
MATH4999 — Capstone Projects in Mathematics and Economics

Solution to Homework Four

Course instructor: Prof. Y.K. Kwok

1. (a) When S = 2, due to the satisfaction of the quota property, one state is rounded
up while the other state is rounded down (the very special case of both q1 and q2
being integer valued can be easily dealt with as a separate case). Without loss of
generality, suppose

ah1 = dqh1e and ah2 = bqh2c,
where the superscript represents the house size. Alabama paradox occurs if and only
if

ah+1
1 = dqh1e − 1 and ah+1

2 = bqh2c+ 2.

In order to secure two additional seats for state 2, the new fractional remainder for
state 2 has to be larger than that of state 1. The occurrence of the Alabama paradox
would imply

qh+1
2 − qh2 > 1.

However, with an increase of only one seat in the house size, we observe

qh+1
1 − qh1 > 0, qh+1

2 − qh2 > 0 and

(qh+1
1 − qh1 ) + (qh+1

2 − qh2 ) = 1

so that
0 < qh+1

2 − qh2 < 1 and 0 < qh+1
1 − qh1 < 1.

A contradiction is encountered.

(b) With an increase in the house size, qi increases so that

qoldi < qnewi which implies bqoldi c ≤ bqnewi c.

A loss of more than one seat would imply

anewi ≤ aoldi − 2 ≤ bqoldi c+ 1− 2

= bqoldi c − 1 ≤ bqnewi c − 1.

This leads to a violation of the lower quota property.

2. (a) It suffices to show that if an optimal choice has been made under Hill’s method,

then interchanging a single seat between 2 states r and s reduce
S∑
i=1

1

ai
(ai− qi)2. We

prove by contradiction. Suppose an interchange is possible from state r with ar > 0
to state s with as ≥ 0, then

(ar − 1− qr)2

ar − 1
+

(as + 1− qs)2

as + 1
<

(ar − qr)2

ar
+

(as − qs)2

as

⇔ q2r
ar − 1

+
q2s

as + 1
<
q2r
ar

+
q2s
as

⇔ qr√
ar(ar − 1)

<
qs√

as(as + 1)
.
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This is a violation to the property that

max
i

qi√
ai(ai + 1)

≤ min
i

qi√
ai(ai − 1)

.

(b) In the lecture note, Webster’s Method has been shown to minimize

s =
S∑
i=1

pi

(
ai
pi
− h

P

)2

=
S∑
i=1

pi

(
ai − qi
pi

)2 (
since qi = pi

h

P

)

=
h

P

S∑
i=1

(ai − qi)2

qi
,

so Webster’s Method also minimizes
S∑
i=1

1

qi
(ai − qi)2, which is a scalar multiple of s.

3. (a) To observe the minimum requirement that every state receives at least one seat, we

take the maximum between 1 and

⌊⌊
pi
λi

⌋⌋
. It may occur that

S∑
i=1

⌊
pi
λi

⌋
= h

does not have a solution for any positive λ due to the occurrence of a tie between

two or more states, where
pi
λ

happen to be integer valued in two or more states at

some value of λ. Note that
S∑
i=1

⌊
pi
λ

⌋
is a non-increasing step function of λ. When a

tie occurs, its value may jump across a particular integer h, say from h+ 1 to h− 1
without taking the value h for any choice of positive λ.

As a numerical example, take p1 = p2 = 90, 000 and h = 19. When λ = 9, 000,
2∑
i=1

⌊
pi
λ

⌋
=

20; and when 9, 000 < λ ≤ 10, 000,
2∑
i=1

⌊
pi
λ

⌋
= 18.

(b) For each i ∈ S, we have 1 < ai =
pi
λ
− yi, when 0 ≤ yi ≤ 1. Note that yi = 0 when

pi
λ

happens to be an integer. Since λ =
pi

ai + yi
and so

λ ≤ pi
ai

∣∣∣∣
i∈S

and λ ≥ pi
ai + 1

∣∣∣∣
i∈S

so
max
i∈S

pi
ai + 1

≤ λ ≤ min
i∈S

pi
ai
.
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It may occur that
pi
λ
< 1 ⇔ λ > pi but ai is set equal to 1 due to the minimum

requirement. Therefore, the right side inequality has to exclude the case ai = 1.
However, the left side inequality remains valid for all i.

