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1.1 General issues of apportionment of legislature seats

To apportion is to distribute by right measure, to set off in just

parts, to assign in due and proper proportion.

• Distributing available personnel or other resources in “integral

parts” (integer programming):

– distributing seats in a legislature based on populations or

votes

• Apparently, some obvious process for rounding fractions or some

optimal schemes for minimizing certain natural measure of in-

equality would fail. Each scheme may possess certain “flaws”

or embarrassing “paradoxes” ( , opposite to common sense

or the truth).
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Apportionment of US house seats based on states’ populations

• ai = number of Representatives apportioned to the ith state,

pi = population in the ith state, i = 1,2, · · · , S.

The Constitution requires ai ≥ 1 and pi/ai > 30,000, where the

current House size = 435∗ (fixed after New Mexico and Arizona

became states in 1912).

Current number of constituents per Representative

≈ 300 million/435 ≫ 30,000

* In 1959, Alaska and Hawaii were admitted to the Union, each

receiving one seat, thus temporarily raising the House to 437.

The apportionment based on the census of 1960 reverted to a

House size of 435.
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Statement of the Problem of Apportionment of House Seats

h = number of congressional seats; P = total US population =
S∑

i=1

pi;

the ith state is entitled to qi = h

(
pi
P

)
representatives.

Difficulty: the eligible quota qi =
hpi
P

is in general not an integer.

In simple terms, ai is some form of integer rounding to qi. Define

λ = P/h = average number of constituents per Representative,

then qi = pi/λ. The (almost) continuous population weight pi/P is

approximated by the rational proportion ai/h.

An apportionment solution is a function f , which assigns an appor-

tionment vector a to any population vector p and fixed house size

h. One usually talks about an apportionment method M = M(p, h),

which is a non-empty set of apportionment solutions. Ties may

occur, so the solution to a may not be unique.
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Numbers of seats for the geographical constituency areas

District Number Estimated population % of deviation

of seats (as on 30 June 2012) from resulting

number

Hong Kong Island 7 1,295,800 −9.77%

Kowloon West 5 1,081,700 +5.45%

Kowloon East 5 1,062,800 +3.61%

New Territories West 9 2,045,500 +10.78%

New Territories East 9 1,694,900 −8.21%

5



Related problem Apportionment of legislature seats to political

parties based on the votes received by the par-

ties.

Inconsistencies in apportionment based on either the district or

state-wide criterion.

2004 Connecticut congressional elections – District criterion

District 1st 2nd 3rd 4th 5th Total Seats

Republican 73,273 165, 558 68,810 149, 891 165, 440 622,972 3

Democratic 197, 964 139,987 199, 652 136,481 105,505 779,589 2

We pick the winner in each district. The Democratic Party receives

only 2 seats though the Party receives more votes (779,589) state-

wide. This is a real life current example where is put into

practice.
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If the state-wide criteria is used, then the Republican Party with

only
622,972

779,589+ 622,972
× 100% = 44.42% of votes should receive

only 2 seats.

This appears to be contradicting the principle: parties should share

the seats according to their total votes in each state. How can we

resolve the inconsistencies?
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Gerrymandering

The practice of dividing a geographic area into electoral districts,

often of highly irregular shape, to give one political party an unfair

advantage by diluting the opposition’s strength.

For example, Texas had redistributed following the census of 2000,

but in the state elections of 2002, the Republicans took control of

the state government and decided to redistribute once again. Both

parties determine districts to maximize their advantage whenever

they have the power to do so.

In 2012, the 234-201 House seats majority goes to the Republicans

though the Democrats have a slight edge in the popular vote for

House seats, 48.8%-47.6%.

Measure to resolve gerrymandering Allocation to district winners

is designed such that it also depends on the state wide popularity

vote.
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Illinois Congressional District 4: Worst Example of Gerryman-

dering
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Republicans Democrats

• In Florida, Democrats won nearly half the house race votes but

fills about a third of the states’ congressional seats.
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Issues addressed in apportionment schemes

1. Find an operational method for interpreting the mandate of pro-

portional representation (with reference to population or votes).

2. Identify the desirable properties that any fair method ought to

observe. Not to produce paradoxes.

• The “best” method is unresolvable since there is no one method

that satisfies all reasonable criteria and produce no paradoxes –

Balinski-Young Impossibility Theorem.

• Intense debate surrounding the basis of population counts: How

to count Federal employees living outside the US? Should we

count illegal immigrants and permanent residents?
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1.2 Quota Method of the Greatest Remainder (Hamilton’s

method) and paradoxes

After assigning at least one seat to each state, every state is then

assigned its lower quota. This is possible provided that

h ≥
S∑

i=1

max(1, ⌊qi⌋), (i)

a condition which holds in general. Next, we order the remainders

qi−⌊qi⌋, and allocate seats to the states having the largest fractional

remainders in sequential order.

• By its construction, the Hamilton method satisfies the quota

property: ⌊qi⌋ ≤ ai < ⌊qi⌋+1.

• Recall that h =
∑S

i=1 qi, thus h ≥
∑S

i=1⌊qi⌋; so condition (i)

is not satisfied only when there are too many states with very

small population that are rounded up to one seat based on the

minimum requirement.
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Constrained integer programming problem

We minimize
S∑

i=1

(ai − qi)
2

subject to
S∑

i=1

ai = h and ai ≥ 1, i = 1, · · · , S.

It seeks for integer allocations ai that are never less than unity and

staying as close as possible (in some measure) to the fair shares

qi. The “inequity” is measured by the totality of (ai − qi)
2 summed

among all states.

• Actually, in a more generalized setting, Hamilton’s method min-

imizes
S∑

i=1

|ai − qi|α, α ≥ 1.

This amounts to a norm-minimizing approach.
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• Any state which has been assigned the lower quota ⌊qi⌋ already

will not be assigned a new seat until all other states have been

assigned the lower quota. This is because the states that have

been assigned the lower quota would have value of qi−ai smaller

than those states that have not.

• Provided h ≥
S∑

i=1

max(1, ⌊qi⌋), each state would receive at least

max(1, ⌊qi⌋) seats.

Remark

Due to the minimum requirement that ai ≥ 1, it may be possible

that not all states are assigned seats with number that is guaranteed

to be at least the lower quota.
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• Provided that condition (i) is satisfied, all states will be assigned

with seats equal to their lower quota or at least one seat. The

remaining seats are assigned according to the ranking order of

the fractional remainders. Once the upper quota has been as-

signed to a particular state, no further seat will be assigned.

Combining these observations, the quota property is satisfied.

• Why does the Hamilton apportionment procedure minimize the

sum of inequity as measured by
∑S

i=1(ai− qi)
2? This is because

after each seat assignment, the largest magnitude of reduction

is achieved when compared to other methods of apportionment.
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Loss of House Monotone Property

State Population

25 seats

exact quota

26 seats

exact quota

27 seats

exact quota
A 9061 8.713 [9] 9.061 [9] 9.410 [9]
B 7179 6.903 [7] 7.179 [7] 7.455*[8]
C 5259 5.057 [5] 5.259 [5] 5.461*[6]
D 3319 3.191 [3] 3.319*[4] 3.447 [3]
E 1182 1.137 [1] 1.182 [1] 1.227 [1]

26000 25 26 27

• The integers inside [ ] show the apportionments.

• When h = 26, State D is assigned an additional seat beyond

the lower quota of 3. However, when h = 27, the extra seat is

taken away since States B and C take the two additional seats

beyond their lower quotas. State D suffers a drop from 4 seats

to 3 seats when the total number of seats increases from 26 to

27.
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Alabama Paradox (1882)

In 1882, the US Census Bureau supplied Congress with a table

showing the apportionment produced by Hamilton’s method for all

sizes of the House between 275 and 350 seats. Using Hamilton’s

method, the state of Alabama would be entitled to 8 representatives

in a House having 299 members, but in a House having 300 members

it would only receive 7 representatives – loss of house monotone

property .

• Alabama had an exact quota of 7.646 at 299 seats and 7.671 at

300 seats, while Texas and Illinois increased their quotas from

9.640 and 18.640 to 9.682 and 18.702, respectively.

• At h = 300, Hamilton’s method gave Texas and Illinois each an

additional representative. Since only one new seat was added,

Alabama was forced to lose one seat. Apparently, the more

populous state has the larger increase in the remainder part.

Thus, Hamilton’s method favors the larger states.
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House monotone property (Property H)

An apportionment method M is said to be house monotone if for

every apportionment solution f ∈ M

f(p, h) ≤ f(p, h+1).

That is, if the House increases its size, then no state will lose a

former seat using the same method M .

A method observes house monotone property if the method awards

extra seats to states when h increases, rather than computing a

general redistribution of the seats.
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Why does Hamilton’s method not observe the House monotone

property?

The rule of assignment of the additional seat may alter the existing

allocations. With an increase of one extra seat, the quota qi = h
pi
P

becomes q̂i = (h + 1)
pi
P
. The increase in the quota is pi/P , which

differs across the different states (a larger increase for the more

populous states). It is possible that a less populous state that is

originally over-rounded becomes under-rounded.

• When the number of states is 2, Alabama paradox will not occur.

When a state is favorable (rounded up) at h, it will not be

rounded down to the floor value of the original quota at the

new house size h+1 since the increase in the quota of the other

state is always less than one.
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New States Paradox

If a new state enters, bringing in its complement of new seats [that

is, the number it should receive under the apportionment method in

use], a given state may lose representation to another even though

there is no change in either of their population.

Example

In 1907, Oklahoma was added as a new state with 5 new seats to

house (386 to 391). Maine’s apportionment went up (3 to 4) while

New York’s went down (38 to 37). This is due to the change in

priority order of assigning the surplus seats based on the fractional

remainders.
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Consider an apportionment of h seats among 3 states, we ask “If

p = (p1 p2 p3) apportions h seats to a = (a1 a2 a3), is it

possible that the population p′ = (p1 p2) apportions h − a3 seats

to a′ = (a1 +1 a2 − 1)?

Example

Consider the Hamiltonian apportionment of 4 seats to 2 states

whose populations are 623 and 377. Now suppose a new state

with population 200 joins the union and the house size is increased

to 5.

• Earlier case, q = (2.49 1.51) so states 1 and 2 each receives

2 seats.

• After addition of a new state, q = (2.60 1.57 0.83) and state

2 has lost a seat to state 1 since the new apportionment is

(3 1 1).
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Population monotonicity

Suppose the population (quota) of a state changes due to redraw-

ing of state boundaries or actual migration of population. Given

the fixed values of h and S, if a state’s quota increases, then its

apportionment does not decrease.

Failure of the population monotone property in Hamilton’s method

Suppose a state Rℓ decreases in population and the excess popula-

tion is distributed to one state called “lucky” in class D (rounding

down) with a larger share of the excess population and another s-

tate called “misfortune” in class U with a smaller share. After the

redistribution, it is possible that Rℓ remains in class U, while state

“lucky” moves up to class U but state “misfortune” goes down to

class D.
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Example h = 32, q = (2.34 4.88 8.12 7.30 9.36)

with a = (2 5 8 7 10).

Population migration from State B to State A and State E lead to

qnew = (2.42 4.78 8.12 7.30 9.38)

anew = (3 5 8 7 9).

State A has a larger share of the migrated population compared to

State E, where

qA : 2.34 → 2.42

qE : 9.36 → 9.38

qB : 4.88 → 4.78.

What has happened to State E? The quota of State E increases

but its apportionment decreases.

23



Quota property (Property Q)

An apportionment method M is said to satisfy the quota property

if for every apportionment solution f in M , and any p and h, the

resulting apportionment a = f(p, h) satisfies

⌊qi⌋ ≤ ai ≤ ⌈qi⌉ for all i.

Hamilton’s method satisfies the Quota Property by its construction.

By virtue of the Quota Property, it is not impossible for any state

to lose more than one seat when the house size is increased by one.

Balinski-Young Impossibility Theorem

Any apportionment method that does not violate the quota rule

must produce paradoxes, and any apportionment method that does

not produce paradoxes must violate the quota rule.
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Lower quota property

M satisfies lower quota if for every p, h and f ∈ M ,

a ≥ ⌊q⌋.

Upper quota property

M satisfies upper quota if for every p, h and f ∈ M ,

a ≤ ⌈q⌉.

Relatively well-rounded

If ai > qi +
1

2
(rounded up even when the fractional remainder is

less than 0.5), State i is over-rounded, if aj < qj −
1

2
(rounded down

even when the fractional remainder is larger than 0.5), State j is

under-rounded. If there exists no pair of States i and j with ai over-

rounded and aj under-rounded, then a is relatively well-rounded.
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Desirable properties in Hamilton’s Method

1. Binary fairness (pairwise switching)

One cannot switch a seat from any state i to any other state j

and reduce the sum: |ai − qi|+ |aj − qj|.

Hamilton’s method, which minimizes
S∑

i=1

|ai − qi|, does satisfy

“binary fairness”.

Proof : Two classes of states:

Class U with ai = ⌈qi⌉ (rounding up; favorable)

Class D with aj = ⌊qj⌋ (rounding down; unfavorable)

Write the fractional remainders as Ri = qi − ⌊qi⌋ and Rj = qj −
⌊qj⌋, where

1 > Ri ≥ 0 and 1 > Rj ≥ 0.
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(i) A switch of one seat between two states falling within the same

class increases |ai − qi|+ |aj − qj|.

As an illustration, suppose both States i and j fall in class D

with

|ai − qi| = Ri and |aj − qj| = Rj.

Since |1+ ai − qi| = 1−Ri and |aj − 1− qj| = 1+Rj, so that

|1+ ai − qi|+ |aj − 1− qj| = 2+Rj −Ri > Ri +Rj.

(ii) Obviously, inequity increases when a seat is switched from a

state in class D to another state in class U . A switch of one

seat from one state in class U to another state in class D also

increases |ai − qi|+ |aj − qj|.

Original sum = RD+(1−RU) while the new sum = 1−RD+RU .

Since RU > RD, so the switching increases |ai − qi|+ |aj − qj|.
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2. Hamilton’s method has the mini-max property: min
a

max
i

|ai − qi|.

The worst discrepancy between ai and qi among all states is

measured by max
i

|ai − qi|. Among all apportionment methods,

Hamilton’s method minimizes max
i

|ai − qi|.

Proof : Arrange the remainders of the states accordingly

R1 < · · · < RK︸ ︷︷ ︸
Class D

< RK+1 < · · · < RS︸ ︷︷ ︸
Class U

When Hamilton’s method is used, assuming no minimum re-

quirement, the apportionment observes the quota property. We

then have

max
i

|ai − qi| = max(RK,1−RK+1).
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Consider an alternative apportionment where there exists State ℓ

with Rℓ ≥ RK+1 but it ends up in Class D (rounded down instead

of rounded up), then there must exists another state (say, State m)

with Rm ≤ RK that ends up in Class U. Let âi and âm denote the

new apportionments of the respective states.

Now, âm − qm = 1 − Rm and âℓ − qℓ = Rℓ. Further, since 1 − Rm >

1 − RK+1 and Rℓ > RK, so the new apportionment would have

an increase in max
i

|ai − qi|.

