk adjusted

discount rate. All risky assets with the same β (in general with dif-

fering levels of idiosyncratic risk) has the same risk adjusted discount

rate.

Implicitly, β also involves P since β = cov
(
Q

P
− 1, rM

)/
σ2M so that

β =
cov(Q, rM)

Pσ2M
.
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We rearrange the terms in the CAPM pricing formula to solve for

P explicitly

1 =
Q

P (1 + r) + cov(Q, rM)(rM − r)/σ2M
so that the fair price based on the CAPM is

P =
1

1+ r

[
Q−

cov(Q, rM)(rM − r)

σ2M

]
.

In this new form, the riskfree discount factor
1

1 + r
is applied on the

certainty equivalent, which is defined as Q minus dollar discount.

The amount of underpricing of the asset is the difference between

the fair price and the observed price, which is then given by

−Pobs +
1

1+ r

[
Q−

cov(Q, rM)(rM − r)

σ2M

]
.
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Example (Investment in a mutual fund)

A mutual fund invests 10% of its funds at the risk free rate of

7% and the remaining 90% at a widely diversified portfolio with

asymptotically low level of idiosyncratic risk and rP = 15%. The

beta with reference to this “almost” efficient fund is then equal to

0.9. Recall that the CAPM formula remains valid when the market

portfolio is replaced by an efficient portfolio (beta is with reference

to the efficient portfolio). Suppose the expected value of one share

of the fund one year later is Q = $110, what should be the fair price

of one share of the fund now?

According to the pricing formula of the CAPM, the current fair price

of one share =
$110

1+ 7%+ 0.9× (15− 7)%
=

$110

1.142
= $96.3.

Note that $96.3×1.07 = $103.04 is the certainty equivalent, so the

dollar discount is $110− $103.04 = $6.96.
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Difficulties with the mean-variance approach

1. The application of the mean-variance theory requires the de-

termination of the parameter values: mean values of the asset

returns and the covariances among them. Suppose there are n

assets, then there are n mean values, n variances and
n(n− 1)

2
covariances. For example, when n = 1,000, the number of

parameter values required = 501,500.

2. In the CAPM, there is really only one risk factor that influences

the expected return, namely, rM − r.

The assumption of investors utilizing a mean-variance framework is

replaced by an assumption that security returns are generated by a

set of risk factors. The challenge is to find these risk factors that

explain the asset returns.
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3.3 Arbitrage pricing theory (APT) and factor models

Law of one price and arbitrage

The law of one price states that portfolios with the same payoff have

the same price. Arbitrage opportunities arise when two securities

with the same payoff have different prices – buy the cheap one and

sell the expensive one to secure a risk free profit. Since the violation

of law of one price implies presence of arbitrage, so

absence of arbitrage ⇒ law of one price.
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Example

securities

State of economy A B C

recession −2 −4 0

stable 6 4 10

boom 10 16 6

Assume that the current prices of the 3 securities are the same,

while their random terminal payoff vectors depend on the state of

the economy.
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Let

PA =

 −2
6
10

 , PB =

 −4
4
16

 and PC =

 0
10
6


and note that 2PA ≤ PB + PC.

Arbitrage opportunity exists since one can long one unit for both

security B and C and short 2 units of security B. There is zero

cost in initial investment but this strategy guarantees non-negative

terminal payoff in all states and positive at least for one state of

the economy.
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Factor models

Randomness displayed by the returns of n assets can be traced

back to a smaller number of underlying basic sources of randomness

(factors). This would lead to a simpler covariance structure.

The return on a security can be broken down into an expected

return and an unexpected (or surprise) component. The multi-

factor model assumes that the random return rate of any stock be

linearly related to a number of risk factors.

69



Single-factor model

The random rate of return ri of asset i and the factor f are assumed

to be linearly related by

ri = ai + bif + ei, i = 1,2, · · · , n.

Here, f is the single random factor shared by all assets, ai and

bi are fixed constants, ei’s are random errors (we can always take

E[ei] = 0). Here, bi = factor loading; which measures the sensitivity

of the return ri to the factor. Further, we assume

cov(ei, f) = 0 and E[eiej] = 0, i ̸= j.

One can interpret the CAPM model in terms of excess returns ri−r

of any risky asset and rM − r of the market portfolio, where

ri − r = βi(rM − r) + ei.

Here, rM −r is the single random factor that drives the asset return.

The factor loading is βi.
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Specifying the factors (macroeconomic state variables) that affect

the return-generating process

1. Inflation

Inflation impacts both the level of the discount rate.

2. Risk premia

Differences between the return on safe bonds and more risky

bonds are used to measure the market’s reaction to risk.

3. Industrial production

Changes in industrial production affect the opportunities facing

investors.

Most of the empirical APT research works have focused on the

identification of these factors. For example, industrial stocks are

more sensitive to oil prices fluctuation as compared to real estate

stocks.
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⋆ Different data sets (say, past one month or two months data)

may lead to different estimated values.

From ri = ai + bif + ei, we deduce that

ri = ai + bif

σ2i = b2i σ
2
f + σ2ei [using cov(f, ei) = 0]

σij = bibjσ
2
f , i ̸= j [using cov(ei, ej) = 0 in addition]

bi = cov(ri, f)/σ
2
f .
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Example (Four stocks and one index)

Historical rates of return for four stocks over 10 years, record of

industrial price index over the same period.