4. Given the choice of the rank index r(p, a) = p
2a(a+1)/(2a+1)

, suppose ai seats have been
allocated to state i and aj seats have been allocated to state j, an additional seat will be
allocated to state i if and only if

pi(2ai + 1)

2ai(ai + 1)
≥ pj(2aj + 1)

2aj(aj + 1)

⇔ pj
aj
− pi
ai + 1

≤ pi
ai
− pj
aj + 1

.

We deduce that the corresponding test of inequality is

pi
ai
− pj
aj
.

5. Consider the following population data

State A B C D E
Population 246 1771 1529 6521 6927
qi 0.1737 1.2505 1.0796 4.6046 4.8913

with house size h = 12

(i) Hamilton’s method

aA = 1, aB = 1, aC = 1, aD = 4, aE = 5.

(ii) Jefferson’s method

Take λ = 1200, ai

⌊⌊
pi
λ

⌋⌋
, then aA = 0, aB = 1, aC = 1, aD = 5, aE = 5.

(iii) Webster’s method

Take λ = 1300; aA = 0, aB = 1, aC = 1, aD = 5, aE = 5

(iv) Hill’s method: aA = 1, aB = 1, aC = 1, aD = 4, aE = 5.

Note that

6927√
4× 5

>
6521√
4× 5

>
1771√
1× 2

so aE = 5

6521√
3× 4

>
1771√
1× 2

so aD = 4.

(v) Quota method

In this example, it happens that Jefferson’s method does not violate the upper quota.
Hence, the apportionment based on the Quota method agrees with that of Jefferson’s
apportionment.
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6. (a) We apportion ai seats to state i such that pi/ai is closest to λ (see figure):

Thus, we observe

pi
ai
− λ ≤ λ− pi

ai + 1
and λ− pi

ai
≤ pi
ai − 1

− λ for all i

⇔
ai + 1

2

ai(ai + 1)
pi ≤ λ ≤

ai − 1
2

ai(ai − 1)
pi for all i.

Hence, we have

max
i

pi
d(ai)

≤ λ ≤ min
i

pi
d(ai − 1)

,

where d(ai) = (ai + 1)ai/
(
ai + 1

2

)
.

(b) The rank index is r(p, a) =
p

d(a)
. Since d(0) = 0 for Dean’s method, so those states

which have not been assigned any seat would have rank index value being infinite.
Before allocating the second seat to any state, every state must be allocated at least
one seat.

7. (a) Recall that Jefferson’s Method observes

max
i

pi

aJeffi + 1
≤ min

i

pi

aJeffi

1

mini
pi

aJeff
i

≤ 1

maxi
pi

aJeff
i +1

⇔ min
i

aJeffi + 1

pi
≥ max

i

aJeffi

pi
.

The last inequality is established by observing

min

{
1

x1
, . . . ,

1

xN

}
=

1

max{x1, . . . , xN}
,

xi’s are all positive.

Consider another method other than Jefferson, there exists state k such that aotherk =
aJeffk + n, for some positive integer n. Note that

aotherk

pk
=
aJeffk + n

pk
≥ aJeffk + 1

pk
≥ min

i

aJeffi + 1

pi
≥ max

i

aJeffi

pi
.

Hence, the Jefferson Method observes min
a

max
i

ai
pi

.

(b) Given h seats and S states, the Adams apportionment observes

max
i

pi
aAdamsi

≤ min
i

pi
aAdamsi − 1

.
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For another apportionment solution other than the Jefferson appointment, there
exists a state k such that

aotherk = aAdamsk − n, n = 1, 2, · · · .

Consider
pk

aotherk

=
pk

aJeffk − n
≥ pi
aAdamsi − 1

≥ min
i

pi
aAdamsi − 1

so that
max
i

pi
aotheri

≥ min
i

pi
aAdamsi − 1

≥ max
i

pi
aAdamsi

.

Hence, the Adams apportionment observes the mini-max property.

min
a

max
i

pi
ai
.