0 R
m

R
K

R
K+1

R
l

1
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Remarks

1. The objective function (inequity measure) in the minimization

procedure under Hamilton’s apportionment can be extended to

the ℓp-norm, where

∥a− q∥p =

 S∑
i=1

|ai − qi|p
1/p , p ≥ 1.

The minimax property can be shown to remain valid under the

choice of any ℓp-norm. The special cases of ℓ1-norm and ℓ∞-

norm correspond to
S∑

i=1

|ai − qi| and max
i

|ai − qi|, respectively.

2. Suppose
S∑

i=1

|ai − qi| is minimized under Hamilton’s apportion-

ment, then the switching of a seat among any pair of states

would not reduce the sum: |ai − qi|+ |aj − qj|.
3. By applying the mini-max property under ℓ1-norm, we can con-

clude that an apportionment solution satisfies the binary fairness

property if and only if it is a Hamilton apportionment solution.
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Summary of Hamilton’s method

Assuming no minimum requirement:

• Every state is assigned at least its lower quota. Order the frac-

tional remainders. Assign the extra seats to those states with

larger values of fractional remainder.

• Minimize
∑S

i=1(ai − qi)
2 subject to

∑S
i=1 ai = h.

• Satisfying the quota property: each qi is either rounded up or

rounded down to give ai.

• Binary fairness

• min
a

max
i

|ai − qi|

Paradoxes House Monotone; New State Paradox; Population Mono-

tone
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History of Hamilton’s method in US House apportionment

• The first apportionment occurred in 1794, based on the popu-

lation figures∗ from the first national census in 1790. Congress

needed to allocate exactly 105 seats in the House of Represen-

tatives to the 15 states.

• Hamilton’s method was approved by Congress in 1791, but the

bill was vetoed by President George Washington (first use of

presidential veto).

• Washington’s home state, Virginia, was one of the losers in the

method, receiving 18 seats despite a standard quota of 18.310.

• The Jefferson apportionment method was eventually adopted

and gave Virginia 19 seats.

∗The population figures did not fully include the number of slaves and native
Americans who lived in the U.S. in 1790.
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• Jefferson’s method is a divisor method, which may not satisfy

the quota property. The year 1832 was the end of Jefferson’s

method. If Jefferson’s method has continued to be used, every

apportionment of the House since 1852 would have violated

quota. In 1832, Jefferson’s method gave New York 40 seats in

the House even though its standard quota was only 38.59.

• Websters’ method, another but improved divisor method (re-

garded as the best approximation method by modern day ex-

perts), was used for the apportionment of 1842. The method

may violate quota, but the chance is very slim. If Webster’s

method has been used consistently from the first apportion-

ment of the House in 1794 to the most recent reapportionment

in 2002, it would still have yet to produce a quota violation.
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• The very possibility of violating quota lead Congress leery of

Webster’s method. In 1850, Congressman Samuel Vinton pro-

posed what be thought was a brand new method (actually iden-

tical to Hamilton’s method). In 1852, Congress passed a law

adopting Vinton’s method.

• Compromise adopted in 1852

In 1852, and future years, Congress would increase the total

number of seats in the House to a number for which Hamilton’s

and Webster’s method would yield identical apportionment.

• A major deficiency in Hamilton’s method is the loss of House

Monotone property. Such paradox occurred in 1882 and 1902.

In 1882, US Congress opted to go with a House size of 325 seats

to avoid the Alabama paradox. Another similar case occurred in

1902 (final death blow to Hamilton’s method) lead Congress to

adopt Webster’s method with a total House size of 386 seats.
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1.3 Geometric characterization and apportionment simplex

When the number of states S = 3, we are able to perform geometric

characterization of the apportionment problem in the R3-plane.

For a given total population P , there is a population simplex repre-

sented by

P = {(p1, p2, p3) : p1 + p2 + p3 = P, p1, p2 and p3 are integers},

where (p1, p2, p3) are the integer points on an inclined equilateral

triangle with vertices (P,0,0), (0, P,0) and (0,0, P ).

For any house size h, there is an apportionment simplex represented

by

A = {(a1, a2, a3) : a1 + a2 + a3 = h, a1, a2 and a3 are integers}.

The point q is the point of intersection of the line OP on the plane

A.
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The Apportionment Problem for S = 3. A is the plane of apportion-

ment while P is the plane of population. Both q and a lie on A. We

find a that is closest to q based on certain criterion of minimizing

the inequity measure.
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The population vector p intersects the apportionment plane A at

the quota vector q. The apportionment problem is to choose an

integer valued apportionment vector a on A which is in some sense

“close” to q.

The left edge lies in the p2-p3 plane with p1 = 0. The distance from

(p1, p2, p3) to the p2-p3 plane is p1.
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Apportionment function

The apportionment function f = f(p, h) partitions into regions

about each integer vector a ∈ A such that if q falls into such a

region, then it is rounded to the corresponding a.
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How to locate the quota point q on the plane?

Recall q1 + q2 + q3 = h =house size. The distance from the vertex

(h,0,0) to the opposite edge is

√√√√(√2h
)2

−
(

h√
2

)2
=

√
3

2
h. The

quota vector q has 3 coordinates q1, q2 and q3, where
√
3/2qi is the

perpendicular distance from the point Q (representing the vector q)

to the edge opposite to the point ai.

a
1

a
3

a
2

x

Q
35.1 q

25.1 q

1
5.1 q

The vertex a1(h,0,0) lies on the a1-axis while the opposite edge lies

in the a2 − a3 plane.
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Hamilton’s apportionment

• When S = 3, Hamilton’s method effectively divides the plane

into regular hexagons around the points representing possible

apportionment vectors (except for those apportionment vectors

whose ruling regions are truncated by an edge).

• Non-uniqueness of solution for a occurs when q lies on an edge

of these regular polygons. A separate rule is needed to break

ties.

• When the house size increases, the sizes of the hexagons de-

crease.
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Explanation of the regular hexagonal shape

Given three states and h seats, the population q = (q1, q2, q3) ap-

portions to a = (a1, a2, a3) if either each qi = ai or if any one of the

following six conditions hold:

lower quota is and

(a1, a2 − 1, a3) q2 − (a2 − 1) > max(q1 − a1, q3 − a3)
(a1 − 1, a2 − 1, a3) q3 − a3 < min{q1 − (a1 − 1), q2 − (a2 − 1)}
(a1 − 1, a2, a3) q1 − (a1 − 1) > max{q2 − a2, q3 − a3}
(a1 − 1, a2, a3 − 1) q2 − a2 < min{q1 − (a1 − 1), q3 − (a3 − 1)}
(a1, a2, a3 − 1) q3 − (a3 − 1) > max{q1 − a1, q2 − a2}
(a1, a2 − 1, a3 − 1) q1 − a1 < min{q2 − (a2 − 1), q3 − (a3 − 1)}

• The first case corresponds to rounding down in State 1 and

State 3 while rounding up in State 2. This occurs when the

fractional remainder of State 2 is the largest among the 3 frac-

tional remainders.
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Hexagonal region formed by the intersection of 6 perpendicular bi-

sectors

• The dashed triangle indicates the region in which lower quo-

tas are (a1, a2 − 1, a3); the boundaries of R(a1,a2,a3)
within the

triangle are the perpendicular bisectors of the line segments join-

ing (a1, a2, a3) with (a1, a2 − 1, a3 + 1) and (a1 + 1, a2 − 1, a3),

corresponding to the inequalities q2 − (a2 − 1) > q3 − a3 and

q2 − (a2 − 1) > q1 − a1, respectively.

• Similarly, the dotted triangle represents the region in which lower

quotas are (a1, a2, a3 − 1).

• The apportionment region Ra is the region formed by bisecting

the line segment joining a to each of its neighbors.
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Violation of population monotonicity

[0, 2, 3] [3, 2, 0]

[0, 0, 5] [1, 0, 4] [2, 0, 3] [3, 0, 2] [4, 0, 1] [5, 0, 0]

[0, 1, 4] [4, 1, 0]

Hamilton’s Method for S = 3 and h = 5. Compared to Q1, Q2 may

have a larger value of the first component (further away from the

edge opposite to a1) but it lies in the hexagon A2[1,1,3] whose first

component is smaller than that of A1[2,1,2].
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a3

a1
a2

[5, 0, 0] [0, 5, 0]
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Alabama paradox

Hamilton’s apportionment diagram for S = 3, h = 5 (dotted lines

and apportionments in square brackets) is overlaid on Hamilton ap-

portionment diagram for S = 3, h = 4 (solid lines and round brack-

ets), with a few apportionments labeled. Populations in the shaded

regions are susceptible to the Alabama Paradox. Consider the low-

est left shaded region, it lies in (2,1,1) and [3,2,0] so that the last

state loses one seat when the house size increases from h = 4 to

h = 5.
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Another notion of the Population Paradox

Fix house size h and number of states S but let populations increase

(as reflected from census data on two different dates). State i may

lose a seat to state j even if state i’s population is growing at a

faster rate than state j’s. If the initial population is p and after

some time the population is p′, the statement “state i’s population

is growing faster than state j’s” means that

p′i
pi

>
p′j
pj

or, equivalently,

q′i
q′j

>
qi
qj
.

Thus, a population increase can cause state i to lose a seat to

state j if and only if simultaneously q lies in the domain of a =

(· · · , ai, · · · , aj, · · · ) while q′ lies in that of a′ = (· · · , ai − 1, · · · , aj +
1, · · · ), with the inequality above satisfied.
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Any line through the vertex (2,0,0) represents points with constant

proportion of q3/q2. The Population Paradox is revealed when a

change in population from (q1, q2, q3) [lying in the region: (0,1,1)]

to (q′1, q
′
2, q

′
3) [lying in the region: (0,2,0)] causes state 3 to lose a

seat to state 2 even though q′3/q3 > q′2/q2. Here, S = 3 and h = 2.
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Numerical example

• Suppose S = 3, h = 3, and the populations at some time t1
are 420,455, and 125, respectively. At a later time t2, the

populations are 430,520, and 150.

• All states have experienced growth, and the fastest-growing s-

tate is S3, where
150

125
= 1.2 >

520

455
>

430

420
.

• However, qt1 = (1.26,1.36,0.38), which results in a Hamiltonian

apportionment of (1,1,1), while qt2 = (1.17,1.42,0.41), which

apportions to (1,2,0). State 3 loses its seat to the more slowly

growing state 2.
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1.4 Divisor methods

Based on the idea of an ideal district size or common divisor, a

divisor λ is specified, where λ is an approximation to the theoretical

population size per seat λ = P/h. Some rounding of the numbers

pi/λ are used to determine ai, whose sum equals h. This class of

methods are called the divisor methods.

Jefferson’s method (used by US Congress from 1794 through

1832)

Let ⌊⌊x⌋⌋ be the greatest integer less than x if x is non-integer, and

otherwise be equal to x or x − 1. For example, ⌊⌊4⌋⌋ can be equal

to 4 or 3.

For a given h, λ = average size =
S∑

i=1

pi/h, choose λ (≤ λ) such that

S∑
i=1

⌊⌊
pi
λ

⌋⌋
= h has a solution.
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To meet the requirement of giving at least one representative to

each state, we take ai = max

(
1,

⌊⌊
pi
λ

⌋⌋)
, where λ is a positive

number chosen so that
S∑

i=1

ai = h. Here, λ is a quantity that is close

to λ = average population represented by a single representative.

Here, λ =
p1 + · · ·+ pS

h
and qi =

pi
λ
.

• Jefferson’s method favors the larger states, like Virginia (Vir-

ginians had the strongest influence in early US history). The

method was challenged due to its violation of the quota property,

which was then replaced by another divisor method (Webster’s

method) in 1842.
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• Jefferson’s method can be viewed as a particular “rounding”

procedure. Choose a common divisor λ, and for each state

compute pi/λ and round down to the nearest integer.

• In the unlikely event of a tie , one obtains

S∑
i=1

⌊
pi
λ
⌋ = h′ > h (or < h)

for all λ. When λ increases gradually , it reaches some threshold

value λ0 at which the above sum just obtains the first value

h′ > h, and for which two or more of the terms pi/λ0 are integer

valued. One must use some ad hoc rule to decide which states

(h′ − h in total) must lose a seat so that ai =
pi
λ0

− 1 for those

states.
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Jefferson Method for S = 2.

• q = (q1 q2) lies on the line A. Apportionment solutions must

be points on A with integer coordinates.

• λJeff is the approximation to λ based on the Jefferson method,

where ⌊⌊
p1

λJeff

⌋⌋
+

⌊⌊
p2

λjeff

⌋⌋
= h.
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• The quota vector q contained in Box B lies on the line A. The

upper left corner and the lower right corner of B are possible

apportionment points (whose coordinates are all integer-valued)

which lie on A. If the upper left (lower right) corner is chosen,

then the apportionment favors State 2 (State 1). The quota

point corresponds to the case where λ equals λ, where λ is the

average population per representative. We increase λ gradually

until at λ = λ0, p/λ0 hits the upper side of B (favoring state 2

which has a larger population). In this case, p1/λ0 is rounded

down to a1 while p2/λ0 = a2.

•
S∑

i=1

⌊
pi
λ
⌋ is a non-increasing step function of λ as we move along

the ray P/λ from P (corresponding to λ = 1) to 0 (corresponding

to λ = ∞). Normally,
∑S

i=1⌊
pi
λ ⌋ drops its value by one as λ

increases gradually. When the step decrease is 2 or more, it

may occur that there is no solution to
∑S

i=1⌊
pi
λ ⌋ = h for some h.
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• When State 1 is the less populous state (as shown in the figure),

the apportionment solution at the left top corner is chosen, thus

favoring the more populous State. However, when State 1 is

taken to be the more populous state (slope of P/λ is now less

than one), the apportionment point chosen will be at the right

bottom corner, again favoring the more populous state.

• The more populous state is favored over the less populous state

in Jefferson’s apportionment. For example, in 1794 apportion-

ment in which h = 105, Virginia with q = 18.310 was rewarded

with 19 seats while Delaware with q = 1.613 was given only one

seat.
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Apportionment diagram for Jefferson’s method, S = 3, h = 5. Pop-

ulations in the shaded regions apportion in violation of the upper

quota property. At the top of the figure, the shaded region is ap-

portioned to (0,0,5) even though q3 < 4.
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Adams Method

Alternatively, one might consider finding apportionments by round-

ing up. Let ⌈⌈x⌉⌉ be the smallest integer greater than x if x is not

an integer, and otherwise equal to x or x+1. Choose λ (≥ λ) such

that
S∑

i=1

⌈⌈pi/λ⌉⌉ = h

can be obtained, then apportionment for h can be found by taking

ai = ⌈⌈pi/λ⌉⌉

satisfying
S∑

i=1

ai = h. This is called the Adams method. Since all

quota values are rounded up, the Adams method guarantees at least

one seat for every state. The Adams method favors smaller state

(just a mirror image of the Jefferson method).
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Lemma on the Jefferson apportionment

Given p and h,a(a1 · · · aS) is a Jefferson apportionment for h if and

only if

max
i

pi
ai +1

≤ min
i

pi
ai
. (A)

Proof

By definition, ai = ⌊⌊pi/λ⌋⌋ so that

ai +1 ≥
pi
λ

≥ ai ⇔
pi

ai +1
≤ λ ≤

pi
ai

for all i,

(if ai = 0, pi/ai = ∞). Equivalently,

max
i

pi
ai +1

≤ min
i

pi
ai
.
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Interpretation of the Lemma

Recall that the smaller value of pi/ai (= population size represented

by each seat) the better for that state. Alternatively, a state is

better off than another state if
pi
ai

<
pj

aj
.