Estimate of ri is r̂i =
1

10

10∑
k=1

rki , where rki is the observed rate of

return of asset i in the kth year. The estimated variances and co-

variances are given by

v̂ar(ri) =
1

9

10∑
k=1

(rki − r̂i)
2

ĉov(ri, f) =
1

9

10∑
k=1

(rki − r̂i)(f
k − f̂).

Once the covariances have been estimated, bi and ai are found by

bi =
ĉov(ri, f)

v̂ar(f)
and ai = r̂i − bif̂ .

Also, ei can be estimated once the estimated values of ai and bi are

known.
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We estimate the variance of the error under the assumption that

these errors are uncorrelated with each other and with the index.

The formula to be used is

var(ei) = var(ri)− b2i var(f).

In addition, we estimate cov(ei, ej) by following similar calculations

as those for ĉov(ri, f).

• Unfortunately, the error variances are almost as large as the

variances of the stock returns.

• There is a high non-systematic risk, so the choice of this factor

does not explain much of the variation in returns.

• Further, cov(ei, ej) for i ̸= j are not small so that the errors are

highly correlated. We have

cov(e1, e2) = 44 and cov(e2, e3) = 91.

Recall that the factor model is constructed under the assump-

tion of zero error covariances. We observe inconsistency of the

calculated results and assumption made in the factor model.

74



Year Stock 1 Stock 2 Stock 3 Stock 4 Index
1 11.91 29.59 23.27 27.24 12.30
2 18.37 15.25 19.47 17.05 5.50
3 3.64 3.53 −6.58 10.20 4.30
4 24.37 17.67 15.08 20.26 6.70
5 30.42 12.74 16.24 19.84 9.70
6 −1.45 −2.56 −15.05 1.51 8.30
7 20.11 25.46 17.80 12.24 5.60
8 9.28 6.92 18.82 16.12 5.70
9 17.63 9.73 3.05 22.93 5.70
10 15.71 25.09 16.94 3.49 3.60
aver 15.00 14.34 10.90 15.09 6.74
var 90.28 107.24 162.19 68.27 6.99
cov 2.34 4.99 5.45 11.13 6.99
b 0.33 0.71 0.78 1.59 1.00
a 12.74 9.53 5.65 4.36 0.00

e-var 89.49 103.68 157.95 50.55

The record of the rates of return for four stocks and an index of industrial prices are shown. The

averages and variances are all computed, as well as the covariance of each with the index. From

these quantities, the bi”s and the ai’s are calculated. Finally, the computed error variances are

also shown. The index does not explain the stock price variations very well.
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Portfolio risk under single-factor models – systematic and non-

systematic risks

Let wi denote the weight for asset i, i = 1,2, · · · , n.

rP =
n∑

i=1

wiai +
n∑

i=1

wibif +
n∑

i=1

wiei

so that rP = a+ bf + e, where

a =
n∑

i=1

wiai, b =
n∑

i=1

wibi and e =
n∑

i=1

wiei.

Further, since E[ei] = 0, E[(f − f)ei] = 0 so that

E[e] = 0 and E[(f − f)e] = 0;

e and f are uncorrelated. Also, cov(ei, ej) = 0, i ̸= j, so that σ2e =
n∑

i=1

w2
i σ

2
ei
. The overall variance of portfolio is given by

σ2 = b2σ2f + σ2e .
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Let σ2e denote the average of σ2ei and take wi = 1/n for all i so that

σ2e =
σ2e
n
. As n → ∞, σ2e → 0. The overall variance of portfolio σ2

tends to decrease as n increases since σ2e goes to zero, but σ2 does

not go to zero since b2σ2f remains finite.

• The risk due to ei is said to be diversifiable since its contribution

to the overall risk is essentially zero in a well-diversified portfolio.

This is because ei’s are uncorrelated and so each can be reduced

by diversification.

• The risk due to bif is said to be systematic since it is present

even in a diversified portfolio.

The random return on the portfolio is made up of the expected re-

turns on the individual securities and the random component arising

from the single risk factor f .
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Single-factor models with zero residual risk

Assume zero idiosyncratic (asset-specific) risk, the rate of return of

the ith asset is characterized by

ri = ai + bif, i = 1,2, · · · , n,

where the factor f is chosen to satisfy E[f ] = 0 for convenience

(with no loss of generality) so that ri = ai.

Consider two assets which have two different factor loading bi’s,

what should be the relation between their expected returns under

the assumption of no arbitrage?

Consider a portfolio with weight w in asset i and weight 1 − w in

asset j. The portfolio return is

rP = w(ai − aj) + aj + [w(bi − bj) + bj]f.
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By choosing w∗ =
bj

bj − bi
, the portfolio becomes risk free and

r∗P =
bj(ai − aj)

bj − bi
+ aj.

This must be equal to the return of the risk free asset, denoted

by r. If otherwise, arbitrage opportunities arise. Suppose the risk

free two-asset portfolio has a return higher than that of the riskfree

asset, we then short sell the riskfree asset and long hold the risk

free portfolio. We write the above relation as

aj − r

bj
=

aj − ai

bj − bi
=

ai − r

bi
= λ.

set

Hence, ri = r + biλ, where λ is the factor risk premium. Note that

when two assets have the same factor loading b, they have the same

expected return.
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1. The risk free return r is the expected return on a portfolio with

zero factor loading.

2. In general, the term risk premium refers to the excess return

above the riskfree rate of return demanded by an investor who

bears the risk of the investment. The factor risk premium λ gives

the extra return above r per unit loading of the risk factor,

λ = (ri − r)|bi=1.