8. In general, for a given population p, the apportionment solutions obtained from Mα(p, h)
and Mβ(p, h) differ. In this problem, given that the apportionment solutions from
Mα(p, h) and Mβ(p, h) for a given p agree for all house size h, then the orderings of

the sequences

{
pi

ai + α

}
and

{
pi

ai + β

}
in the recursive scheme of apportioning the seats

are identical. Since for α < δ < β, we have

pi
ai + α

>
pi

ai + δ
>

pi
ai + β

so that the orderings of the three sequences are identical. Hence, the same apportionment
solution is resulted for the 3 parametric methods.

9. Let λ = p/h denote the average constituents per seat. Under the Webster apportionment,

if ai seats are allocated to state i, then pi/λ lies inside

[
ai −

1

2
, ai +

1

2

]
.

• Consider the scenario where rounding up for qi occurs even qi − bqic < 0.5. The

corresponding pi/λ would lie inside

[
dqie −

1

2
, dqie+

1

2

]
.

l
i
p

l
i

i

p
q =

ë ûiq é ùiq

Since qi =
pi

λ
and qi lies on the left side of the interval

[
dqie −

1

2
, dqie+

1

2

]
, then

λ > λ.

• Consider the other scenario where rounding down for qj occurs even qi − bqic > 0.5.

The corresponding pj/λ would lie inside

[
bqic −

1

2
, bqic+

1

2

]
and qj lies on the right

side of this interval, we have λ < λ. This contradicts λ > λ.
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• If both rounding up for qi with qi − bqic < 0.5 and rounding down for qj with
qj − bqjc > 0.5 occur, then we cannot find a divisor that is common for all states in
the Webster apportionment.

10. Using the hint, the population (p1 p2) apportions to (a1 + 1, a2 − 1) provided

a1 +
1

2
< q′1 < a1 +

3

2
and a2 −

3

2
< q′2 < a2 −

1

2
.

Furthermore,
q1
q2

=

p1
p1+p2

(h− a3)
p2

p1+p2
(h− a3)

=
p1
p2

so that
2a1 + 1

2a2 − 1
<
p1
p2
<

2a1 + 3

2a2 − 3
.

11. Consider the following 3 apportionment solutions:

(i) (a
(1)
1 , a

(1)
2 , a

(1)
3 ) = (7, 5, 4)

(ii) (a
(2)
1 , a

(2)
2 , a

(2)
3 ) = (7, 6, 3)

(iii) (a
(3)
1 , a

(3)
2 , a

(3)
3 ) = (8, 5, 3),

and the use of the inequity measure
ai
aj
− pi
pj

, we observe the following cycling phenomenon

when we compare various pairs.

(a) comparison of apportionments (i) and (ii) for States 2 and 3
In Apportionment (i), State 3 is the favored state, so the inequity measure is

a
(1)
3

a
(1)
2

− p3
p2

= 0.231.

In Apportionment (ii), State 2 is the favored state, so the inequity measure is

a
(2)
2

a
(2)
3

− p2
p3

= 0.243.

Since the inequity measure is less in Apportionment (i), so (7, 6, 3)→ (7, 5, 4).

(b) comparison of apportionments (ii) and (iii) for States 1 and 2
Similarly, we compare the inequity measures between States 1 and 2 for Apportion-
ments (ii) and (iii). We obtain

a
(2)
2

a
(2)
1

− p2
p1

= 0.156,
a
(3)
1

a
(3)
2

− p1
p2

= 0.173.

Since the inequity measure is less in Apportionment (ii), so (8, 5, 3)→ (7, 6, 3).
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(c) comparison of apportionments (iii) and (i) for States 1 and 3
Again, we compare the inequity measures between States 1 and 3 for Apportionments
(i) and (iii). We obtain

a
(3)
1

a
(3)
3

− p1
p3

= 0.160,
a
(1)
3

a
(1)
1

− p3
p1

= 0.172.

Since the inequity measure is less in Apportionment (iii), so (7, 5, 4) → (8, 5, 3).
Combining the results, we observe cycling between apportionments since

(7, 5, 4)→ (8, 5, 3)→ (7, 6, 3)→ (7, 5, 4).
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