• To any state k, assignment of an additional seat would make it

to become the best off state among all states since

pk
anewk

=
pk

ak +1
≤ max

i

pi
ai +1

≤ min
i

pi
ai

≤ min
i ̸=k

pi
ai
.

• Though there may be inequity among states as measured by

their shares of pi/ai, the “unfairness” is limited to less than

one seat (the assignment of one extra seat makes that state to

become the best off).
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Quota properties

• Jefferson apportionment satisfies the lower quota property. Sup-

pose not, there exists a for h such that ai < ⌊qi⌋ or ai ≤ qi − 1.

For some state j ̸= i, we have aj > qj. Recall qi = pi/λ and

qj = pj/λ so that

pj

aj
< λ ≤

pi
ai +1

,

a contradiction to the Lemma. However, it does not satisfy the

upper quota property (historical apportionment in 1832, where

New York State was awarded 40 seats with quota of 38.59 only).

• In a similar manner, the Adams method satisfies

max
i

pi
ai

≤ min
i

pi
ai − 1

for ai ≥ 1.

Based on this inequality, it can be shown that it satisfies the

upper quota property. Similarly, the Adams method does not

satisfy the lower quota property.

60



Recursive scheme of Jefferson’s apportionment

The set of Jefferson solutions is the set of all solutions f obtained

recursively as follows:

(i) f(p,0) = 0;

(ii) if ai = fi(p, h) is an apportionment for h, let k be some state for

which
pk

ak +1
= max

i

pi
ai +1

, then

fk(p, h+1) = ak +1 and fi(p, h+1) = ai for i ̸= k.

Remark

The above algorithm dictates how the additional seat is distributed

while other allocations remain the same. Hence, house monotone

property of the Jefferson apportionment is automatically observed.
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Consider the case S = 4, we rank
pi

ai +1
, i = 1,2,3,4.

1
1

1

a

p

1
3

3

a

p

1
2

2

a

p

1
4

4

a

p

3

3

a

p

4

4

a

p

1

1

a

p

2

2

a

p

Since
pi

ai +1
is maximized at i = 4, we assign the extra seat to State

4. Now, anew4 = aold4 +1.

1
1

1

a

p

1
3

3

a

p

1
2

2

a

p

3

3

a

p

1

1

a

p

2

2

a

p

1
4

4

new
a

p

new
a

p

4

4

After one seat has been assigned to State 4, pi
ai+1 is maximized at

i = 2. Next, we assign the extra seat to State 2.
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Justification of the recursive scheme

Given p,f(p,0) = 0 satisfies ineq. (A). Suppose we have shown

that any solution up through h obtained via the recursive scheme

satisfies ineq. (A), then giving one more seat to some state k that

maximizes
pi

ai +1
would result in an apportionment also satisfying

ineq. (A).

Conversely, suppose f is a Jefferson solution that is not obtained via

the recursive scheme. There is a solution g obtained via the scheme

and an house size h such that gh = fh but for some p, g(p, h+1) ̸=
f(p, h+1). Then q must accord the (h+1)st seat to some state ℓ

such that
pℓ

aℓ +1
< max

i

pi
ai +1

=
pk

ak +1
.

With anewℓ = aℓ+1, this new allocation leads to
pℓ

anewℓ

<
pk

ak +1
, which

violates ineq. (A). Hence a contradiction.
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Webster’s method (first adopted in 1842, replacing Jefferson’s

method but later replaced by Hill’s method in 1942)

For any real number z, whose fractional part is not
1

2
, let [z] be the

integer closest to z. If the fractional part of z is
1

2
, then [z] has two

possible values.

The Webster Method is

f(p, h) = {a : ai = [pi/λ],
S∑

i=1

ai = h for some positive λ}.
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It can be shown that λ satisfies

max
ai≥0

pi

ai +
1
2

≤ λ ≤ min
ai>0

pi

ai − 1
2

.

This is obvious from the property that

ai +
1

2
≥

pi
λ

≥ ai −
1

2
for all i.

The special case ai = 0 has to be ruled out in the right side inequality

since ai −
1

2
becomes negative when ai = 0.
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Violation of upper quota

1. Violation of the upper quota by both Jefferson’s and Webster’s
Methods

State i pi = 100qi ⌊qi⌋ ⌈qi⌉ Ham Jeff Web

1 8785 87 88 88 90 90

2 126 1 2 2 1 1

3 125 1 2 2 1 1

4 124 1 2 1 1 1

5 123 1 2 1 1 1

6 122 1 2 1 1 1

7 121 1 2 1 1 1

8 120 1 2 1 1 1

9 119 1 2 1 1 1

10 118 1 2 1 1 1

11 117 1 2 1 1 1∑
10,000 97 108 100 100 100
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Violation of lower quota

2. Violation of the lower quota by Webster’s Method

State i pi = 100qi ⌊qi⌋ ⌈qi⌉ Ham Jeff Web

1 9215 92 93 92 95 90

2 159 1 2 2 1 2

3 158 1 2 2 1 2

4 157 1 2 2 1 2

5 156 1 2 1 1 2

6 155 1 2 1 1 2∑
10,000 97 103 100 100 100

The 100th seat is allocated to state 6 under Webster’s apportion-

ment since 102.23 =
9215

89.5
<

155

1.5
= 103.3

67



Relatively well-rounded property

Webster’s method can never produce an apportionment that rounds

up for qi for a state i with qi−⌊qi⌋ < 0.5 while rounding down qj for

a state j with qj − ⌊qj⌋ > 0.5.

Integer programming formulation of Webster’s Method

Recall that
ai
pi

gives the per capital representation of state i, i =

1, · · · , S; and the ideal per capital representation is h/P . Consider

the sum of squared difference of
ai
pi

to
h

P
weighted by pi

s =
S∑

i=1

pi

(
ai
pi

−
h

P

)2
=

S∑
i=1

a2i
pi

−
h2

P
.

Webster’s method: minimizes s subject to
S∑

i=1

ai = h.
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Proof

Suppose a is a Webster apportionment solution, then it satisfies the

property:

max
ai≥0

pi

ai +
1
2

≤ λ ≤ min
ai>0

pi

ai − 1
2

.

It suffices to show that if an optimal choice has been made under

the Webster scheme, then an interchange of a single seat between

any 2 states r and s cannot reduce s.

We prove by contradiction. Suppose such an interchange is possible

in reducing s, where ar > 0 and as ≥ 0, then this implies that (all

other allocations are kept the same)

(ar − 1)2

pr
+

(as +1)2

ps
<

a2r
pr

+
a2s
ps

⇔
pr

ar − 1
2

<
ps

as + 1
2

.

This is an obvious violation to the above property. Therefore, the

Webster apportionment solution a minimize s subject to
S∑

i=1

ai = h.

69



Generalized formulation of the divisor method

Any rounding procedure can be described by specifying a dividing

point d(a) in each interval [a, a+1] for each non-negative integer a.

Any monotone increasing d(a) defined for all integers a ≥ 0 and

satisfying

a ≤ d(a) ≤ a+1

is called a divisor criterion.

For any positive real number z, a d-rounding of z (denoted by [z]d)

is an integer a such that d(a− 1) ≤ z ≤ d(a). This is unique unless

z = d(a), in which case it takes on either a or a+1.
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a 1 a                                 a+1

d(a 1) d(a)

• For example, Webster’s d(a) = a+
1

2
. Suppose z lies in (2.5,3.5),

it is rounded to 3. When z = 3.5, it can be either rounded to 3

or 4.

• Also, Jefferson’s d(a) = a + 1 (Greatest Divisor Method) while

Adams’ d(a) = a (Smallest Divisor Method). For Jefferson’s

method, if a < z < a + 1, then [z]d = a. When z = a + 1, then

[z]d can be either a or a + 1. For example, when z = 3.8, then

d(2) ≤ z ≤ d(3) = 4, so [3.8]d = 3; when z = 4 = 3 + 1, then

a = 3 and [4]d = 3 or 4.

The divisor method based on d is

M(p, h) =

a : ai = [pi/λ]d and
S∑

i=1

ai = h for some positive λ

 .
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In terms of the min-max inequality:

M(p, h) =

a : min
ai>0

pi
d(ai − 1)

≥ max
aj≥0

pj

d(aj)
,

S∑
i=1

ai = h

 .

This is a consequence of d(ai−1) ≤
pi
λ

≤ d(ai). We exclude ai = 0 in

the left inequality since d(ai−1) is in general negative when ai = 0.

The divisor method M based on d may be defined recursively as:

(i) M(p,0) = 0,

(ii) if a ∈ M(p, h) and k satisfies

pk
d(ak)

= max
i

pi
d(ai)

,

then b ∈ M(p, h+1), with bk = ak +1 and bi = ai for i ̸= k.
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Dean’s method (Harmonic Mean Method)

The ith state receives ai seats where pi/ai is as close as possible to

the common divisor λ when compared to
pi

ai +1
and

pi
ai − 1

. For all

i, we have

pi
ai

− λ ≤ λ−
pi

ai +1
and λ−

pi
ai

≤
pi

ai − 1
− λ

which simplifies to

ai +
1
2

ai(ai +1)
pi ≤ λ ≤

ai − 1
2

ai(ai − 1)
pi for all i.

Define d(a) =
a(a+1)

a+ 1
2

=
1

1
2

(
1
a + 1

a+1

) (harmonic mean of consecu-

tive integers a and a+1), then

max
i

pi
d(ai)

≤ λ ≤ min
j

pj

d(aj − 1)
.
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Hill’s method (Equal Proportions Methods)

• Besides the Harmonic Mean, where
1

d(a)
=

1

2

(
1

a
+

1

a+1

)
(Dean’s

method) and the Arithmetic Mean d(a) =
1

2
(a+a+1) (Webster’s

method), the choice of the Geometric Mean d(a) =
√
a(a+1)

leads to the Equal Proportions method (also called Hill’s method).

• For a population pi and common divisor λ, suppose pi/λ fall-

s within [a, a + 1], then pi/λ is rounded up to a + 1 seats if

pi/λ > d(a) =
√
a(a+1) and rounded down to a seats if pi/λ <

d(a) =
√
a(a+1). If pi/λ =

√
a(a+1), the rounding is not

unambiguously defined.
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State p i q i GR SD HM EP MF GD

1 91,490 91.490 92 88 89 90 93 94

2 1,660 1.660 2 2 2 2 2 1

3 1,460 1.460 2 2 2 2 1 1

4 1,450 1.450 1 2 2 2 1 1

5 1,440 1.440 1 2 2 2 1 1

6 1,400 1.400 1 2 2 1 1 1

7 1,100 1.100 1 2 1 1 1 1

Totals 100,000 100 100 100 100 100 100 100

Min 1,040 1,023 1,011 979 964

Max 1,051 1,033 1,018 989 973

a i  for Method

Allocations for the six divisor methods with S = 100. The minimum

and maximum integer values of λ which yield these allocations are

also shown.

75



Geometric characterization of the divisor methods (S = 3)

Hexagonal regions on the plane: q1+q2+q3 = h with a = (r s t)

Here, S = 3. We find the hexagonal region consisting of the quota

vectors (q1 q2 q3) such that they give the same apportionment

solution a = (r s t).

According to the divisor method, the apportionment vector a =

(r s t) is resulted when the population vector (p1 p2 p3) sat-

isfies

d(r − 1) <
p1
λ

< d(r), d(s− 1) <
p2
λ

< d(s), d(t− 1) <
p3
λ

< d(t),

where λ is the common divisor. We then deduce that

d(s− 1)

d(t)
<

p2
p3

<
d(s)

d(t− 1)
,
d(r − 1)

d(s)
<

p1
p2

<
d(r)

d(s− 1)
,
d(r − 1)

d(t)
<

p1
p3

<
d(r)

d(t− 1)
.
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Geometrically, a line on the plane: q1 + q2 + q3 = h through the

point (h,0,0) corresponds to
q2
q3

= constant.

3
q

2
q

),0,0( h

)0,0,(h

)0,,0( h

The bounding edges of the hexagon consisting quota vectors that

give the apportionment vector a = (r s t) are given by

p2
p3

=
d(s− 1)

d(t)
,
p2
p3

=
d(s)

d(t− 1)
,

p1
p2

=
d(r)

d(s− 1)
,
p1
p2

=
d(r − 1)

d(s)
,
p1
p3

=
d(r)

d(t− 1)
,
p1
p3

=
d(r − 1)

d(t)
.
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A typical divisor method apportionment region and its boundaries for

S = 3. Here, dr denotes the rounding point for the apportionment

r.
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Apportionment simplex that shows Jefferson’s apportionment of

S = 3 and h = 5. The cells adjacent to the edges have larger

sizes indicate that Jefferson’s apportionment favors larger states.
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Apportionment simplex that shows Webster’s apportionment of S =

3 and h = 5. The interior cells tend to have larger sizes when

compared with those of Jefferson’s apportionment.
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Minimum and maximum apportionment requirements

In order that every state receives at least one representative, it

is necessary to have d(0) = 0 (assuming pi/0 > pj/0 for pi > pj).

While the Adams, Hill and Dean methods all satisfy this perperty, we

need to modify the Webster
[
d(a) = a+

1

2

]
and Jefferson Method

[d(a) = a+1] by setting d(0) = 0 in the special case a = 0.

A divisor method M based on d for problems with both minimum

requirement amin and maximum requirement rmax, rmin ≤ rmax, can

be formulated as

M(p, h) =
{
a : ai = mid

(
rmin
i , rmax

i , [pi/λ]d
)

and
S∑

i=1

ai = h for some positive λ

 .

Here, mid(u, v, w) is the middle in value of the three numbers u, v

and w.
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Consistency (uniformity)

Let a = (aS1,aS2) = M(p, h), where S1 and S2 are two subsets of S

that partition S. An apportionment method is said to be uniform if

(aS1,aS2) = M(p, h) would imply aS1 = M(pS1,ΣS1
ai). On the other

hand, suppose ãS1 = M(pS1,ΣS1
ai), then (ãS1,aS2) = M(p, h).

This would mean

(i) If a method apportions aS1 to the states in S1 in the entire

problem, then the same method applied to apportioning hS1
=

ΣS1
ai seats among the states in S1 with the same data in the

subproblem will admit the same result.

(ii) If the method applied to this subproblem admits another solu-

tion, then the method applied to the entire problem also admits

the corresponding alternative solution.
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• Uniformity implies of a method that if one knows how any pair of

states share any number of seats then the method is completely

specified.