3. Under the general single-factor model, where

ri = ai + bif + ei,

cov(ri, rj) = cov(ai + bif, aj + bjf) = bibjvar(f) = bibjσ
2
f ,

The above result is obtained based on the usual assumption that

the asset-specific risks are assumed to be uncorrelated with the

factor risk and among themselves, where

cov(ei, f) = cov(ej, f) = cov(ei, ej) = 0.
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Numerical example

Given a1 = 0.10, b1 = 2, a2 = 0.08 and b2 = 1, and assuming E[f ] =

e1 = e2 = 0 for the two assets under the single-factor model, find

the factor risk premium λ. How to construct the zero-beta portfolio

from these two risky assets?

The two unknowns r and λ are determined from the no-arbitrage

relation:
0.10− r

2
=

0.08− r

1
= λ

so that r = 0.06 and λ = 0.02. The expected rate of return of the

two assets are given by r1 = r +2λ = 0.10 and r2 = r + λ = 0.08.

To construct a zero-beta portfolio, we long two units of asset 2 and

short one unit of asset 1 so that

rP = 2r2 − r1 = 2(0.08+ f)− (0.10+ 2f) = 0.06.
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Two-factor extension

Consider the two-factor model

ri = ai + bi1f1 + bi2f2, i = 1,2, · · · , n,

where the factors f1 and f2 are chosen such that E[f1] = E[f2] = 0.

Consider a 3-asset portfolio, with the assumption that 1, b1 = b11
b21
b31

 and b2 =

 b12
b22
b32

 are linearly independent. Form the port-

folio with weights w1, w2 and w3 so that the portfolio

rP =
3∑

i=1

wiai + f1

3∑
i=1

wibi1 + f2

3∑
i=1

wibi2

becomes riskfree (independent of the random factors f1 and f2).

This requires

w1 + w2 + w3 = 1,
3∑

i=1

wibi1 = 0 and
3∑

i=1

wibi2 = 0.
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Since 1, b1 and b2 are independent, the following system of equa-

tions  1 1 1
b11 b21 b31
b12 b22 b32


 w1

w2
w3

 =

 1
0
0

 (A)

always has unique solution. By choosing this set of values for wi, i =

1,2,3, the portfolio becomes riskfree. By applying the no-arbitrage

argument again, the risk free portfolio should earn the return same

as that of the riskfree asset, thus

rP =
3∑

i=1

wiai = r.

Rearranging, we obtain a new relation between w1, w2 and w3:

3∑
i=1

(ai − r)wi = 0. (B)
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This implies that there exists a non-trivial solution to the following

homogeneous system of linear equations: a1 − r a2 − r a3 − r
b11 b21 b31
b12 b22 b32


 w1

w2
w3

 =

 0
0
0

 .

The above coefficient matrix must be singular. Since the second

and third rows are independent, it must occur that the first row is

formed by some linear combination of the second and third rows.

This gives

ai − r = ri − r = λ1bi1 + λ2bi2, i = 1,2,3,

for some constant parameters λ1 and λ2.

Remark

The no-arbitrage pricing approach is based on the observation where

securities that share the same set of risk factors are hedgeable.
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Remark

What happens if 1, b1 and b2 are not independent? In this case, we

cannot form a riskfree portfolio using the 3 given assets as there is

no solution to the linear system (A).

Factor risk premium: λ1 and λ2

– interpreted as the excess expected return per unit loading asso-

ciated with the factors f1 and f2.

For example, λ1 = 3%, λ2 = 4%, factor loadings are bi1 = 1.2, bi2 =

0.7, r = 7%, then

ri = 7%+ 1.2× 3%+ 0.7× 4% = 13.6%.
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Absence of the riskfree asset

ri − r = λ1bi1 + λ2bi2, i = 1,2, · · · , n.

If the risk free asset does not exist, then we replace r by λ0, where

λ0 is the return of the zero-beta asset (whose factor loadings are

all zero). Note that the zero-beta asset is riskfree. Once λ0, λ1 and

λ2 are known, the expected return of an asset is completely deter-

mined by the factor loadings bi1 and bi2. Theoretically, a riskless

portfolio can be constructed from any three risky assets and λ0 can

be determined accordingly.

Indeed, we choose a solution

 w1
w2
w3

 that satisfies Eq. (A), we

obtain a risk free portfolio. We define λ0 to be the expected rate

of return of this riskfree portfolio, where

λ0 =
3∑

i=1

wiai.

The expected rate of return becomes ri = λ0 + λ1bi1 + λ2bi2.
86



Numerical example

Consider 3 assets whose random rates of return are governed by

r1 = 5+ 2f1 +3f2

r2 = 6+ f1 +2f2

r3 = 4+ 6f1 +10f2,

where f1 and f2 are the risk factors observing E[f1] = E[f2] = 0.

We can form a riskfree portfolio by assigning weights w1, w2 and w3,

which can obtained by solving

w1 + w2 + w3 = 1

2w1 + w2 +6w3 = 0

3w1 +2w2 +10w3 = 0.

The solution of the above system of equations gives w1 = w2 = 2
3

and w3 = −1
3.
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This riskfree portfolio has zero factor loading (or called zero-beta

portfolio). Its deterministic rate of return =
3∑

i=1

wiai = 5w1+6w2+

4w3 = 6. This may be considered as the proxy riskfree rate, and

it is called λ0. To determine the factor risk premia λ1 and λ2, we

observe  −1 0 −2
2 1 6
3 2 10


 2/3

2/3
−1/3

 =

 0
0
0

 .

Note that the first row is given by(
a1 − λ0 a2 − λ0 a3 − λ0

)
=
(
5 6 4

)
−6

(
1 1 1

)
=
(
−1 0 −2

)
.

