
MATH4994 — Capstone Projects in Mathematics and Eco-
nomics

Topic One: Fair divisions and allocation schemes

1.1 Criteria for fair divisions

– Proportionality, envy-freeness, equitability and efficiency

1.2 Procedures for two-player and multi-player cake-cutting and chore
division

– Discrete cut-and-choose procedures

– Continuous moving-knife procedures

1.3 Adjusted winner for two-party allocation of discrete goods

– Point allocation procedures

– Pareto efficiency
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1.1 Criteria for fair divisions

• Fair division is the problem of dividing a set of goods or resources
between several people who have an entitlement to them, such
that each person receives his due share. This problem arises in
cake-cutting, divorce settlements, etc.

Theory of fair division procedures

• Provide explicit criteria for various different types of fairness.

• Provide efficient procedures (algorithms) to achieve a fair divi-
sion; desirable to require the least number of steps (minimum
cuts in cake cutting).

• Study the properties of such divisions both in theory and in
real life. Understand the impossibility of achieving “fairness”
based on certain criteria and/or within a given allowable set of
procedures.
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There is a set X of goods and a group of n players. A division is a
partition of X into n disjoint subsets: X = X1 ∪X2 ∪ ...∪Xn, where
subset Xi is allocated to player i, i = 1,2, . . . , n.

The set X can be of two types: indivisible items or divisible resource.

• X may be a finite set of indivisible items. For example, X =
{piano, car, apartment}, such that each item should be given
entirely to a single person.

• X may be an infinite set representing a divisible resource, for
example: money or a cake. For example, the section [0,1] may
represent a long narrow cake, that has to be cut into parallel
pieces.
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The set to be divided may be

• homogeneous - such as money, where only the amount matters.

• heterogeneous - such as a cake that may have different ingre-
dients, different icings, etc. In the general case, different parts
may be valued differently by different people.

The items to be divided may be

• desirable - such as a car or a cake.

• undesirable - such as house works (cleaning floor, washing dish-
es).
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Desirability, divisibility and homogeneity properties of items

• When dividing inheritance, or dividing household property during
divorce, it is common to have desirable indivisible heterogeneous
property such as houses, and desirable divisible homogeneous
property such as money.

• In the housemates problem, several friends rent a house togeth-
er, and they have to both allocate the rooms in the apartment
(a set of indivisible, heterogeneous, desirable goods), and di-
vide the rent to pay (divisible, homogeneous, undesirable good).
This problem is also called the room assignment-rent division.
The players may set different rents for different rooms.
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Subjective value functions

There cannot be an objective measure of the value of each item
as different people may assign different values to each item. The
presence of different measures of values opens a vast potential for
many challenging questions.

The ith person in the group of n persons is assumed to have a
personal subjective value function, Vi, which assigns a numerical
value to each subset of X. Usually the value functions are assumed
to be normalized, so that every person values the empty set as 0
[Vi(∅) = 0 for all i], and the entire set of items as 1 [Vi(X) = 1 for
all i] if the items are desirable.

• The cake-cutting procedure assumes that each player knows his
own valuation function but not others. In a continuous proce-
dure, like the moving knife procedure, the valuation of a specific
piece of cake by other players may be revealed during the pro-
cedure by the actions taken by others.
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Properties of a value function for divisible resources

• Non-negativity: Vi(B) ≥ 0 for all B ⊆ [0,1]

• Normalization: Vi(∅) = 0 and Vi([0,1]) = 1

• Additivity: Vi(B∪B′) = Vi(B) +Vi(B
′) for disjoint B, B′ ⊆ [0,1]

• Vi is continuous: Single points do not have any value. In such
case, the Intermediate-Value Theorem is applicable.

The value function resembles the probability density function defined
in [0,1]. Single points have probability measure zero.
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The Intermediate-Value Theorem states that if a continuous func-
tion f with an interval [a, b] as its domain takes values f(a) and f(b)
at each end of the interval, then it also takes any value between
f(a) and f(b) at some point within the interval.

Application: Suppose player i assigns a subinterval S with a val-

ue less than 1/n. Recall Vi(S) <
1

n
and Vi([0,1]) = 1. By the

Intermediate-Value Theorem, there exists a larger subinterval that
is obtained by enlarging continuously from S whose value to player i
becomes exactly equal to 1/n. This continuity property is essential
in the construction of the moving knife procedure.
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Example of discontinuous value function

Define φ(x) = V ([0, x]), where x ∈ [0,1].

Suppose there is a strawberry of infinitesimally small size placed at
x = 0.3, which gives a jump of value of 0.8.