Example

Consider the Hamilton apportionment of 100 seats based on the

following population data among 5 states.

State Population Quota Number of seats

1 7368 29.578 30

2 1123 4.508 4

3 7532 30.236 30

4 3456 13.873 14

5 5431 21.802 22

total 24910 100 100
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Consider the subproblem of assigning 64 seats among the first 3

states.

State Population Quota Number of seats

1 7368 29.429 29

2 1123 4.485 5

3 7532 30.085 30

total 16023 64 64

Surprisingly, restricting the apportionment problem to a subset of

all states does not yield the same seat assignment for the states

involved in the subproblem: state 1 loses one seat to state 2.

• The New State Paradox occurs since the apportionment solution

changes with the addition of 2 new states: state 4 and state 5.

• A consistent apportionment scheme would not admit the “New

States” Paradox.
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Balinski-Young Impossibility Theorem

• Divisor methods automatically satisfy the House Monotone Prop-

erty.

• An apportionment method is uniform and population monotone

if and only if it is a divisor method.

The proof is highly technical.

• Divisor methods are known to produce violation of the quota

property.

Conclusion It is impossible for an apportionment method that al-

ways satisfies quota and be incapable of producing

paradoxes.
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1.5 Huntington’s family: Pairwise comparison of inequity

• Consider the ratio pi/ai = average number of constituents per

seat (district size) in state i, the ideal case would be when

all pi/ai were the same for all states. Between any 2 states,

there will always be certain inequity which gives one of the

states a slight advantage over the other. For a population

p = (p1, p2, · · · , pS) and an apportionment (a1, a2, · · · , aS) for

House size h, if pi/ai > pj/aj, then state j is “better off” than

state i in terms of district size.

• How is the “amount of inequity” between 2 states measured?

Some possible choices of measure of inequity are:

(i)

∣∣∣∣∣piai −
pj

aj

∣∣∣∣∣, (ii)

∣∣∣∣∣piai −
pj

aj

∣∣∣∣∣
/

min

(
pi
ai
,
pj

aj

)
, (iii)

∣∣∣∣∣aipi −
aj

pj

∣∣∣∣∣,
(iv)

∣∣∣∣∣ai − aj
pi
pj

∣∣∣∣∣, (v)

∣∣∣∣∣aipjpi − aj

∣∣∣∣∣.
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Huntington’s rule

A transfer is made from the more favored state to the less favored

state if this reduces this measure of inequity.

• An apportionment is stable in the sense that no inequity, com-

puted according to the chosen measure, can be reduced by trans-

ferring one seat from a better off state to a less well off state.

Huntington considered 64 cases involving the relative and absolute

differences and ratios involving the 4 parameters pi, ai, pj, aj for a pair

of states i and j. He arrived at 5 different apportionment methods.

• Some schemes are “unworkable” in the sense that the pairwise

comparison approach would not in general converge to an over-

all minimum – successive pairwise improvements could lead to

cycling.
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Hill’s method (Method of Equal Proportions) revisited

Hill’s method has been used to apportion the House since 1942.

Let Tij

(
pi
ai
,
pj

aj

)
be the relative difference between

pi
ai

and
pj

aj
, defined

by

Tij

(
pi
ai
,
pj

aj

)
=

∣∣∣∣∣piai −
pj

aj

∣∣∣∣∣
/

min

(
pi
ai
,
pj

aj

)
.

The ideal situation is T = 0 for all pairs of i and j.
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Lemma on Hill’s method

Between two states i and j, we consider (i) ai + 1 and aj to be a

better assignment than (ii) ai and aj +1

if and only if
pi√

ai(ai +1)
>

pj√
aj(aj +1)

.

Remark

With an additional seat, should it be assigned to State i with ai
seats or State j with aj seats? The decision factor is to compare

pi√
ai(ai +1)

and
pj√

aj(aj +1)
.

The one with a higher rank index value r(p, a) =
p√

a(a+1)
should

receive the additional seat.
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Proof

Suppose that when State i has ai+1 seats and State j has aj seats,

State i is the more favored state i.e.

pj

aj
−

pi
ai +1

> 0;

while when State i has ai seats and State j has aj +1 seats, State

j is the more favored state i.e.

pi
ai

−
pj

aj +1
> 0.

Should we transfer one seat in assignment (ii) from State j to State

i so that assignment (i) is resulted?
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Based on the Huntington rule and the given choice of inequity mea-

sure for the Hill methods, Assignment (i) is a better assignment

than (ii) if and only if

Tij

(
pi

ai +1
,
pj

aj

)
< Tij

(
pi
ai
,

pj

aj +1

)

⇔
pj/aj − pi/(ai +1)

pi/(ai +1)
<

pi/ai − pj/(aj +1)

pj/(aj +1)

⇔
pj(ai +1)− piai

piaj
<

pi(aj +1)− pjai

pjai

⇔
p2j

aj(aj +1)
<

p2i
ai(ai +1)

.

That is, the measure of inequity as quantified by Tij of the Hill

method is reduced.
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Algorithm for Hill’s method

Compute the quantities
pi√

n(n+1)
for all i starting with n = 0 and

then assign the seats in turn to the largest such numbers.

Floodland Galeland Hailland Snowland Rainland

9061√
1·2

7179√
1·2

5259√
1·2

3319√
1·2

1182√
1·2

9061√
2·3

7179√
2·3

5259√
2·3

3319√
2·3

1182√
2·3

9061√
3·4

7179√
3·4

· · · · · · · · ·

· · · · · · · · · · · · · · ·

Five seats have already been allocated (one to each state)
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Comparing (i) Floodland with 4 seats and Snowland with 1 seat,

against (ii) Floodland with 3 seats and Snowland with 2 seats, since

9061/
√
3 · 4 = 2616 > 3319/

√
1 · 2 = 2347, so assignment (i) is

better than assignment (ii).

Floodland Galeland Hailland Snowland Rainland

6407 - 6 5076 - 7 3719 - 8 2347 - 12 836

3699 - 9 2931 - 10 2147 - 13 1355 - 20 483

2616 - 11 2072 - 14 1518 - 18 958 - 27 · · ·

2026 - 15 1605 - 17 1176 - 23 742 · · ·

1658 - 16 1311 - 21 960 - 26 · · · · · ·

1401 - 19 1108 - 24 811 · · · · · ·

1211 - 22 959 · · · · · · · · ·

1070 - 25 846 · · · · · · · · ·
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Remarks on the rank index

• Since the ranking function
1√

n(n+1)
equal ∞ for n = 0, this

method automatically gives each state at least one seat if h ≥ S,

so the minimum requirement of at least one seat for each state

is always satisfied.

• If a tie occurs between states with unequal populations (ex-

tremely unlikely), Huntington suggests that it be broken in favor

of the larger state.

• It does not satisfy the quota property. Actually, it can violate

both lower and upper quota.

• The Hungtinton approach to the apportionment makes use of

“local” measures of inequity.
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Violation of quota property

• Hill’s method does not satisfy both the upper and lower quota

property.

State Population Exact Quota Allocation

A 9215 92.15 90

B 159 1.59 2

C 158 1.58 2

D 157 1.57 2

E 156 1.56 2

F 155 1.55 2

Totals 10,000 100 100

95



House monotone property

• By its construction, Hill’s method is house monotone.

Council Size

26 27 28

Floodland 10 10 11

Galeland 7 7 7

Hailland 5 5 5

Snowland 3 4 4

Rainland 1 1 1
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Pairwise comparison using

∣∣∣∣∣aipi −
aj

pj

∣∣∣∣∣, Webster’s method revisited

Give to each state a number of seats so that no transfer of any

seat can reduce the difference in per capita representation between

those states. That is, supposing that State i is favored over State

j,
pj

aj
>

pi
ai
, no transfer of seats will be made if

ai
pi

−
aj

pj
≤

aj +1

pj
−

ai − 1

pi

for all i and j. This simplifies to

aipj − piaj ≤ pi(aj +1)− pj(ai − 1)
pj

aj +
1
2

≤
pi

ai − 1
2

.

We can deduce

max
all aj

pj

aj +
1
2

≤ min
ai>0

pi

ai − 1
2

(same result as for Webster’s Method).
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Five traditional divisor methods

Method

Alternative

name

Divisor

d(a)

Pairwise

comparison(
ai
pi

>
aj

pj

) Adoption by

US Congress

Adams

Smallest

divisors a ai − aj
pi
pj

–

Dean

Harmonic

means a(a+1)
a+1

2

pj
aj

− pi
ai

–

Hill

Equal

propor-

tions
√
a(a+1) ai/pi

aj/pj
− 1 1942 to now

Webster

Major

Fractions a+ 1
2

ai
pi

− aj
pj

1842; 1912;

1932*

Jefferson

Largest

divisors a+1 ai
pj
pi

− aj 1794 to 1832
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• 1922 – US Congress failed to reapportion the House at all after

1920 census.

1932 – allocations based on Hill and Webster are identical.

• A National Academy of Sciences Committee issued a report in

1929. The report considered the 5 divisor methods and fo-

cused on the pairwise comparison tests. The Committee adopt-

ed Huntington’s reasoning that the Equal Proportions Method

is preferred (the Method occupies mathematically a neutral po-

sition with respect to emphasis on larger and smaller states.)

Key result

The divisor method based on d(a) is the Hungtington method based

on r(p, a) = p/d(a).
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pi/ai = average district size;

ai/pi = per capita share of a representative

• Dean’s

Method

– absolute difference in average district sizes:∣∣∣∣∣piai −
pj

aj

∣∣∣∣∣
• Webster’s

Method

– absolute difference in per capita shares of a repre-

sentative:

∣∣∣∣∣aipi −
aj

pj

∣∣∣∣∣
• Hill’s

Method

– relative differences in both district sizes and shares

of a representative:

∣∣∣∣∣piai −
pj

aj

∣∣∣∣∣
/

min

(
pi
ai
,
pj

aj

)
• Adams’

Method

– absolute representative surplus: ai −
pi
pj

aj is the

amount by which the allocation for state i exceeds

the number of seats it would have if its allocation

was directly proportional to the actual allocation

for state j

• Jefferson’s

Method

– absolute representation deficiency:
pj

pi
ai − aj
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Let r(p, a) be any real valued function of two real variables called

a rank-index , satisfying r(p, a) > r(p, a + 1) ≥ 0, and r(p, a) can

be plus infinity. Given a rank-index, a Huntington Method M of

apportionment is the set of solutions obtained recursively as follows:

(i) fi(p,0) = 0, 1 ≤ i ≤ S;

(ii) If ai = fi(p, h) is an apportionment for h of M , and k is some

state for which

r(pk, ak) ≥ r(pi, ai) for 1 ≤ i ≤ S,

then

fk(p, h+1) = ak +1 and fi(p, h+1) = ai for i ̸= k.

The Huntington method based on r(p, a) is

M(p, h) =

a ≥ 0 :
S∑

i=1

ai = h,max
i

r(pi, ai) ≤ min
aj>0

r(pj, aj − 1)

 .
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Debate between Webster’s and Hill’s methods

• In 1922 apportionment, the two methods produced significantly

different outcomes. By this time, the number of seats in the

House had been fixed by law. Consequently, the 1912 seat totals

were held over without any reapportionment whatsover.

• In 1932 apportionment, Webster’s and Hill’s methods produced

identical apportionment.

• For the 1942 apportionment, Webster’s and Hill’s method came

very close except that Hill’s method gave an extra seat to

Arkansas at the expense of Michigan. Democrats favored Hill’s

since Arkansas tended to vote for Democrats. Since the Democrat-

s had the majority, it was Hill’s method that passed through

Congress. President Franklin Roosevelt (Democrat) signed the

method into “permanent” law and it has been used ever since.
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Court challenges

• In 1991, for the first time in US history, the constitutionality of

an apportionment method was challenged in court, by Montana

and Massachusetts in separate cases.

– Montana proposed two methods as alternatives to EP (current

method). Both HM and SD give Montana 2 seats instead of the

single seat allocated by EP, but would not have increased Mas-

sachusetts’ EP allocation of 10 seats. [Favoring small states.]

– Massachusetts proposed MF, which would have allocated 11

seats to Massachusetts, and 1 to Montana. [Favoring medium

states.]

“Apportionment Methods for the House of Representatives and the

Court Challenges”, by Lawrence R. Ernst, Management Science,

vol. 40(10), p.1207-1227 (1994). Ernst is the author of the dec-

larations on the mathematical and statistical issues used by the

defense in these cases.
103



Supreme court case No. 91–860

US Department of Commerce versus Montana

1990 census Montana Washington

population 803,655 4,887,941

quota 1.40 seats 8.53 seats

Based on Hill’s method one seat nine seats

district size 803,655 4,887,941/9=543,104.55

absolute difference = 260,550.44 = 803,655− 543,104.55

relative difference = 0.480 =
260,550.44

543,104.55
.

How about the transfer of one seat from Washington to Montana?

New district size 401,827.5 610,992.625
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new absolute difference = 209,165.125 = 610,992.625− 401,827.5

new relative difference = 0.521 =
209,165.125

401,827.5
.

A transfer of one seat from Washington to Montana results in a

decrease of the absolute difference of the district sizes. According

to Dean’s method, this transfer should then happen.

The same transfer leads to an increase in the relative difference of

the district sizes, and hence violates the stipulation of Hill’s method.

The Supreme Court rejected the argument that Hill’s method vi-

olates the Constitution and Montana did not gain a second seat.

However, it ruled that apportionment methods are justiciable ,

opening the door to future cases.
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Theorem – Quota properties of Huntington family of methods

There exists no Huntington method satisfying quota. Of these

five “known workable” method, only the Smallest Divisors Method

satisfies upper quota and only the Jefferson Method satisfies lower

quota.

Apportionment for 36

Party Votes received Exact quota SD HM EP W J

A 27,744 9.988 10 10 10 10 11

B 25,178 9.064 9 9 9 9 9

C 19,947 7.181 7 7 7 8 7

D 14,614 5.261 5 5 6 5 5

E 9,225 3.321 3 4 3 3 3

F 3,292 1.185 2 1 1 1 1

100,000 36,000 36 36 36 36 36
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Quota Method

Uses the same rule as in the Jefferson Method to determine which

state receives the next seat, but rules this state ineligible if it will

violate the upper quota.

Definition of eligibility

If f is an apportionment solution and fi(p, h) = ai and qi(p, h) de-

notes the quota of the ith state, then state i is eligible at h+1 for

its (ai +1)st seat if ai < qi(p, h+1) = (h+1)pi/P . Write

E(a, h+1) = {i ∈ Ns : i is eligible for ai +1 at h+1}.
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Algorithm

The quota method consists of all apportionment solutions f(p, h)

such that

f(p,0) = 0 for all i

and if k ∈ E(a, h+1) and

pk
ak +1

≥
pj

aj +1
for all j ∈ E(a, h+1),

then

fk(p, h+1) = ak +1 for one such k and

fi(p, h+1) = ai for all i ̸= k.
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• Allocate seats to political parties proportionally to their respec-

tive votes.