The first row can be written as (−2) times the second row plus the

third row, so λ1 = −2 and λ2 = 1. We check that

r1 = λ0 +2λ1 +3λ2 = 6− 4+ 3 = 5;

r2 = λ0 + λ1 +2λ2 = 6− 2+ 2 = 6;

r3 = λ0 +6λ1 +10λ2 = 6− 12+ 10 = 4.

88



Remarks

1. In this example, we obtain λ1 = −2. This is because r3 has a

low value of expected value (r3 = 4), though r3 has high factor

loading in f1. This leads to negative risk premium value for f1.

Suppose we modify the expected return values to assume some

higher numerical values; for example

r1 = 13+2f1+3f2, r2 = 10+f1+2f2, r3 = 28+6f1+10f2.

The same portfolio weights on the 3 assets can be used to form a

riskfree portfolio since the factor loadings of the 3 assets remain

the same. The new λ0 = 2
3 ×13+ 2

3 ×10− 1
3 ×28 = 6. The new

first row = (13 − λ0 10 − λ0 28 − λ0) = (7 4 22), which

can be expressed as 2 times the second row = (2 1 6) plus

the third row = (3 2 10). We obtain λ1 = 2 and λ2 = 1.
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2. Suppose we modify the risk factors by some scalar multiples, say,

new factors f̃1 and f̃2 are chosen to be f̃1 = 2f1 and f̃2 = 3f2.

The factor loading bi1 and bi2 are reduced by a factor of 1
2 and

1
3, respectively. We now have

r1 = 5+ f̃1 + f̃2

r2 = 6+
f̃1
2

+
2

3
f̃2

r3 = 4+ 3f̃1 +
10

3
f̃2.

The new factor risk premia become λ̃1 = 2λ1 = −4 and λ̃2 =

3λ2 = 3. Not surprisingly, we obtain the same results for the

expected rates of return of the assets.
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3. In the derivation of the factor risk premia, we have assumed

zero idiosyncratic risk for all asset returns; that is, ej = 0 for all

assets. When idiosyncratic risks are present, we obtain the same

result for the factor risk premia for a well diversified portfolio

(under the notion of so-called asymptotic arbitrage).

Summary

The expected excess rate of return above the riskfree rate is given

by the sum of the product of the factor loading and factor risk

premium for each risk factor. With m risky factors, we have

rj − r =
m∑

k=1

bjkλk.
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Expected excess return in terms of the expected excess return of

two portfolios

Given any two portfolios P and M with
bP1

bP2
̸=

bM1

bM2
, we can solve

for λ1 and λ2 in terms of the expected excess return on these two

portfolios: rM − r and rP − r. The governing equations for the

determination of λ1 and λ2 are

rP − r = λ1bP1 + λ2bP2

rM − r = λ1bM1 + λ2bM2.

Once λ1 and λ2 are obtained in terms of rP − r, rM − r and factor

loading coefficients, we then have the following CAPM-like formula:

ri = r + λ1bi1 + λ2bi2 = r + b′i1(rM − r) + b′i2(rP − r)

where

b′i1 =
bi1bP2 − bi2bP1

bM1bP2 − bM2bP1
, b′i2 =

bi2bM1 − bi1bM2

bM1bP2 − bM2bP1
.
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Proof

Consider r̄i = r +
(
bi1 bi2

)( λ1
λ2

)
and

(
bM1 bM2
bP1 bP2

)(
λ1
λ2

)
=(

r̄M − r
r̄P − r

)
,

so that(
λ1
λ2

)
=

1

bM1bP2 − bM2bP1

(
bP2 −bM2
−bP1 bM1

)(
r̄M − r
r̄P − r

)
.

Therefore, we obtain

r̄i = r +
1

bM1bP2 − bM2bP1

(
bi1 bi2

)( bP2 −bM2
−bP1 bM1

)(
r̄M − r
r̄P − r

)

= r +
(

bi1bP2−bi2bP1
bM1bP2−bM2bP1

bi2bM1−bi1bM2
bM1bP2−bM2bP1

)( r̄M − r
r̄P − r

)
.
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Numerical example

Consider the previous example with the following 2 assets:

r1 = 5+ 2f1 +3f2, r2 = 6+ f1 +2f2;

with riskfree rate r = 6. Here, r is given since we cannot determine

r (or λ0) with the information of only 2 risky assets. Now, λ1 and

λ2 are governed by

r1 − 6 = 2λ1 +3λ2, r2 − 6 = λ1 +2λ2;

so that

λ1 =

∣∣∣∣∣ r1 − 6 3
r2 − 6 2

∣∣∣∣∣∣∣∣∣∣ 2 3
1 2

∣∣∣∣∣
= 2(r1 − 6)− 3(r2 − 6)

λ2 =

∣∣∣∣∣ 2 r1 − 6
1 r2 − 6

∣∣∣∣∣∣∣∣∣∣ 2 3
1 2

∣∣∣∣∣
= 2(r2 − 6)− (r1 − 6).
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Lastly, we express the expected excess of the third asset in CAPM-

like form:

r3 = r +6λ1 +10λ2 = 6+ 2(r1 − 6) + 2(r2 − 6).

Remark

With n risk factors, we may write the excess expected return above

r of the asset j as sum of scalar multiples of known values of excess

expected return above r of n assets r1− r, r2− r, · · · , rn− r. That is,

rj − r =
n∑

k=1

b′jk(rk − r), j ̸= 1,2, . . . , n,

where

(
b′j1 · · · b′jn

)
=
(
bj1 · · · bjn

)
b11 · · · b1n
b21 b2n
... ...

bn1 · · · bnn


−1

.