It is not possible to find a subinterval B ∈ [0,1] such that V (B) =
0.5 due to loss of continuity of the value function. We observe
V (B) ≤ 0.1 if B does not contain x = 0.3 and V (B) ≥ 0.8 if B
contains x = 0.3. In this case, the Intermediate-Value Theorem is
not applicable since V (B) = 0.5 cannot be achieved by any B.
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Examples

1. For the set of indivisible items {piano, car, apartment}, Alice
may assign a value of 1

3 to each item, which means that each
item is important to her just the same as any other item. Bob
may assign the value of 1 to the set X = {car, apartment}, and
the value 0 to all other subsets except X. This means that he
wants to get only the car and the apartment together. The car
alone or the apartment alone, or each of them together with
the piano, is worthless to him. This value function violates the
additivity property since

V ({car}) + V ({apartment}) = 0 + 0 < 1 = V ({car, apartment}).

2. If X is a long narrow cake (modeled as the interval [0,1]), then
Alice may assign each subset a value proportional to its length,
which means that she wants as much cake as possible, regardless
of the icings. Bob may assign value only to subsets of [0.4,0.8]
since this part of the cake contains cherries and Bob only cares
about cherries.
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Notions of fair divisions

1. A proportional division, also called simple fair division, means
that every person gets at least his due share according to his
own value function. That is, each of the n people gets a subset
of X which he values as at least 1

n: Vi(Xi) ≥ 1
n for all i. It is said

to be super-proportional (strongly fair) division if Vi(Xi) >
1
n for

all i. Obviously, super-proportional division is not possible if all
value functions of the players are the same.

2. An envy-free division guarantees that no-one will want somebody
else’s share more than their own. That is, every person gets
a share that he values at least as much as all other shares:
Vi(Xi) ≥ Vi(Xj) for all i and j. In simple language, envy-free
means each player receives a piece he or she would not swap for
that received by any other players.

• Webster dictionary defines envyness as a “painful or resentful
awareness of an advantage enjoyed by another joined with a
desire to possess the same advantage”.
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Proposition

Suppose X = (X1, X2, ..., Xn) is a complete allocation, where X1 ∪
X2∪ . . .∪Xn = X and Xj’s are disjoint. If an allocation is envy-free,
then it must also be proportional. In other words, envy-freeness is
the stronger notion of fairness.

envy-freeness ⇒ proportional division

We prove by contrapositive argument. Suppose that Vi(Xi) <
1
n for

some i. Since the allocation is complete, by virtue of additivity of
the value function, we deduce that

n∑
j = 1
j 6= i

Vi(Xj) = Vi(X −Xi) >
n− 1

n
,

then we cannot have Vi(Xj) ≤ 1
n for all j, j 6= i. This implies that

Vi(Xj) >
1
n for some j 6= i. This would give Vi(Xi) <

1
n < Vi(Xj),

indicating failure of envy-freeness.
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For two agents, proportionality and envy-freeness are equivalent.

Suppose Vi(Xi) ≥
1

2
, i = 1,2, then V1(X2) ≤

1

2
and V2(X1) ≤

1

2
, so

it is envy-free.

Note that there is no such equivalence when there are three or more
players. It is still possible that player i may think player j receives

Xj where Vi(Xj) > Vi(Xi) (failure of envyfreeness) while Vi(Xi) ≥
1

n
,

n ≥ 3. See the discussion of the proportional discrete cuts procedure
for 3-player division later.

A division is super-envy-free if

Vi(Xj) <
1

n
for each j, 1 ≤ j ≤ n and j 6= i.

We then deduce that
n∑

j = 1
j 6= i

Vi(Xj) <
n− 1

n
, so Vi(Xi) >

1
n. It is

seen that super-envy-freeness gives Vi(Xi) >
1

n
> Vi(Xj), j 6= i, thus

implying super-proportionality and envy-freeness.
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3. An equitable division means each person’s subjective valuation
of the piece that he receives is the same as the other person’s
subjective valuation. Vi(Xi) = Vj(Xj) for all i and j. A more

stringent criterion is exactness, where Vi(Xi) = 1
n, for all i.

Equitability may not imply envyfreeness since the subjective valu-
ations of the players may differ. There is no guarantee that play-
er i’s value of other piece held by another player always observes
Vi(Xi) ≥ Vi(Xj), j 6= i.

Most envy free allocations (hence proportional) would not satisfy
the stringent equality constraint that equitability requires.
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• Even Vi(Xi) ≥ 1
n for all i, it is not guaranteed to observe Vi(Xi) =

Vj(Xj) for any i and j.

• It is still possible to have Vi(Xi) = Vj(Xj) for all pairs of i and j

while Vi(Xi) <
1
n, for all i.