Votes Exact

received proportionality SD GR, HM EP MF Q GD

A 27,744 9.988 10 10 10 10 10 11

B 25,179 9.064 9 9 9 9 10 9

C 19,947 7.181 7 7 7 8 7 7

D 14,614 5.261 5 5 6 5 5 5

E 9,225 3.321 3 4 3 3 3 3

F 3,292 1.185 2 1 1 1 1 1

100,000 36.000 36 36 36 36 36 36

Possible allocations
Party

−→ favoring larger parties

SD: Smallest Divisor, Adams; GR: Greatest Remainder, Hamilton;

HM: Harmonic Means, Dean; EP: Equal Proportions, Huntington-Hill;

MF: Major Fractions, Webster; GD: Greatest Divisor, Jefferson;

Q: Quota (Balinski-Young)
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1.6 Analysis of bias and notion of marginal equity measure

• An apportionment that gives a1 and a2 seats to states having

populations p1 > p2 > 0 favors the larger state over the smaller

state if a1/p1 > a2/p2 and favors the smaller state over the larger

state if a1/p1 < a2/p2.

• Over many pairs (p1, p2), p1 > p2, whether a method tends more

often to favor the larger state over the smaller or vice versa.

• There are many ways to measure “bias” and there are different

probabilistic models by which a tendency toward bias can be

revealed theoretically.

• A casual inspection shows the order: Adams, Dean, Hill, Web-

ster, Jefferson that the apportionment methods tend increas-

ingly to favor the larger states.
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Apportionment of 6 states and 36 seats

Adams Dean Hill Webster Jefferson

Votes

27,744 10 10 10 10 11

25,178 9 9 9 9 9

19,951 7 7 7 8 7

14,610 5 5 6 5 5

9,225 3 4 3 3 3

3,292 2 1 1 1 1

100,000 36 36 36 36 36

• The apportionment in any column leads to the apportionment

in the next column by the transfer of one seat from a smaller

state to a larger state.
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Majorization ordering

Reference “A majorization comparison of apportionment methods

in proportional representation,” A Marshall, I. Olkin, and

F. Fukelsheim, Social Choice Welfare (2002) vol. 19,

p.885-900.

Majorization provides an ordering between two vectors

m = (m1 · · ·mℓ) and m′ = (m′
1 · · ·m

′
ℓ)

with ordered elements

m1 ≥ · · · ≥ mℓ and m′
1 ≥ · · · ≥ m′

ℓ,

and with an identical component sum

m1 +m2 + · · ·+mℓ = m′
1 +m′

2 + · · ·+m′
ℓ = M.

The ordering states that all partial sums of the k largest components

in m are dominated by the sum of the k largest components in m′.
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m1 ≤ m′
1

m1 +m2 ≤ m′
1 +m′

2
...

m1 + · · ·+mk ≤ m′
1 + · · ·+m′

k
...

m1 + · · ·+mℓ = m′
1 + · · ·+m′

ℓ

m ≺ m′,m is majorized by m′ or m′ majorizes m.

Suppose it never occurs that mi > m′
i and mj < m′

j, for all i < j,

(larger state has more seats while smaller state has less seats for

apportionment m), then apportionment m is majorized by m′.
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Divisor methods and signpost sequences

A divisor method of apportionment is defined through the number

s(k) in the interval [k, k + 1], called “signpost” or “dividing point”

that splits the interval [k, k+1]. A number that falls within [k, s(k)]

is rounded down to k and it is rounded up to k +1 if it falls within

(s(k), k + 1). If the number happens to hit s(k), then there is an

option to round down to k or to round up to k +1.

Power-mean signposts

s(k, p) =

[
kp

2
+

(k +1)p

2

]1/p
, −∞ ≤ p ≤ ∞.

p = −∞, s(k,−∞) = k (Adams); p = ∞, s(k,∞) = k+1 (Jefferson);

p = 0 (Hills); p = −1 (Dean); p = 1 (Webster).
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• For Hill’s method, we consider

ln

 lim
p→0+

[
kp

2
+

(k +1)p

2

]1/p
= lim

p→0+

1

p
ln

(
kp

2
+

(k +1)p

2

)

= lim
p→0+

kp

2 ln k + (k+1)p

2 ln(k +1)
kp
2 + (k+1)p

2

(by Hospital’s rule)

= ln
k(k +1)

2
so that

lim
p→0+

[
kp

2
+

(k +1)p

2

]1/p
=
√
k(k +1), k = 0,1,2, . . . .

• For Jefferson’s method, we consider

lim
p→∞

[
kp

2
+

(k +1)p

2

]1/p
= lim

p→∞ [(k +1)p]1/p lim
p→∞

[
1

2

(
k

k +1

)p
+

1

2

]1/p
= k +1.
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Proposition 1

Let A be a divisor method with signpost sequence: s(0), s(1), · · · ,
and a similar definition for another divisor method A′. Method A is

majorized by Method A′ if and only if the signpost ratio s(k)/s′(k)
is strictly increasing in k.

For example, suppose we take A to be Adams and A′ to be Jefferson,

then
s(k)

s′(k)
=

k

k +1
= 1−

1

k +1
which is strictly increasing in k.

Proposition 2

The divisor method with power-mean rounding of order p is ma-

jorized by the divisor method with power-mean rounding of order p,

if and only if p ≤ p′.

This puts the 5 traditional divisor methods into the following ma-

jorization ordering

Adams ≺ Dean ≺ Hill ≺ Webster ≺ Jefferson.
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Definition

A method M ′ favors small states relative to M if for every M-

apportionment a and M ′-apportionment a′ for p and h,

pi < pj ⇒ a′i ≥ ai or a′j ≤ aj.

That is, it cannot happen that simultaneously a smaller district loses

seats and a larger district gains seats.

Theorem

If M and M ′ are divisor methods with divisor criteria d(a) and d′(a)
satisfying

d′(a)

d′(b)
>

d(a)

d(b)
for all integers a > b ≥ 0,

then M ′ favors small states relative to M .
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Proof

By way of contradiction, for some a ∈ M(p, h) and a′ ∈ M ′(p, h), pi <
pj, a

′
i < ai and a′j > aj. By population monotonicity of divisor meth-

ods,

a′i < ai ≤ aj < a′j

so a′j − 1 > a′i ≥ 0 and d′(a′j − 1) ≥ 1 since a ≤ d′(a) ≤ a+1 for all a.

Using the min-max property for a′, we deduce that

pj

d′(a′j − 1)
≥

pi
d′(a′i)

and so d′(a′i) > 0. Lastly

pj

pi
≥

d′(a′j − 1)

d′(a′i)
>

d(a′j − 1)

d(a′i)
≥

d(aj)

d(ai − 1)
.

We then have
pj

d(aj)
>

pi
d(ai − 1)

, a contradiction to the min-max

property.
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1. One can see that “is majorized by” is less demanding than “fa-

voring small districts relative to”.

2. Since Hamilton’s apportionment is not a divisor method, how

about the positioning of the Hamilton method in those ranking?

Proposition

Adams’ method favors small districts relative to Hamilton’s method

while Hamilton’s method favors small districts relative to Jefferson’s

method. However, Hamilton’s method is incomparable to other

divisor methods such as Dean, Hill, and Webster.

Reference “The Hamilton apportionment method is between the

Adams method and the Jefferson method,” Mathematics

of Operations Research, vol. 31(2) (2006) p.390-397.
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A > Hamilton > J, but not Hamilton > D,H,W .

Population Proportions A, D, H, W Hamilton J

603 6.70 6 7 8

149 1.66 2 2 1

148 1.64 2 1 1

total = 900 10.00 10 10 10

A > Hamilton > J, but not > D,H,W > Hamilton.

Population Proportions A Hamilton D, H, W, J

1,600 5.36 5 5 6

1,005 3.37 3 4 3

380 1.27 2 1 1

total = 2,985 10.00 10 10 10

Hamilton happens to be the same as Webster
Population Proportions Adams Webster Hamilton Jefferson

603 6.03 5 6 6 7

249 2.49 3 3 3 2

148 1.48 2 1 1 1

total = 1,000 10.00 10 10 10 10
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Probabilistic approach

Consider a pair of integer apportionments a1 > a2 > 0 and ask

“If the populations (p1, p2) has the M-apportionment

(a1, a2), how likely is it that the small state (State 2)

is favored?”

By population monotonicity, implicitly p1 ≥ p2 since a1 > a2.

• Take as a probabilistic model that the populations (p1, p2) =

p > 0 are uniformly distributed in the positive quadrant.

RX(a) =
{
p > 0 : d(ai) ≥

pi
λ

≥ d(ai − 1)
}
, with d(−1) = 0.

Each region RX(a) is a rectangle containing the point a and

having sides of length d(a1)− d(a1 − 1) and d(a2)− d(a2 − 1).
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Populations Favoring Small and Large States — Dean’s Methods.

Points that are inside the shaded area satisfies p1/a1 > p2/a2, that

is, the larger state has smaller value in district size. The shaded

area shows those populations that favor the smaller state.
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Populations Favoring Small and Large States — Webster’s Method.

The shaded area shows those populations that favor the smaller

state.
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“Near the quota” and “Near the ideal”

“Near the quota” property

Instead of requiring “stay within the quota”, a weaker version can

be stated as: It should not be possible to take a seat from one state

and give it to another and simultaneously bring both of them nearer

to their quotas. That is, there should be no states i and j such that

qi − (ai − 1) < ai − qi and aj +1− qj < qj − aj. (1)

Alternatively, no state can be brought closer to its quota without

moving another state further from its quota. The above definition

is in absolute terms.
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In relative terms, no state can be brought closer to its quota on

a percentage basis without moving another state further from its

quota on a percentage basis. For no states i and j do we have

1−
ai − 1

qi
<

ai
qi

− 1 and
aj +1

qj
− 1 < 1−

aj

qj
. (2)

It can be checked easily that (1) ⇔ (2).

Theorem

Webster’s method is the unique population monotone method that

is near quota.
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Proof

(i) Webster method ⇒ “near quota” property

If a is not near quota, that is if Eq. (1) holds for some i and j

then rearranging, we have

1 < 2(ai − qi) and 1 < 2(qj − aj)

or

aj +
1

2
< qj and ai −

1

2
< qi

while implies

qj/(aj +
1

2
) > qi/(ai −

1

2
).

Hence the min-max inequality for Webster’s method is violated,

so a could not be a Webster apportionment. Therefore Web-

ster’s method is near quota.
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(ii) non-Webster method ⇒ “non-near quota” property

Conversely, let M be a population monotone method (i.e. a

divisor method) different from Webster’s. Then there exists a 2-

state problem (p1, p2) in which the M-apportionment is uniquely

(a1+1, a2), whereas the W -apportionment is uniquely (a1, a2+

1). By the latter, we deduce the property:

p2/(a2 +1/2) > p1/(a1 +1/2).

At h = a1 + a2 +1, the quota of state 1 is

q1 =
p1h

p1 + p2

=
p1(a1 +1/2+ a2 +1/2)

p1 + p2
<

p1(a1 +1/2) + p2(a1 +1/2)

p1 + p2
= a1 +1/2.

State 2’s quota is q2 = (a1 + a2 +1)− q1 > a2 +1/2.

Therefore the M-apportionment (a1 +1, a2) is not near quota.

127



US Presidential elections and Electoral College

• 538–member Electoral College (EC)

435 (same apportionment as the House Representatives)

+ 3 from the District of Columbia (same number as the smallest

state)

+ 2× 50 states

• Presidential elections

– The winner of the plurality vote in a state is entitled to all

the electors from that state (except Maine and Nebraska).

– Actually the US Constitution gives the states broad powers

as to the method of choosing their electors.
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– Maine and Nebraska give an elector to the winner of the plu-

rality of votes in each congressional district and give additional

two electors corresponding to Senate seats to the winner of the

plurality of the statewide vote.

• Most states are small and benefit from having their proportional

share in representation augmented by those two electoral votes

corresponding to Senate seats (favoring small states over large

states).

• In the 2000 election, the 22 smallest states had a total of 98

votes in the EC while their combined population was roughly

equal to that of the state of California, which had only 54 votes

in the EC. Of those 98 EC votes, 37 went for Gore while 61

went for Bush.
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• Gore would win for large House sizes and Bush would win for

small House sizes as he did with the House size at 435. This

is because Bush won many of the smaller states, where these

small states have higher proportional share due to the additional

two electoral votes. For House size > 655, Gore is sure to

win. Unfortunately, the House size has been fixed in 1941, at

that time there was approximately one representative for every

301,000 citizens. Based on the same ratio of representatives to

people today as existed in 1941 then the House based on the

1990 census should have about 830 members.

• A direct election of the president does offer the advantage that

it is independent of the House size. One drawback is that a third

party candidate that draws votes disproportionately away from

one candidate over the other thereby influencing the election.
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Electoral college representation is sensitive to the apportion-

ment method

Hamilton Jefferson Adams Webster Dean Hill*
2000 E.C. tie Gore Bush Bush Bush Bush
Winner 269− 269 271− 267 274− 264 270− 268 272− 266 271− 267

• Since the E.C. has built-in biases favoring small states, an ap-

portionment method that partially offsets this bias might be

justifiable.

• The infrequency of apportionment (once every 10 years)

States that grow most quickly in population end up under-

represented later in the life of a given apportionment.
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Notion of marginal inequity measure

We formulate all existing apportionment methods (Hamilton and

divisor methods) into an unified framework of integer programming

with constraint.

The disparity (inequity measure) for state i is represented by the

individual inequity function fi(ai, pi;P,H), with dependence on ai
and pi, while P and H are shown explicitly. Some examples are

(i) Hamilton’s method:

fi(ai, pi;P,H) =
(
ai −

piH

P

)2
,

where
piH

P
= qi is the quota of state i;

(ii) Webster’s method:

fi(ai, pi;P,H) =
P

piH

(
ai −

piH

P

)2
=

1

qi
(ai − qi)

2;
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(iii) Hill’s method:

fi(ai, pi;P,H) =
1

ai
(ai − qi)

2;

(iv) Parametric divisor method:

fi(ai, pi;P,H) = pi

ai + δ − 1
2

pi
−

H

P

2

.

When δ = 0, it reduces to Webster’s method.

The explicit dependence of fi on pi, P and H is more general than

the dependence on pi and qi.

The aggregate inequity for the whole apportionment problem is
S∑

i=1

fi(ai, pi;P,H). This representation implicitly implies that in-

equity measure is counted individually and additively. As a result,

the effect of seat transfers on the aggregate inequity between a

subset of states is limited to the states involved in the transfer.
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The integer programming with constraint can be formulated as

min
S∑

i=1

fi(ai, pi;P,H) subject to
S∑

i=1

ai = H, ai ∈ Z+,

where Z+ is the set of non-negative integer. In other words, the

apportionment vector a = (a1 a2 · · · aS)
T is given by

a = argmin
a

S∑
i=1

fi(ai, pi;P,H).