The derivation procedure follows the same steps as the two-factor

case shown on p.93-94.
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Compare and contrast the CAPM and the APT

• Unlike the CAPM, the APT does not assume that investors

make decisions according to the mean-variance rule.

• The primary assumption of the APT is that security returns are

generated by a linear factor model. The APT is the return-

risk relationship that applies in the equilibrium situation with no

arbitrage opportunities.

• The single-factor model drastically reduces the inputs needed in

solving for the optimum portfolios in the efficient frontier, since

the covariances can be calculated easily: cov(ri, rj) = βiβjσ
2
f .
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Example

Assume that a three-factor model is appropriate, and there are an

infinite number of assets. The expected return on a portfolio with

zero beta values is 5 percent. You are interested in an equally

weighted portfolio of two stocks, A and B. The factor risk premiums

are indicated in the accompanying table, along with the factor betas

for A and B. Compute the approximate expected return of the

portfolio.

Factor i βAi βBi Factor risk premium
1 0.3 0.5 0.07
2 0.2 0.6 0.09
3 1.0 0.7 0.02

The zero-beta portfolio can be obtained by constructing an appro-

priate portfolio of 4 stocks whose returns are driven by these 3 risk

factors.
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Solution:

By APT, the expected return of a portfolio is given by

rP = λ0 + λ1βP1 + λ2βP2 + λ3βP3.

Here, λ0 = 5%, and the beta values for the three factors are

βP1 =
1

2
(βA1 + βB1) =

1

2
(0.3+ 0.5) = 0.4,

βP2 =
1

2
(βA2 + βB2) =

1

2
(0.2+ 0.6) = 0.4,

βP3 =
1

2
(βA3 + βB3) =

1

2
(1.0+ 0.7) = 0.85.

Given λ1 = 0.07, λ2 = 0.09, λ3 = 0.02, so

rP = 5%+ 0.07× 0.4+ 0.09× 0.4+ 0.02× 0.85 = 13.1%.
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The majority of the quantitative equity portfolio managers employ

some form of factor models. Factors are the key ingredients of

these models. Factors come in many varieties: fundamental, tech-

nical, macroeconomic, etc. Good factors exhibit relationships with

stock return that are not only stable and consistent but also can be

explained by economic theory.

Stability means the factor loadings of the stocks are stable with

respect to estimations obtained from returns data over different in-

vestment time periods. Consistency means the factor risk premiums

of the risk factors as estimated from different sets of stocks give

consistent values.

We have identified four factors in the return-generating model

I1 = random change in inflation, denoted by II

I2 = random change in aggregate sales, denoted by IS

I3 = random change in oil prices, denoted by IO

I4 = random return in the S&P index constructed to be uncorrelated to

the other factors, denoted by IM .
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Furthermore, assume that the oil risk is not priced, λO = 0; then

ri − r = λIbiI + λSbiS + λMbiM .

Factor b λ Contribution to mid-cap
Expected Excess Return
(%)

Inflation −0.37 −4.32 1.59 = (−0.37)(−4.32)

Sales growth 1.71 1.49 2.54 = 1.71× 1.49

Oil prices 0.00 0.00 0.00

Market 1.00 3.96 3.96

Expected excess return for mid-cap stock portfolio 8.09

The expected excess return for the mid-cap (company with medi-

um size of capitalization) stock portfolio is 8.09%. Sales growth

contributes 2.54% to the expected return for the mid-cap. In other

words, sensitivity to sales growth accounts for 2.54÷8.09 or 31.4%

of the total expected excess return.
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Factor b λ Contribution

to Growth S-

tock Portfolio

Expected Ex-

cess Return

(%)

Inflation −0.50 −4.32 2.16

Sales growth 2.75 1.49 4.10

Oil prices −1.00 0.00 0.00

Market 1.30 3.96 5.15

Expected excess return for growth stock portfolio 11.41

• The expected excess return for the growth stock portfolio (11.41%)

is higher than it was for the mid-cap (8.09%). The growth s-

tock portfolio has more risk, with respect to each index, than

the mid-cap portfolio.

• Individual factors have a different absolute and relative contribu-

tion to the expected excess return on a growth stock portfolio

than they have on the mid-cap index.
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Portfolio management

Factor models are used to estimate short-run expected returns to

the asset classes. The factors are usually macroeconomic variables,

some of which are list below:

1. The rate of return on a treasury bill (T bill).

2. The difference between the rate of return on a short-term and

long-term government bond (term).

3. Unexpected changes in the rate of inflation in consumer prices

(inflation).

4. Expected percentage changes in industrial production (individual

production).

5. The ratio of dividend to market price for the S&P 500 in the

month preceding the return (yield).

6. The difference between the rate of return on a low- and high-

quality bond (as a proxy of confidence).

7. Unexpected percentage changes in the price of oil (oil).
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Four distinctive phases of the market are identified which are based

on the directional momentum in stock prices and earnings per share:

1. The initial phase of a bull market.

2. The intermediate phase of a bull market.

3. The final phase of a bull market.

4. The bear market.

Interestingly, for a given type of stock, the factor sensitivities can

change dramatically as the market moves from one phase to the

next.
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Bear market −→ Initial phase of bull market

The factor sensitivities for large versus small stocks in going from

a bear market to the initial phase of a bull market are listed below:

Phase IV Phase I

Factor Small Stocks Large Stocks Small Stocks Large Stocks

T bill −6.45 −1.21 5.16 5.81

Term 0.34 0.45 0.86 0.92

Inflation −3.82 −2.45 −3.23 −2.20

Ind. prod. 0.54 0.06 0.00 0.40

Yield 1.51 −0.16 −0.18 0.00

Confidence −0.63 −0.43 2.46 1.45

Oil −0.21 −0.07 0.26 0.20
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Asset allocation decision procedure

• Identify the current market phase, calculate the factor values

typically experienced in such a phase, and make modifications

in these factor sensitivities to reflect expectations for the forth-

coming period (usually a year).