15



16



Efficient allocation (Pareto optimal)

An allocation is efficient or Pareto optimal if there is no other allo-
cation that is strictly better for at least one player and as good for
all the others.

For example, a division where one player gets the whole set and
attaches value to any portion of the set is Pareto optimal. If any
portion is given to another player, then the value function of this
particular player on the reduced set will be lowered due to additivity
property. An efficient (in Pareto sense) allocation needs not be
proportional, envy-free or equitable.

Example of an allocation that is not Pareto optimal

Suppose player A places no value at all on a portion to which some
other player B attaches some value. Taking away that portion from
A would keep the same valuation value for the new allocation for
A but the new piece received by the other player B gives a higher
value for B. This allocation is not Pareto optimal since the new
allocation is strictly better for B while it is as good for A.
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1.2 Procedures for two-player and multi-player cake-cutting

• Based on the given fairness criterion, a fair division procedure
lists the actions to be performed by the players based on avail-
able set of items and their valuations. A valid procedure is one
that guarantees a fair division for every player who acts rationally
according to their valuations.

• A procedure is said to be finite if it always (independently of the
players’ valuation functions) terminates with a solution after
only a finite number of decisions has been made.

• Continuous procedures may involve one player moving a knife
along the side of a cake and some other players saying stop and
cutting the cake at the spot. The players are making decision
continuously.
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Operational properties

• Does the procedure guarantee that each agent receives a single
continguous slice (rather than the union of several pieces)? We
prefer continguous procedures, which also minimize the number
of cuts to be made. Note that a procedure for n players will
require at least n− 1 cuts.

• If the number of cuts is not minimal, can we provide an upper
bound on the number of cuts?

• Does the procedure require an active referee, or can all actions
be performed by the players themselves?
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Maximin criterion

Each player follows the strategy that maximizes the value of the
minimum size cake (maximin piece) that he can guarantee, regard-
less of what the other players do.

Risk aversion

Each player is risk averse in the sense that he will never choose a
strategy that may yield a more valuable piece of cake if it entails
the possibility of getting less than a maximin piece. The maximin
piece serves as the benchmark.

Strategy vulnerable

A procedure is said to be strategy vulnerable (player can game
around) if a maximin player can assuredly do better by misrepresent-
ing its value function. A procedure that is not strategy vulnerable
is strategy proof, resulting maximin players always play truthfully.
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Cake-cutting problems

“Cake-cutting” is the problem of fair division of a single divisible
and heterogeneous good between n players.

The cake is represented by the unit interval [0,1]:

Each agent i has a value function Vi defined for each subinterval of
[0,1].
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Two-agent discrete cut-and-choose procedure

One agent (chosen at random) cuts the cake in two pieces (she
considers to be of equal value based on her valuation), and the
other chooses one of them (the piece he prefers). The chooser
always takes the piece with higher or at least equal valuation. The
cutter is indifferent to the two pieces. Therefore, the procedure is
not equitable. However, it satisfies

• Envy-freeness: No agent will envy the other. Proportionality is
satisfied automatically in a two-player division.

• Even if the role of the cutter is determined by the flip of a coin, a
fair procedure not favoring either player, the cutter would think
that the chooser has a definite advantage. This is the failure of
equitability since 1/2 = Vcutter(Xcutter) ≤ Vchooser(Xchooser).

• If the cutter knows the valuation of the chooser, he may gen-
erally obtain more. Without the knowledge of the valuation of
the chooser, by risk aversion, the cutter always cuts the cake in
two equal pieces based on his personal valuation.
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• Pareto optimality is observed

We assume that the two value functions attach value to any
finite piece of the cake. For any allocation other than the two
halves (according to the cutter’s value function), we would like
to show that no other allocation achieves “at least as good for
all players and better for at least one player”.

Note that any new allocation would have one piece that is more
to the cutter while other piece is less to the cutter.

1. If the larger piece viewed by the cutter is taken by the chooser,
the cutter is worse off.

2. Suppose the smaller piece viewed by the cutter is chosen by
the chooser, though the cutter is better off but the chooser is
worse off. This is because this smaller piece has lower value
to the chooser when compared with the original equal half
piece (the smaller piece is a proper subset of the equal half
piece).
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Note that Pareto optimality may fail for the “equal halves allo-
cation” when we allow the cutter’s value function to attach zero
value to some portion of the cake. Based on the cutter’s equal
halves procedure, it may still be possible that the chooser can get a
more valuable piece while the cutter is indifferent. Under this very
specialized scenario, Pareto optimality may fail.