Property on the individual inequity function fi

It is desirable to have fi to observe convexity property with respect

to ai so that the disparity is minimized with some appropriate choice

of ai (including the possibility of the unlikely scenario of ties between

two apportionment methods).
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Marginal inequity function

The earlier research works on apportionment methods have been

directed to search for the corresponding inequity function fi for

every apportionment method. Unfortunately, the inequity function

may not exist for all apportionment methods.

• For example, the Dean method does not possess any functional

form of fi (or yet to be found); the Adams and Jefferson meth-

ods lead to fi with some parameter being assigned −∞ or ∞
(see the power-mean formulas).

• Even when fi exists, it may not be unique (like Webster’s method).

We propose that a more appropriate choice is the marginal inequity

function ϕi that is related to fi

ϕi(ai, pi;P,H) = fi(ai +1, pi;P,H)− fi(ai, pi;P,H)

if fi(ai, pi;P,H) exists.
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As deduced from the convexity property of fi in ai, we require

ϕi(ai, pi;P,H) to be non-decreasing in ai.

Hamilton’s method

fi(ai, pi;P,H) =
(
ai −

piH

P

)2
so that

ϕi(ai, pi;P,H) = 2ai +1−
2piH

P
.

Parametric divisor method

fi(ai, pi;P,H) = pi

(
ai + δ − 0.5

pi
−

H

P

)2
so that

ϕi(ai, pi;P,H) =
2ai + δ +0.5

pi
−

2H

P
.
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Hill’s method

fi(ai, pi;P,H) =
1

ai
(ai − qi)

2 = ai − 2qi +
q2i
ai

so that

ϕi(ai, pi;P,H) = 1−
p2i H

2

P2

1

ai(ai +1)
.

Webster’s method

fi(ai, pi;P,H) =
(
ai −

piH

P

)2 P

piH

so that

ϕi(ai, pi;P,H) =
P

piH

(
2ai +1−

2piH

P

)
.

In all of the above cases, ϕi(ai, pi;P,H) is increasing in ai.

Remark Given fi, we can always compute ϕi; but not vice versa.

For the known apportionment methods, like Hamilton’s

method and divisor methods, we can always find the cor-

responding ϕi.
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A necessary condition for a to be the solution to the apportionment

problem is that no transfer between any two states can lower the

aggregate inequity measure. Observing that inequity is counted

separately and additively, for any pair of states i and j, we can

deduce the following necessary condition for a:

fi(ai, pi;P,H) + fj(aj, pj;P,H)

≤ fi(ai +1, pi;P,H) + fj(aj − 1, pi;P,H)

⇔ ϕj(aj − 1, pj;P,H) ≤ ϕi(ai, pi;P,H).

Interpretation

The above inequality dictates a useful condition on the ordering of

ϕi and ϕj among any pair of states i and j. Suppose aj−1 seats have

been apportioned to state j and ai seats have been apportioned to

state i. Assume that the above inequality holds, then the next seat

will be apportioned to state j in favor of state i.
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Algorithm

Let the starting value of a be (0,0, . . . ,0). Choose state i whose

ϕi(ai, pi;P,H) is the smallest among all states, and increase ai by 1.

Repeat the procedure until
∑S

i=1 ai = H is satisfied.

The above iterative scheme implicitly implies

max
i

ϕi(ai − 1, pi;P,H) ≤ min
i

ϕi(ai, pi;P,H).

This is in a similar spirit to the rank index method, where

max
i

d(ai − 1)

pi
≤ min

i

d(ai)

pi
.

Here, d(ai) is the signpost function of the divisor method whose

common divisor λ satisfies

d(ai − 1) ≤
pi
λ

≤ d(ai) ⇐⇒
pi

d(ai)
≤ λ ≤

pi
d(ai − 1)

for all i.

For the divisor method with signpost function d(a), we may set the

corresponding ϕi(ai, pi) to be d(ai)/pi (which is independent of P

and H, and satisfies non-decreasing property in ai).
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Alabama paradox

For a given apportionment method, if the ordering of ϕi is not

affected by the house size H, then the method will not produce

Alabama paradox.

• The marginal inequity measure of Hamilton’s method is

ϕi(ai, pi;P,H) = 2ai +1−
2piH

P
,

where an increase of H by one will cause ϕi to decrease by

2pi/P (with dependence on state population pi as well). The

seat apportionment order has to be modified accordingly.

• For all divisor methods, the ordering of ϕi only depends on
d(ai)

pi
,

which is independent of H. Note that there are various possible

forms of fi, hence ϕi, for Hill’s method and Webster’s method

(both are divisor methods). Some of these forms may lead to

ϕi that is dependent on H.
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Uniformity

An apportionment method is said to be consistent if the restriction

of the apportionment problem to a subset of the universe of states

still produces the same result for the states involved.

Lemma

For a given apportionment method, if the ordering of ϕi is not

affected by the value of P and H, then the method is consistent.

In the subproblem with k states, the total population is lowered

to P ′ =
∑k

i=1 pi and the total number of seats is changed to H ′ =∑k
i=1 ai. Now, the marginal inequity function ϕi(ai, pi;P,H) is changed

to ϕi(ai, pi;P
′, H ′). If the ordering of ϕi is unchanged by the changes

in P and H, then the same apportionment solution will be resulted

in the subproblem.

Corollary All divisor methods are uniform.
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Bias analysis

Let ϕi and ϕ′i denote the marginal inequity measure of M(p, H) and

M ′(p, H), respectively. Suppose for any i > j, ϕj(aj − 1, pj;P,H) <

ϕi(ai, pi;P,H) always implies ϕ′j(aj−1, pj;P,H) < ϕ′i(ai, pi;P,H). The

last inequality is equivalent to

f ′i(ai, pi;P,H)+f ′j(aj, pj;P,H) < f ′i(ai+1, pi;P,H)+f ′j(aj−1, pj;P,H).

The above inequality implies that when the apportionment method

is changed from M(p, H) to M ′(p, H), the more populous state will

never lose seats to the less populous state.
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Example

Given two divisor methods with the signpost function d(k) and d′(k).

For d′(k) to be majorized by d(k), where ϕi(ai, pi) =
d(ai)

pi
, we require

d(aj − 1)

pj
<

d(ai)

pi
⇒

d′(aj − 1)

pj
<

d′(ai)

pi
, pi > pj

Suppose
d(k)

d′(k)
is decreasing in k, we always have

d(ai)

d′(ai)
<

d(aj − 1)

d′(aj − 1)
(since ai > aj − 1 when pi > pj).

We then deduce that

d′(aj − 1)

d′(ai)
<

d(aj − 1)

d(ai)
<

pj

pi
.

Therefore, d(k)/d′(k) decreasing in k is sufficient for d′(k) to be

majorized by d(k).
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Hamilton’s method favors less populous states compared to Jeffer-

son’s method

Recall that

ϕi(ai, pi) =
ai +1

pi
for Jefferson’s method

and

ϕ′i(ai, pi;P,H) = 2ai +1−
2piH

P
for Hamilton’s method.

If (a1, a2, . . . , aS) is the Jefferson apportionment, then for pi > pj,

ϕj(aj − 1, pj) < ϕi(ai, pi) ⇔
aj

pj
<

ai +1

pi
.

Given aj <
pj

pi
(ai +1), we need to establish that

ϕ′j(aj − 1, pj;P,H) < ϕ′i(ai, pi;P,H) ⇔ 2aj − 1−
2pjH

P
< 2ai +1−

2piH

P

⇔ aj < ai +1+
H

P
(pj − pi).
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For aj <
pj

pi
(ai +1), we can establish

ai +1− aj +
H

P
(pj − pi) > (ai +1)

(
1−

pj

pi

)
−

H

P
pi

(
1−

pj

pi

)

= (ai +1− qi)

(
1−

pj

pi

)
> 0

since pi > pj and ai +1 > qi (Jefferson’s method observes the lower

quota property). We conclude that Hamilton’s method favors less

populous states compared to Jefferson’s method.
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1.7 Cumulative voting and proportional representation

Plurality voting

• In single-winner plurality voting, each voter is allowed to vote for

only one candidate; and the winner of the election is whichever

candidate represents a plurality of voters.

• In multi-member constituencies, referred to as an exhaustic

counting system, one member is elected at a time and the pro-

cess repeated until the number of vacancies is filled.

Example

With 8,000 voters and 5 to be elected, under plurality voting, a

coalition C of 4001 members can elect 5 candidates of its choice

by giving each of the 5 candidates 4,001 votes.
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Cumulative voting

Cumulative voting is a multiple-winner voting system intended to

promote proportional representation while also being simple to un-

derstand.

You may offer up to 3 votes
1 2 3
◦ ◦ ◦ Chan
• • ◦ Lee
◦ ◦ ◦ Cheung
◦ ◦ • Wong
◦ ◦ ◦ Ho

2 votes for Lee and 1 vote for Wong

Voters can ‘plump’ their votes, conferring all n votes on a single

candidate or distributing their n votes as they please.

In cumulative voting, each voter is allotted the same number of

votes, while allowing for expression of intensity of candidate prefer-

ence.
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Use of cumulative voting system in the US electoral systems

• Under the usual one-member district system (winner-take-all),

voters can elect just one representative from that district, even

if another candidate won a substantial percentage of votes.

• Between 1870 and 1980, voters of a state congressional district

were able to elect 3 candidates for the Illinois House of Rep-

resentatives. This allowed for the election of “political minori-

ties”. Voters did not understand the cumulative voting system.

In 1960s, nearly 45% of Illinois House elections involved only 3

candidates for 3 seats.

• New York City ended cumulative voting in the 1950s because of

the election of a communist from Harlem.
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“Pros” of cumulative voting systems

• Since 1980, Illinois tried “redrawing political districts” in order to

guarantee election of political minorities. This takes power away

from the people and gives it to politicians and to the courts.

– There is nothing in the Illinois Constitution or the US Con-

stitution that requires single-member districts.

– Proportional voting is the system in most European countries.

If 7% of the voters support the Green Party, the Green Party

gets 7% of the seats.

• Minority group voters do not have to be made into majorities

of voters in order to elect a candidate. The need to manipulate

district lines is largely, if not completely, eliminated.
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Assuring a certain representation

• Voting literature frequently mentions “thresholds”, which desig-

nate a fraction of population for which a cohesive group whose

population fraction is above the threshold can assure itself a

certain level of representation under a method of voting.

• For example, a like-minded grouping of voters that is 20% of a

city would be well positioned to elect one out of five seats.

• Let P be the total number of voters (population) and n the

number of seats to be elected, P > n.

• We want the fraction of population x/P over which the group

can elect k of n, if the group desires to do so and if they vote

strategically. Everybody has n votes.
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Negative remarks

It does usually provide proportional representation. However, it may

promote factional strife and thus seriously affect the efficiency of

the company. It also paves the way for “extremists”.

Fair apportionment of seats

• Cumulative voting can guarantee a minority the opportunity to

elect representatives in the same number that they would receive

by one of the apportionment methods.

• A minority can never guarantee itself greater representation by

cumulative voting than that would be allotted and deemed fair

by Webster or Jefferson apportionment.
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Theorem

Assume that there are P voters and n seats. Under cumulative

voting, a coalition C of x voters can guarantee the election of

⌊
x

P
n

⌋
candidates.

Example

Suppose x = 46, P = 81, n = 8, a coalition of 46 voters can elec-

t

⌊
46

81
× 8

⌋
= 4 candidates by giving each of its four candidates

46× 8

4
= 92 votes.

Actually, the coalition can elect 5 candidates by giving each of them
368

5
votes.
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Proof

Let k =

⌊
x

P
n

⌋
. Coalition C may cast

⌊
x

k
n

⌋
votes for each of these k

candidates. It suffices to show that it is impossible to have n−k+1

candidates to receive at least
x

k
n votes.

Since k ≤
x

P
n, so

n− k +1

k
≥

n− x
Pn+1
x
Pn

.

Rearranging, we obtain

(n− k +1)
x

k
n ≥

(
n−

x

P
n+1

)
xn
x
Pn

= Pn− xn+ P > (P − x)n.

where (P −x)n is the maximum number of votes that can be casted

by voters outside the coalition. The number of votes required to

win n − k + 1 candidates is beyond the maximum number of votes

held.
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Recall that
x

k
is the number of voters represented by each candidate

for the minority if k candidates are chosen, and similarly, that for the

majority is
P − x

n− k +1
if n− k +1 candidates are chosen. There is a

threshold head counts x required in order to guarantee the election

of k candidates.

Lemma

Under cumulative voting, a coalition C of x voters can guarantee

the election of k candidates if and only if

x

k
>

P − x

n− k +1
⇔

x

P
>

k

n+1
.

Example

Let P = 81 and n = 8. A coalition of size x = 46 can guarantee

the election of 5 candidates since 46× 9 > 5× 81.
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Proof

(i)
x

k
>

P − x

n− k +1
⇒ election of k candidates.

A coalition of x voters can give each of k candidates
xn

k
votes.

The least popular of n−k+1 other candidates could receive no

more than
(P − x)n

n− k +1
votes. Thus the coalition of x voters can

guarantee the election of k candidates if

xn

k
>

(P − x)n

n− k +1
⇔

x

k
>

P − x

n− k +1
⇔

x

P
>

k

n+1
.

(ii) election of k candidates ⇒
x

k
>

P − x

n− k +1

By contradiction, suppose
x

k
≤

P − x

n− k +1
, then the other P − x

voters can block the election of the kth candidate of coalition

C. This is because
(P − x)n

n− k +1
votes is more than

xn

k
votes.
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• The commonly cited “threshold of exclusion” for cumulative

voting
1

n+1
above which a minority can assure itself represen-

tation is just a special case with k = 1.

• How do we compare with the generalized plurality multimember

voting, where every voter has n votes but no plumping is al-

lowed? The most votes that each of a coalition’s k candidates

receives is x. However, the (n − k + 1)st candidate can receive

P − x votes. To elect k candidates, the coalition needs

x > P − x or
x

P
>

1

2
.

This result is independent of k, so to assure any representa-

tion under generalized plurality voting, a coalition must be a

population majority.
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Fair representation

• Webster’s method minimizes the absolute difference between

all pairs of states, in the numbers of representatives per per-

son, known as “per capita representation”. That is,

∣∣∣∣∣aipi −
aj

pj

∣∣∣∣∣ is
minimized between any pair of states.

• Consider representation that is apportioned to reflect minority

and majority subsets of a population, Dean’s method would be

more favorable to the minority than Hill’s method, which would

be more favorable than Webster’s method. Recall biases toward

larger states: Dean (harmonic mean) < Hill (geometric mean)

< Webster (arithmetic mean).

• Suppose that there are 2 groups: minority with population x

and majority with population P − x. The eligible quota for the

minority is
x

P
n.
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If the quota falls within [s(k), s(k + 1)], then the minority wins k

seats.

Recall that s(k) is some chosen form of mean of k − 1 and k.

For example, the population threshold x for the Webster-fair repre-

sentation is given by

x

P
>

sWeb(k)

n
=

k − 1
2

n
.