• Calculate expected returns for the asset classes (such as large

and small stocks) on the basis of the factor sensitivities in the

phase.

• These expected returns can then be imported to an optimizer

to determine the mix of investments that maximizes expected

return given risk exposure for the forthcoming year.
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3.4 Portfolio performance analysis

• To evaluate the performance of a portfolio, the first thing we

would like to know is the rate of return.

• A direct way of computing rate of return: r = (MV1−MV0)/MV0,

where MV0 is beginning market value of the portfolio/fund and

MV1 is the ending market value. This works well for “static”

portfolios that have no intermediate cash flows.

Money-Weighted Return (MWR)

A money-weighted return is analogous in concept to an internal rate

of return. It is the discount rate on which the net present value of

inflows is the same as the present value of outflows.
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Example 1 The two funds A and B have identical rates of return

at the end of each of the 4 years of investment

Period 1 2 3 4
Rate of return 0% 20% −10% 10%
Fund A
1. Beginning MV 100 200 140 126
2. Appreciation (depreciation) in value 0 40 (14) 12.6
3. Deposit (withdrawal) 100 (100) 0 0
4. Ending MV 200 140 126 138.6
Fund B
1. Beginning MV 100 100 220 98
2. Appreciation (depreciation) in value 0 20 (22) 9.8
3. Deposit (withdrawal) 0 100 (100) 0
4. Ending MV 100 220 98 107.8
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Apparently, for Fund A, we calculate the MWR as

100+
100

1+ r
=

100

(1+ r)2
+

138.6

(1 + r)4
,

yielding r ≈ 7%.

Similarly, for Fund B,

100+
100

(1 + r)2
=

100

(1 + r)3
+

107.8

(1 + r)4
,

yielding r ≈ 1.9%. Is Fund A a better investment than Fund B?

Fund A happens to be lucky in the sense that deposit of $100 occurs

right before a good year of 20% rate of return and withdrawal of

$100 occurs right before a bad year of −10% rate of return.
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Advantages and disadvantages of MWR

• MWR incorporates the size and timing of interim cash flows (e.g.

withdrawal/deposit and dividend/interest). A direct measure of

investment performance from an investor’s standpoint.

• Deposits/withdrawals have significant impact on the MWR, while

they are neither under the control of the manager nor has much

to do with the management skills. Therefore, it is not a good

measure for the investment skills of the fund manager.
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Time-Weighted Return (TWR)

The time-weighted return is essentially a geometric mean of a series

of holding-period returns (HPR) that are linked together or com-

pounded over time (thus, time-weighted).

HPR1 = (MV1 −MV0 +D1)/MV0,

where D1 is the dividend/interest inflows.

TWR = n
√
(1 +HPR1)(1 +HPR2) · · · (1 +HPRn)− 1.

Example 1 revisited

TWR = 4√1× 1.2× 0.9× 1.1− 1 = 4.4%.
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TWR versus MWR

• TWR is useful in determining the management skills and com-

paring an investment’s performance to indices.

• TWR does not take into account deposits, withdrawals or amoun-

t of investments, which do have material impact on the final

profit and loss of investors. MWR is referred as the “investors’

way” of calculating return on investment, and TWR as the

“managers’ way”.
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Beyond computing the rate of return over the evaluation pe-

riod

Suppose that you learned that manager A realized a rate of return

of −2% over the past year, while manager B earned +12%. What

is the appropriate action? Replace manager A? Give manager B a

large bonus? The answer is not clear.

• The +12% earned by manager B is less impressive if he earned

the money with an extremely risky strategy, such as buying a

short-run, deep out-of-the-money call option (a very risky in-

vestment strategy). How could he or she take such risks with

other people’s hard-earned money? He or she could have lost it

all just as easily as he or she had won it! Surely, then, manager

B should not be rewarded. In general, performance evaluation

must weigh the realized rate of return against the risk taken in

order to achieve this return.
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• Performance evaluation needs to separate investment skill from

chance. For example, the performance of manager A is put in

a different light if we know that he or she consistently outper-

formed the market in the previous ten years and that the poor

performance in the last year is attributable solely to the unex-

pected bankruptcy of a company that was generally believed to

have a high credit quality. Put differently, we need to determine

whether the results are significantly better or significantly worse

than expected.

• The −2% return of manager A looks very different if we know

that the general market went down by 10%; in this case, manag-

er A still outperformed the market by an impressive 8%. In other

words, any analysis of investment performance needs to correct

for the market conditions faced by the investment manager.

113



Risk-adjusted performance measures

Rate of return alone is not an appropriate measure of investment

performance, as return depends more on (1) the target risk level of

the portfolio, (2) the performance of the overall market, than on

the skill level of the portfolio manager.

For example, consider two funds A and B with βB > βA. In a bull

market, Fund B is expected to produce a higher rate of return than

Fund A, but it does not mean managers of Fund B is doing a better

job. When the market is bearish, Fund A would outperform.

Efficient market hypothesis

The efficient market hypothesis (EMH) states that asset prices fully

reflect all available information. The weak form of EMH claims

that prices on traded assets already reflect all past publicly available

information. The strong form of the EMH additionally claims that

prices instantly reflect even hidden “insider” information.
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Risk-adjusted performance measures based on the CAPM

It is reasonable to divide the information relevant to the valuation

of any stock into two categories: (1) public information, which is

freely available to everyone, and (2) private information, which is

known to selected individuals.

Analysis based on public information only would suggest that every

stock and portfolio are positioned on the SML. The CAPM is derived

based on common belief on the expected returns and correlation of

returns of the risky assets.

Example 2 Two professionally managed funds: Alpha and Omega

Alpha Fund Omega Fund
Stock portfolio a single stock multiple stocks
Public expected return 8% 12%
Private expected return 10% 14%
Beta value 0.5 1.5
Residual variance 7.5% Well-diversified
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Based on public information, both Alpha Fund and Omega Fund lie

on the SML. However, their real positions are A′ and O′, due to the

excess return attributed to private information.
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Based on public information, both Alpha Fund and Omega Fund

are below the CML as they invest in risky stocks only. But Omega

Fund is well-diversified, so it lies on the minimum variance frontier.

Their real positions should be A′ and O′, respectively, if both public

and private information are taken into account.
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Jensen Alpha

For any portfolio P , the Jensen Alpha is defined by

αP = rP − [r + βP (rM − r)],

where rM is the expected rate of return of market portfolio and r is

the riskfree rate.

• The term in the squared brackets is the expected rate of return

if P were on the SML. The Jensen Alpha αP measures the

difference between the portfolio’s actual expected return and

the model predicted expected return.

• A statistically significant positive αP implies that the manager is

indeed adding value (perhaps with some private information); a

negative one implies that the fund is managed in a systematically

“wrong” way. An insignificant αP implies that the manager

knows no more than the herd.
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Depth and breadth of investment performance

Example 2 revisited: The Jensen Alpha for the two funds are

αA = 0.10− [0.06+ (0.1− 0.06)× 0.5] = 0.02

αO = 0.14− [0.06+ (0.1− 0.06)× 1.5] = 0.02.

It seems that Alpha and Omega are managed equally well.

Investment performance is assessed in two aspects: (1) depth (the

magnitude of “alpha” or excess return captured by the manager),

and (2) breadth (the number of securities for which a manager can

capture excess returns).

Though Alpha Fund and Omega Fund have the same depth, Alpha

has less breadth than Omega, due to the fact that Alpha has private

information of a single stock while Omega has private information

of multiple stocks.
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Pros and cons of the Jensen Alpha

• The Jensen Alpha is an improvement over the pure return mea-

sures. The benchmark return [r + βP (rM − r)] looks at the

expected return generated from bearing the systematic risk (as

characterized by the beta value). It is insensitive to non-systematic

risk.

• The Jensen Alpha reflects only the depth of investment per-

formance, but fails to incorporate the breadth. It can be used

for performance evaluation for portfolios that are well diversi-

fied (good level of breadth) and have equal beta (same level of

systematic risk).

Alpha and Omega are considered as doing equally well, even though

they bear different levels of systematic risks (βA ̸= βO).
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Treynor ratio

For any portfolio P , we define the Treynor ratio by

TP =
rP − r

βP
.

• Excess rate of return earned per unit of risk taken, where risk is

measured in terms of the beta factor of the portfolio. Since βP
is used in TP , only systematic risk is considered.

• Geometrically, Tp is equal to the slope of a straight line con-

necting the fund with the riskfree asset in (β, r̄) diagram.
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To evaluate the performances of Alpha Fund and Omega Fund by

the Treynor ratio, one first constructs a leveraged equivalent A∗

such that TA∗ = TA and βA∗ = βO. Here, A∗ dominates O∗, implying

that Alpha is a more desirable investment.
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Relationship between Treynor ratio and Jensen Alpha

Reformulating the equation that defines the Jensen Alpha, we obtain

rP − r = αP + βP (rM − r).

Dividing both sides by βP yields

rP − r

βP
=

αP

βP
+ rM − r.

Therefore,

TP =
αP

βP
+ rM − r.

Since rM − r is independent of P , TP gives the same ranking as the

beta-adjusted Jensen Alpha, αP
βP

(see the figure on the last page).

• The Treynor ratio does not reflect breadth. For instance, TA
fails to penalize Alpha Fund for bearing nonzero residual (diver-

sifiable) risk. One may wrongly conclude that Alpha Fund is

better managed than Omega Fund based on the Treynor ratio.
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Sharpe ratio

Sharpe’s reward-to-variability ratio is defined by

SP =
rP − r

σP
.

• It measures the excess return earned per unit of total risk tak-

en, where total risk is measured by standard deviation σP . In

the (σ, r̄) plane, Sharpe ratio is the slope of the a straight line

connecting the fund with the riskfree asset.

• A higher Sharpe ratio would indicate a better performance.

• When there is only public information, CAPM tells us that the

Sharpe Ratio of any portfolio is capped by the slope of the CML.

This is no longer the case when private information is available.
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Based on public information only, SA and SO are both less than

the slope of the CML, but Omega is closer to CML because of

its breadth (lower level of diversifiable risk). Both Alpha fund and

Omega fund are lifted by 2% due to private information. It is seen

that Omega Fund outperforms the market.
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Relationships between the Sharpe ratio, Jensen Alpha and Treynor

ratio under very low level of diversifiable risk

Recall that

βP =
ρσPσM
σ2M

=
ρσP
σM

.