Reference

“The potential of cumulative voting to yield fair representation”,

by Duane A. Cooper, Journal of Theoretical Politics, vol.19, (2007)

p.277-295.
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In summary, to deserve k of n seats, the group’s quota (as derived

from the population threshold x) must be greater than the mean of

k − 1 and k.

Hill-fair representation

x

P
>

√
(k − 1)k

n

Dean-fair representation

x

P
>

2
1

k−1+
1
k

n
=

k(k − 1)(
k − 1

2

)
n
.

The above means observe the following order: HM < GM < AM

k(k − 1)(
k − 1

2

)
n
<

√
k(k − 1)

n
<

k − 1
2

n
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On one hand, minority coalition of population fraction
x

P
can win k

of n seats under cumulative voting method if and only if

1

2
>

x

P
>

k

n+1
.

On the other hand, Webster-fair representation requires
x

P
>

k − 1
2

n
.

Comparing
k − 1

2

n
and

k

n+1
, we deduce the algebraic property:

k − 1
2

n
<

k

n+1
⇔

k

n+1
<

1

2
.

k − 1
2

n
<

k

n+1
<

x

P
<

1

2
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For any minority, cumulative voting can be deemed more favorable

to the majority than Webster’s method in that a greater threshold

is required for the cumulative voting electoral possibilities than is

necessary in the measure of Webster-fairness. This counter claims

that cumulative voting would be unfairly advantageous to minority

populations.

Fairness of cumulative voting

• How often does cumulative voting yield the opportunity for a

minority to elect its fair share against a majority?

• When cumulative voting does not make it possible for minority

voting strength to elect a fair share, it is possible to elect only

one less representative than the Webster-fair amount.
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Theorem

In an election for n representatives of the population under cumu-

lative voting, the probability that the minority is unable to elect its

Webster-fair share of the n seats is
1
4

n
n+1, if n is even

1
4
n−1
n , if n is odd.

Moreover, if the minority’s Webster-fair share is kw ≥ 1, then it has

the voting strength to elect either kw or kw − 1 representatives.

Proof

Under the scenario of winning k out of n seats for minority
(
x
P < 1

2

)
,

the Webster threshold
k−1

2
n is less than the cumulative voting thresh-

old k
n+1.

162



1. The minority cannot elect any more than the Webster-fair num-

ber of representation, say, kw+1. If otherwise, the Webster-fair

representation would be at least kw +1.

2. Also, a minority is able to elect at least kw − 1 representatives.

If otherwise, we could have

kw − 1
2

n
<

x

P
<

kw − 1

n+1
.

(a) The left inequality arises since the Webster-fair representa-

tion is kw;

(b) The right inequality arises when cumulative voting is assumed

to elect less than kw − 1 representatives.
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This is impossible since

kw − 1

n+1
<

kw − 1

n
<

kw − 1
2

n
.
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By virtue of the above inequality and
k − 1

2

n
<

k

n+1
, the interval(

0,
1

2

)
can be partitioned by an alternating sequence of Webster-

and cumulative voting thresholds as follows:

0,
1− 1

2

n
,

1

n+1
,
2− 1

2

n
,

2

n+1
, · · · ,

⌊n2⌋ −
1
2

n
,

⌊n2⌋
n+1

,
1

2
,

where

⌊
n

2
⌋ =

n
2 if n is even
n−1
2 if n is odd.

Consider a population of size P . Consider a minority fraction of

the population
x

P
chosen from the uniform distribution on

(
0,

1

2

)
∩

Q, where Q is the set of rational numbers. The remaining
P − x

P
constitutes the population’s majority.
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The probability that cumulative voting does not make it possible for

the minority to attain its Webster-fair representation is the proba-

bility that the minority has the voting strength to elect kw − 1 rep-

resentatives but not kw, which is just the probability that
x

P
belongs

to one of the subintervals k − 1
2

n
,

k

n+1


of

(
0,

1

2

)
, where 1 ≤ k ≤

n

2
. This probability is just

∣∣∣∣∣∪
k

k − 1
2

n
,

k

n+1

 ∣∣∣∣∣
/∣∣∣∣∣

(
0,

1

2

) ∣∣∣∣∣
=

⌊n2⌋∑
k=1

 k

n+1
−

k − 1
2

n

/1

2
.

166



Case 1 : n is even.

⌊n2⌋∑
k=1

 k

n+1
−

k − 1
2

n

 =

n
2∑

k=1

(
k

n+1
−

k

n
+

1

2n

)

=

n
2(

n
2+1)
2

n+1
−

n
2(

n
2+1)
2

n
+

1

2n
·
n

2

=
(n2 +2n)− (n2 + n)

8(n+1)

=
n

8(n+1)
.
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Case 2 : n is odd.

⌊n2⌋∑
k=1

 k

n+1
−

k − 1
2

n

 =

n−1
2∑

k=1

(
k

n+1
−

k

n
+

1

2n

)

=

n−1
2

(
n−1
2 +1

)
2

n+1
−

n−1
2

(
n−1
2 +1

)
2

n
+

1

2n
·
n− 1

2

=
n− 1

8
−

n2 − 1

8n
+

2n− 2

8n

=
n− 1

8n
.
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Therefore, the probability that cumulative voting does not make it

possible for the minority to attain its Webster-fair representation is
n

8(n+1)

/
1
2 = n

4(n+1) if n is even

n−1
8n

/
1
2 = n−1

4n if n is odd.

Conclusion

Under cumulative voting, a minority of arbitrary size is able, if it

chooses, to elect its Webster-fair share of n seats against the ma-

jority more than 75% of the time. In the remaining instances, the

minority can do no worse than one less than its Webster-fair share.
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Example

Consider a population of 500, divided into a polarized majority and

minority of 340 and 160 people, respectively, and suppose a five-

member representative body is to be elected. The minority – at 32

per cent – has more that
1

6
, but less than

2

6
, of the population; thus

under cumulative voting the minority has the electoral strength to

elect one, but not two, representatives.

Recall the population threshold for the cumulative voting method

to elect k out of n is
k

n+1
. With n = 5, the threshold values are

1

6
,
2

6
,
3

6
,
4

6
,
5

6
.

If the actual population fraction falls within
k

n+1
and

k +1

n+1
, k < n,

then k is elected out of n.
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• Webster’s appointment

Were the five-member body apportioned by Webster’s method,

the minority’s quota of
160

500
· 5 = 1.6 would be rounded up to

deserve 2 seats, and the majority’s quota of
340

500
·5 = 3.4 would

be rounded down to deserve three seats. It can be readily ver-

ified that the absolute difference in per capita representation,
2

160
−

3

340
≈ 0.00368, is the minimum value for all possible ap-

portionments.

• The population fraction
160

500
= 0.32 exceeds the threshold

2− 1/2

5
=

0.3 for deserving two of five seats by Webster’s method but fails

to attain the threshold
2

5+ 1
=

1

3
≈ 0.333 to assure two of five

seats under cumulative voting.
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• Continuing with the consideration of a total population of 500,

a minority in the range of 151 to 166 people in a polarized

electorate would have to settle for one less than its Webster-fair

share of two representatives.

(i) 151 people can attain 2 seats under Webster apportionment.

(ii) 167 people are required to attain 2 seats under cumulative

voting method.

• Likewise, a minority of size from 51 to 83 would deserve one

of five seats by Webster but would not reach the threshold of

exclusion necessary for representation by cumulative voting.

• Minorities of sizes 1–49, 84–149, or 167–249 could earn their

Webster-fair share of representatives under cumulative voting,

comprising about 80 per cent of the possible minority sizes for

total population P = 500. This is consistent with the theorem’s

predicted result, where
n− 1

4n

∣∣∣∣
n=5

= 20%.
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Theorem – Cumulative voting and Jefferson’s method

A population of size P is partitioned into 2 subgroups of x and P−x,

with n seats. The number of seats each group can be assured under

cumulative voting is equivalent to the number of seats each group

would be assigned by Jefferson’s method of apportionment.

Numerical example - Jefferson’s apportionment

• To apportion the seats under Jefferson’s method, again with

a majority of 340 and a minority of 160, we would start with

divisor d =
500

5
= 100, divide that into the populations, and

round down, repeating until an appropriate divisor is determined

to allocate five seats.
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• At first, we have⌊
340

100

⌋
= ⌊3.4⌋ = 3 and

⌊
160

100

⌋
= ⌊1.6⌋ = 1,

but 3 + 1 = 4 ̸= 5.

We see that d = 85 works (as will any d satisfying 80 < d ≤ 85),

yielding ⌊
340

85

⌋
= ⌊4.0⌋ = 4 and

⌊
160

85

⌋
= ⌊1.88⌋ = 1,

with 4 + 1 = 5, so the majority is allotted four seats and the

minority gets one, the same result achieved by cumulative voting

for these subpopulations.
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Comparison between Jefferson’s and Webster’s apportionment

The total over-representation of this Jefferson (4–1) apportion-

ment,
4

340
−

5

500
≈ 0.00176, is the minimum for all possible ap-

portionments; in particular, it is less than the over-representation
2

160
−

5

500
= 0.00250 of the Webster (3–2) apportionment.

Concurrently, the total under-representation of the Jefferson ap-

portionment,
5

500
−

1

160
= 0.00375, is greater than the under-

representation
5

500
−

3

340
≈ 0.00118 of the Webster apportionment.
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Proof

By Jefferson’s method, we apportion the n seats by finding a divisor

d such that

⌊
x

d

⌋
+

⌊
P − x

d

⌋
= n. We begin by considering d =

P

n
.

If

⌊
x

P/n

⌋
+

⌊
P − x

P/n

⌋
= n, then the population subgroups occur in a

ratio that can precisely be represented proportionally among the n

seats. Cumulative voting would give the same proportional repre-

sentation to the subpopulations, if they choose, with appropriate

strategy in this case.

For example, suppose we take x = 100, P = 400, so P − x = 300;

also, we take n = 12. Minority and majority receive 3 and 9 seats,

respectively. Minority (majority) puts all 1,200 (3,600) votes into 3

(9) candidates.
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Otherwise, and more commonly, we have

⌊
x

P/n

⌋
+

⌊
P − x

P/n

⌋
< n.

Thus, some d <
P

n
must be determined to get

⌊
x

d

⌋
+

⌊
P − x

d

⌋
= n.

In order for the subpopulation of x people to be allotted exactly k

of the n seats under Jefferson’s apportionment, the following two

inequalities must be satisfied:

k ≤
x

d
< k +1 and n− k ≤

P − x

d
< (n− k) + 1.

Rearranging the inequalities to solve for d, we obtain

x

k +1
< d ≤

x

k
and

P − x

(n− k) + 1
< d ≤

P − x

n− k
.
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Now combining these results, we must have
P − x

(n− k) + 1
<

x

k
; solving

for
x

P
, we find the equivalent inequality,

x

P
>

k

n+1
.

Similarly, the statements imply that

x

k +1
<

P − x

n− k
⇔

x

P
<

k +1

n+1
.

Putting the two results together, we obtain

k

n+1
<

x

P
<

k +1

n+1
.

Interpretation: When there are minority and majority groups on-

ly (two states), the Jefferson apportionment gives k seats out of

n seats if the fraction of population satisfies the above pair of in-

equalities.
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The subpopulation of size x has the electoral strength to win k of

n seats under cumulative voting, but not k + 1 seats. The k seats

are the same as the allotment from Jefferson’s method.

• The only remaining consideration is what happens when the

population fraction
x

P
equals a threshold value

k

n+1
. In this

instance, both the electoral result of cumulative voting and the

apportionment of Jefferson’s method are indeterminate.

• When
x

P
=

k

n+1
, if the two polarized subpopulations of size x

and P − x vote perfectly strategically, a tie breaker would be

necessary to determine whether the x voters get k or k−1 seats

and, correspondingly, whether the P − x voters receive n− k or

(n− k) + 1 seats.
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Can the result be extended to more than 2 subgroups?

1. Jefferson apportionment results cannot always be guaranteed by

cumulative voting. As a counterexample, consider the subpop-

ulations X1, X2, X3 of size x1 = 350, x2 = 350, x3 = 200, re-

spectively. Using a divisor of 180, we realize that X1, X2, X3 are

awarded one seat each, as

⌊
350

180

⌋
+

⌊
350

180

⌋
+

⌊
200

180

⌋
= 1+ 1+ 1 = 3.

However, X3 does not have the electoral strength to elect one

of three representatives by cumulative voting, as its population

does not exceed the threshold of exclusion, that is,
200

900
≤

1

3+ 1
.

2. We can prove for more than two population subgroups that

a subpopulation can never use cumulative voting to guarantee

more seats than would be assigned to it by Jefferson apportion-

ment.
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Theorem

Consider a population of size P partitioned into subsets X1, X2, · · · , Xm

of size x1, x2, · · · , xm, respectively, with a representative body of n

seats to be determined. For i = 1, · · · ,m, if Xi has the electoral

strength to guarantee at least k seats under cumulative voting, then

Xi would receive at least k seats by the Jefferson apportionment.

Proof

Suppose population subgroup Xi has the electoral strength to guar-

antee at least k seats under cumulative voting. Recall that this

means their fraction of the population must exceed the necessary

threshold, that is,

xi
P

>
k

n+1
.
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By contradiction, let us suppose that Xi receives fewer than k seats

by Jefferson’s apportionment. This means that for the divisor d that

achieves the Jefferson apportionment, we have⌊
xi
d

⌋
≤ k − 1.

Therefore,
xi
d

< k and so d >
xi
k
.

The remaining seats are alloted to the remaining m− 1 population

subgroups, so
∑
j ̸=i

⌊
xj

d

⌋
≥ n− (k − 1). Therefore,
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n− k +1 ≤
∑
j ̸=i

⌊
xj

d

⌋
≤
⌊∑
j ̸=i

xj

d

⌋

=

⌊∑
j ̸=i

xj

d

⌋
=

⌊
P − xi

d

⌋
≤

P − xi
d

.

Thus, d ≤
P − xi

n− k +1
which, in conjunction with the already estab-

lished d >
xi
k
, implies that

xi
k

<
P − xi

n− k +1
.

It follows that

n− k +1

k
<

P

xi
− 1 ⇔

xi
P

<
k

n+1
.

But this contradicts the hypothesis that Xi has the electoral strength

to guarantee at least k seats under cumulative voting! Hence, Xi

must receive at least k seats by Jefferson’s apportionment.
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Conclusion

• Cumulative voting’s electoral potential is never more advanta-

geous than apportionment by Jefferson’s method and would fa-

vor a majority over a minority in some situations.

• Cumulative voting gives the Webster-fair representation more

often than not.

• Since cumulative voting’s potential is “bounded above” in a

sense by the Jefferson apportionment, we know that cumulative

voting would provide no incentives for groups to splinter into

smaller factions.
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• Groups may find it advantageous to join forces in coalition. J-

efferson’s method is the one method of its type that invariably

encourages coalitions: subgroups who join forces could gain but

could never lose seats; Dean’s, Hill’s, and Webster’s methods

do not share this property.