If the portfolio is well diversified, then there will be very low level of

diversifiable (non-systematic) risk. The portfolio lies closely to the

CML, so ρ ≈ 1. As a result, the Jensen Alpha becomes

rP − r = αP + βP (rM − r) ≈ αP +
σP
σM

(rM − r),

which gives the following relation between SP and αP

SP =
rP − r

σP
≈

αP

σP
+

rM − r

σM
.

On the other hand, TP and SP are related by

TP =
rP − r

βP
=

rP − r

σP

σP
βP

≈ SPσM .

For well-diversified portfolios, the Sharpe ratio and Treynor Ratio

give consistent rankings.
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Pros and cons of the Sharpe ratio

• The Sharpe ratio is based on the total risk, sum of systematic

risk and idiosyncratic risk. It gives better performance to fund

managers who care about both depth (extracting alpha) and

breadth (minimizing diversifiable risk).

• The Sharpe ratio is sensitive to both depth and breadth, where

the latter is captured by the diversifiable risk. In Example 2,

Alpha Fund is found to be inferior to Omega Fund when the

Sharpe ratio is used as the performance measure. Alpha Fund

also underperforms the market portfolio, probably because the

negative effect of its lack of breadth overrides the positive effect

of its depth.
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Pitfalls associated with the performance measures

• Restriction on borrowing of riskfree asset: When investors can-

not borrow at the riskfree rate or can only borrow at a high rate,

the graphs of CML and SML will change accordingly.

• Specification of the market portfolio: In practice, the market

portfolio is not observable. Any errors that result from specify-

ing the market portfolio could lead to substantial difference in

performance evaluation implied by these single-index measures.

• Evaluation period: With no knowledge of the precise distribution

of the return, we have to replace the statistics of return with

their samples. Observed samples will vary from period to period.
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Summary of key concepts

Construction of the uncorrelated counterpart of an efficient

fund

• Recall that zero-beta funds are those funds which lie on the same

horizontal line with the riskfree point. Given the riskfree point,

we determine the market portfolio by the tangency method.

Conversely, given an efficient fund, we find the corresponding

“pseudo” riskfree point such that the efficient fund becomes

the market portfolio. This is done by drawing a tangent to the

efficient frontier at the frontier fund and finding the intercept

of this tangent line at the vertical r-axis.
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Capital market line and efficient portfolios

• All portfolios lying on the CML are efficient, and all are com-

posed of various mixes of the market portfolio and the risk free

asset.

• The beta value of an efficient portfolio is equal to the propor-

tional weight of market portfolio in the efficient portfolio. This

is obvious since the excess return above the riskfree rate is con-

tributed by the portion of market portfolio.

• The CML does not apply to individual asset or portfolios that

are inefficient, because investors do not require a compensation

for non-systematic risk.
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• Efficient portfolios have the same Sharpe ratio as that of the

market portfolio.

• All portfolios are on or below the CML. When the correlation

coefficient between portfolio’s return and market return is closer

to 100%, the portfolio is closer to being efficient and comes

closer to the CML. The Sharpe ratio of an inefficient portfolio

P is ρPM × Sharpe ratio of the market portfolio M .

• Efficient portfolios have zero specific (also called diversifiable or

non-systematic) risk.

• The extended version of CAPM allows the replacement of the

Market Portfolio by any efficient portfolio.

131



Security market line

• In equilibrium, all assets and portfolios lie on the security market

line. All assets are priced correctly and one cannot find bargains.

Any derivation from the SML implies that the market is not in

the CAPM equilibrium.

• When equilibrium prevails, the expected excess return above the

riskfree rate normalized by the beta is constant for all assets /

portfolios. That is,

ri − r

βi
=

rj − r

βj

for any pair of asset i and asset j. Therefore, beta is the appro-

priate measure of risk to compare asset returns under equilibrium

conditions.
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Beta value

• According to CAPM, the higher the asset risk (beta), the higher

the expected rate of return.

• All assets/portfolios with the same beta share the same amount

of systematic risk, and they have the same excess return above

the riskfree rate. The beta value (not portfolios standard de-

viation) is used as a measure of risk in CAPM since only the

systematic risk is rewarded with extra returns. When the spe-

cific risk becomes zero, the portfolio standard deviation equals

beta times market portfolio’s standard deviation.
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APT model

• Returns of assets are driven by a set of macroeconomic factors

and asset-specific component.

• The contribution from each risk factor to the expected excess

return above the riskfree rate is the product of factor loading

and factor risk premium.

• The APT does not require the identification of the market

portfolio. Instead it requires the specification of the relevant

macroeconomics factors. Much of the empirical APT research

has focused on the identification of these factors.

• The APT and CAPM complement each other. They both pre-

dict that excess returns are governed by factor sensitivities that

move with the market.
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Performance indexes

Jensen alpha: αP = rP − [r + βP (rM − r)]

Treynor index: TP =
rP − r

βP
.

Both are based on the security market line (expected rate of return

is rewarded by bearing the systematic risk).

• Jensen alpha looks at the amount of expected rate of return

above (or below) the SML.

• Treynor index is benchmarked against the slope of SML, or e-

quivalently, the Treynor index of the market portfolio, where

TM =
rM − r

βM
.
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Shape index: SP =
rP − r

σP

It is based on the capital market line. The risk considered is the

sum of systematic risk and diversifiable risk. A fund manager who

is successful in seeking breadth would have low level of diversifiable

risk in his portfolio. Shape index is benchmarked against the slope

of CML, which is the Sharpe ratio of the market portfolio.
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