• Cumulative voting might prove more palatable and practicable

for use in the United States, with its two-party domination,

where rigorous proportional representation methods would be

generally unpopular as a means of assuring or bolstering repre-

sentation by race.

• The nature of cumulative voting, with each voter having n votes,

allows individual freedom to express multiple preferences that

transcend a single party, race, or political issue. For exam-

ple, a voter might not strategically vote to maximize the race’s

chances of electability, choosing instead to distribute votes for

all competing interests, such as race, environmental policy, and

candidate locality.
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1.8 Fair majority voting - eliminate Gerrymandering

• “Districting determines elections, not votes.”

• District boundaries are likely to be drawn to maximize the politi-

cal advantage of the party temporarily dominant in public affairs

(!"#$).

On one hand, every member of the House of Representatives rep-

resents a district.

On the other hand, representatives should represent their districts,

their states, and their parties.

Rationale behind fair majority voting (FMV)

Voters cast ballots in single-member districts. In voting for a can-

didate, each gives a vote to the candidate’s party.

186



1. The requisite number of representatives each party receives is

calculated by Jefferson’s method of apportionment on the basis

of the total party votes.

2. The candidates elected, exactly one in each district, and the

requisite number from each party are determined by a bipropor-

tional procedure.

2004 Connecticut congressional elections: votes.

District 1st 2nd 3d 4th 5th Total

Republican 73,273 165,558 68,810 149,891 165,440 622,972

Democratic 197,964 139,987 199,652 136,481 105,505 779,589

• The Democratic candidates as a group out-polled the Repub-

lican candidates by over 156,000 votes. However, only 2 were

elected to the Republican’s 3.
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• By the method of Jefferson, the Republicans should have elected

only 2 representatives while the Democratic 3.

• In the FMV approach, the 5 Republicans compete for their 2

seats while the 5 Democrats compete for their 3 seats.

Difficulty

• Among the Republicans, the 2 with the most votes have the

strongest claims to seats; and similarly for the 3 Democrats

with the most votes.

• However, some of these “party-winners” may be in the same

district (see the 2nd district). Who, then, should be elected?

Consider the 4th district where the race is very competitive
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Method One

• All the Democratic votes should be scaled up until one more of

the Democrats’ justified-votes exceeds that of his/her Republi-

can opponent.

• This happens when the scaling factor f or the Democratic Party

is
149,892

136,481
≈ 1.0983.

2004 Connecticut congressional elections: justified-votes (Democratic

candidates’ votes all scaled up, district-winners in bold).

District multiplier 1st 2nd 3d 4th 5th

Republican 1 73,273 165, 558 68,810 149,891 165, 440

Democratic 1.0983 217, 416 153,743 219, 270 149, 892 115,872

• Now, the Democratic Party wins the seat in the 4th district.
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Method Two

• If every column (district) has exactly one party-winner, they are

elected. In Connecticut, the second district has 2 party-winners,

the fourth district none.

• Those in districts with more than one winner should be de-

creased, while the relative votes between the candidates in each

district must remain the same.
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2004 Connecticut congressional elections: justified-votes (2nd dis-

trict’s candidates’ votes both scaled down, party-winners in bold).

The scale down makes the Democratic candidate in the 4th district

to emerge as the party-winner.

District 1st 2nd 3d 4th 5th

Republican 73,273 161, 410 68,810 149,891 165, 440

Democratic 197, 964 136,480 199, 652 136, 481 105,505

multiplier 1 0.9749 1 1 1

Multiply the votes of the 2nd district by 136,480/139,987 ≈ 0.9749.
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When there are exactly 2 parties, a very simple rule yields the FMV

result.

(a) Compute the percentage of the votes for each of the 2 candi-

dates in each district.

(b) Elect for each party the number of candidates it deserves, taking

those with the highest percentages.
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2004 Connecticut congressional elections: percentage of votes in

districts (FMV winners in bold). Look at the percentages, rather

than the actual vote count.

District 1st 2nd 3d 4th 5th

Republican 27.0% 54.2% 25.6% 52.3% 61.1%

Democratic 73.0% 45.8% 74.4% 47.7% 38.9%

• It eliminates the possibility of defining electoral districts for par-

tisan political advantage. The great loss in district 1 for the

Republicans leads to the loss of the seat in the 4th district.
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Pros of FMV

• Since parties are allocated seats on the basis of their total votes

in all districts, the necessity of strict equality in the number of

inhabitants per district is attenuated (less important). This per-

mits districting boundaries to be drawn that respect traditional

political, administrative, natural frontiers, and communities of

common interest.

• FMV makes every vote count. A state like Massachusetts has

no Republican representatives at all seems ridiculous. Certain-

ly at least 10% of the potential voters in Massachusetts have

preferences for the Republican party, and should be represented

by at least one of the state’s 10 representatives.
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• FMV would prevent a minority of voters from electing a majority

in the House.

• If FMV becomes the electoral system, it is inconceivable that

a major party would not present a candidate in every district.

Even as little as 10% or 20% of the votes against a very strong

candidate would help the opposition party to elect one of its

candidates in another district. The anomaly of large numbers

of unopposed candidates would disappear.

Cons of FMV

It is possible that a district’s representative could have received

fewer votes than her opponent in the district.
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Results of 2002, 2004 and 2006 congressional elections.

2002 2004 2006

Incumbent candidates reelected 380 389 371

Elected candidates ahead by ≥ 20% of votes 356 361 318

Elected candidates ahead by ≥ 16% of votes 375 384 348

Elected candidates ahead by ≤ 10% of votes 36 22 56

Elected candidates ahead by ≤ 6% of votes 24 10 39

Candidates elected without opposition 81 66 59

Republicans elected 228 232 202

Democrats elected 207 203 233

“Without opposition” means without the opposition of a Democrat

or a Republican.

• California’s last redistributing is particularly comfortable: every

one of its districts has returned a candidate of the same party

since 2002. Fifty were elected by a margin of at least 20% in

2002.
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Mathematical formulation

Let x = (xij), with xij = 1 if the candidate of party i is elected in

district j and xij = 0 otherwise.

FMV selects a (0,1)-valued matrix x that satisfies∑
i

xij = 1, j = 1,2, . . . , n,
∑
j

xij = ai, i = 1,2, . . . ,m.

Does a feasible delegation always exist?

1st 2nd 3d 4th 5th 6th 7th seats

party 1 + + + + + + + 2

party 2 + + + + + + + 1

party 3 + + + O O O O 4
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• 4 districts (4th to 7th) cast all their votes for parties 1 and 2

that together deserve only 3 seats.

• Party 3 deserves 4 seats but receives all its votes from only 3

districts.

Feasible apportionment a for a given vote matrix V

A problem (V,a) defined by an m × n matrix of votes V and an

apportionment a satisfying
∑

ai = n is said to be feasible if it has

at least one feasible delegation x.

Justified-votes

Given row-multipliers λ = (λi) > 0 and column-multipliers ρ = (ρj) >

0, the matrices λ ◦ v = (λivij), v ◦ρ = (vijρj), and λ ◦ v ◦ρ = (λivijρj)

are the justified-votes of the candidates of the different parties in

the various districts.
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1.9 Proportionality in matrix apportionment

Statement of the problem

The Zurich Canton Parliament is composed of seats that represent

electoral districts as well as political parties.

• Each district, j = 1,2, . . . , n, is represented by a number of

seats rj that is proportional to its population (preset before the

election).

• Each political party, i = 1,2, . . . ,m, gets ci seats proportional to

its total number of votes (constitutional requirement).

• The vote count in district j of party i is denoted by vij. The

vote counts are assembled into a vote matrix V ∈ Nm×n.
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Vote Numbers for the Zurich City Council Election on February 12, 2006

District
1 + 2 3 4+ 5 6 7+ 8 9 10 11 12

Party 125 12 16 13 10 17 16 12 19 10 Total
SP 44 28,518 45,541 26,673 24,092 61,738 42,044 35,259 56,547 13,215 333,627
SVP 24 15,305 22,060 8,174 9,676 27,906 31,559 19,557 40,144 10,248 184,629
FDP 19 21,833 10,450 4,536 10,919 51,252 12,060 15,267 19,744 3,066 149,127
Greens 14 12,401 17,319 10,221 8,420 25,486 9,154 9,689 12,559 2,187 107,436
CVP 10 7,318 8,661 4,099 4,399 14,223 11,333 8,347 14,762 4,941 78,083
EVP 6 2,829 2,816 1,029 3,422 10,508 9,841 4,690 11,998 0 47,133
AL 5 2,413 7,418 9,086 2,304 5,483 2,465 2,539 3,623 429 35,760
SD 3 1,651 3,173 1,406 1,106 2,454 5,333 1,490 6,226 2,078 24,917
Total 92,268 117,438 65,224 64,338 199,050 123,789 96,838 165,603 36,164 960,712
Total
no. of
voters

7,891 7,587 5,269 6,706 12,180 7,962 8,344 9,106 3,793 68,838
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• The district magnitudes are based on population counts and are

known prior to the election. For example, district 9 has 16 seats.

• Each voter has as many votes as there are seats in the corre-

sponding district. Voters in district 9 has 16 votes.

• The table does not include parties that do not pass the threshold

of 5% of the votes in at least one district. So, total number of

votes in Table < number of actual votes.

• District 12 has the least percentage of population coming to

vote (politically less engaged).
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District marginals

District 12 has 5.5% of the voters (3,793 out of 68,838), but is set

to receive 8.0% of the seats (10 out of 125). This is because pop-

ulation counts from the basis for the allocation of seats to districts.

District quota

This is the proportion of seats that a party should receive within

each district.

Example: The Greens received 9,154 votes out of 123,789 votes in

district 9; so

district quota for the Greens in district 9

= 16×
9,154

123,789
= 1.18.
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District Quotas for the Zurich City Council Election on February 12, 2006

District
1 + 2 3 4+ 5 6 7+ 8 9 10 11 12

Party 125 12 16 13 10 17 16 12 19 10 Total
SP 44 3.71 6.20 5.32 3.74 5.27 5.43 4.37 6.49 3.65 44.19
SVP 24 1.99 3.01 1.63 1.50 2.38 4.08 2.42 4.61 2.83 24.45
FDP 19 2.84 1.42 0.90 1.70 4.38 1.56 1.89 2.27 0.85 17.81
Greens 14 1.61 2.36 2.04 1.31 2.18 1.18 1.20 1.44 0.60 13.92
CVP 10 0.95 1.18 0.82 0.68 1.21 1.46 1.03 1.69 1.37 10.41
EVP 6 0.37 0.38 0.21 0.53 0.90 1.27 0.58 1.38 0.00 5.62
AL 5 0.31 1.01 1.81 0.36 0.47 0.32 0.31 0.42 0.12 5.13
SD 3 0.21 0.43 0.28 0.17 0.21 0.69 0.18 0.71 0.57 3.47
Total 12.00 16.00 13.00 10.00 17.00 16.00 12.00 19.00 10.00 125.00
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• Summing all district quota for the Greens across all 12 districts

gives the sum 13.92.

• The percentage of population count of each district is not the

same as the district’s percentage of voters count, reflecting the

varying levels of engagement in politics in the districts.

• Suppose we use the total aggregate votes across all districts as

the basis for computing the quota for the Greens, we obtain

eligible quota for the Greens (out of 125 seats)

=
107,436

960,712
× 125 = 13.97 (slightly different from 13.92).

Also, eligible quota for the Greens in district 9

=
9,154

960,712
× 125 = 1.19.
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Super apportionment

• Party seats are allocated on the basis of the total party ballots

in the whole electoral region.

• Respond to the constitutional demand that all voters contribute

to the electoral outcome equally, no matters whether voters cast

their ballots in districts that are large or small.

• For a given party, we divide the vote counts in each district by

its corresponding district magnitude (rounding to the nearest

integer), and sum over all districts. This gives the support size

for each party – number of people supporting a party.
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Zurich City Parliament election of 12 February 2006, Superappor-

tionment:

SP SVP FDP Greens CVP EVP AL SD City

divisor

Support size 23180 12633 10300 7501 5418 3088 2517 1692 530

Seats 125 44 24 19 14 10 6 5 3

For example, consider Party SP:

28,518

12
+

45,541

16
+ · · ·+

56,547

19
+

13,215

10
≈ 23,180

↑
each voter
in district 2
has 16 votes

Apply the divisor 530 so that[
23,180

530

]
+
[
12,633

530

]
+ · · ·+

[
2,517

530

]
+
[
1,692

530

]
= [43.7] + [23.8] + · · ·+ [4.7] + [3.19]

= 44+ 24+ · · ·+5+ 3 = 125.
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Subapportionment

Concerned with the allocation of the seats to the parties within the

districts.

• Each vote count of a party in a district is divided by its cor-

responding district divisor and party divisor. The quotient is

rounded using the standard apportionment schemes to obtain

the seat number.

Mathematical formulation

r = (r1 . . . rm) > 0 and c = (c1 . . . cn) > 0 are integer-valued vectors

whose sums are equal. That is,

m∑
i=1

ri =
n∑

j=1

cj = h = total number of seats.
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We need to find row multipliers λi and column multipliers µj such

that

xij = [λivijµj], for all i and j,

such that the row-sum and column-sum requirements are fulfilled.

Here, [ ] denotes some form of rounding.

An apportionment solution is a matrix X = (xij), where xij > 0 and

integer-valued such that

n∑
j=1

xij = ri for all i and
m∑

i=1

xij = cj for all j.

• Assign integer values to the elements of a matrix that are pro-

portional to a given input matrix, such that a set of row-sum

and column-sum requirements are fulfilled.

• In a divisor-based method for biproportional apportionment, the

problem is solved by computing appropriate row-divisors and

column-divisors, and by rounding the quotients.
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Result of Zurich City Council Election on February 12, 2006

District
1 + 2 3 4+ 5 6 7+ 8 9 10 11 12

Party 125 12 16 13 10 17 16 12 19 10 Divisor
1/λi

SP 44 4 7 5 4 5 6 4 6 3 1.006
SVP 24 2 3 2 1 2 4 3 4 3 1.002
FDP 19 3 1 1 2 5 2 2 2 1 1.010
Greens 14 2 3 2 1 2 1 1 1 1 0.970
CVP 10 1 1 1 1 1 1 1 2 1 1.000
EVP 6 0 0 0 1 1 1 1 2 0 0.880
AL 5 0 1 2 0 1 0 0 1 0 0.800
SD 3 0 0 0 0 0 1 0 1 1 1.000
Divisor
1/µj

7,000 6,900 5,000 6,600 11,200 7,580 7,800 9,000 4,000
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The divisors are those that were published by the Zurich City admin-

istration. In district 1+ 2, the Greens had 12,401 ballots and were

awarded by two seats. This is because 12,401/(7,000×0.97) ≈ 1.83,

which is rounded up to 2.

• For the politically less active districts, like district 12, the divisor

(number of voters represented by each seat) is smaller (1/µj =

4,000).

• The matrix apportionment problem can be formulated as an

integer programming problem with constraints, which are given

by the row sums and column sums. We solve for the multipliers

λi and µj through an iterative algorithm.
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