Recall φ(x) = V ([0, x]), which is a nondecreasing function of x.
When φ(x) is constant over [x1, x2], this means the player assigns
zero value to the interval [x1, x2]. When the value function attaches
value to any finite piece of the cake, then φ(x) is strictly increasing.
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Nonproportional cut-and-choose procedure for three players

Given: Cake X = [0,1] and players p1, p2, and p3 with valuation
functions v1, v2, and v3.

Step 1: p1 cuts X into three pieces of equal value, S1, S2, and S3,
i.e.,

V1(S1) = V1(S2) = V1(S3) =
1

3
.

Step 2: p2 chooses one of the three pieces that is most valuable
to her.

Step 3: p3 chooses one of the remaining two pieces.

Step 4: p1 receives the remaining piece.
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The procedure does not fulfill many fairness criteria.

• It is not proportional: Though players p1 and p3 each receive pro-
portional shares (p1 because he cuts the cake into three pieces of
equal value, and p2 because she is the first one to choose), player
p2 is not guaranteed to receive a proportional share, for example
not in the case when V3(S1) = 1/2 and V3(S2) = V3(S3) = 1/4
and player p2 happens to choose S1 in Step 2. In this case,
player p3 has the choice between two pieces both of which are
worth less than one third of the cake to her.

• Since it is nonproportional, so it is not envy-free.
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Proportional discrete cuts procedure for 3-player division

Can Agent 2 game around by always reporting 2 of the 3 pieces as
bid? This game around strategy is ruled out by risk aversion since
he may be worst off if Agent 1 takes his second largest piece (which
may have valuation above 1/3).
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• All valuations of the divisions are personal, which may differ
among the 3 players. It guarantees a proportional division of

the cake, where Vi(Xi) ≥
1

3
, i = 1,2,3. In the case where Agent

2 is the second chooser (scenario shown at the top of the flow
chart), he is guaranteed to receive a piece with value ≥ 1

3 since

he has valued two pieces with values ≥ 1
3.

• It is not envy-free. (i) Suppose Agent 2 passed, it may be
possible that Agent 2 may envy Agent 3 if Agent 3 may choose
the larger of the two pieces that Agent 2 considered acceptable.
(ii) In another case, the cut-and-choose played by Agent 2 and
3 may not be 50−50% in Agent 1’s own valuation. In this case,
there exists another piece received by Agent 2 or Agent 3 that
has player 1’s valuation higher than 1/3. This violates envy-free
division.

• The resulting pieces might not be continguous. As one example,
suppose both Agents 2 and 3 label the middle piece as “bad”
and Agent 1 takes it. One additional cut is required if the cut-
and-choose cut is different from Agent 1’s original cut.
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Proportional procedure with trimming for arbitrary n players
(Last Diminisher procedure)

One of the n players cuts a piece that she considers to be worth
exactly 1/n in her measure. All other players (still) in the game
then value this piece in turn according to their valuation functions.
If any of these players considers the piece to be super-proportional
(to be worth more than 1/n), this player trims the piece to exactly
1/n according to his measure before passing it on to the next player.

When the last player has evaluated this piece, it is given to the
player who was the last trimming it, or to the player who cut it in
the first place if no trimmings have been made. The player receiving
the piece leaves the game and the trimmings are reassembled with
the remainder of the cake. By assumption of additivity, the values
of the pieces are not lowered by the trimming operations.

The same procedure is then applied to the n− 1 remaining players
and the reassembled remainder of the cake. This process is repeated
until only two players remain who then apply the simple cut-and-
choose procedure.
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Given: Cake X = [0,1] and players p1, p2, . . . , pn, where pi has val-
uation function Vi, 1 ≤ i ≤ n.

Step 1: Player p1 cuts piece S1 such that V1(S1) = 1/n.

Step 2: The cut piece is passed successively to p2, p3, . . . , pn, each
of whom trims the piece as appropriate. In more detail,
let Si−1, 2 ≤ i ≤ n, be the piece player pi−1 passes on
to pi.

• If Vi(Si−1) > 1/n, player pi trims piece Si−1 and passes on the
trimmed piece Si where Vi(Si) = 1/n.

• If Vi(Si−1) ≤ 1/n, player pi passes on the untrimmed piece Si =
Si−1.
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The last player that either cut or trimmed this piece receives Sn and
drops out.

Step 3: Reassemble the remainings X − Sn of the cake and
rename the remaining players to be p1, p2, . . . , pn−1.

Step 4: Repeat Steps 1 to 3 until n = 2. The remaining two
players, p1 and p2, apply the cut-and-choose procedure.
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The preferences of the four players will be given using the box
representation and the players will take their turn in alphabetical
order. The valuation functions of the players are represented using
20 boxes each.

In the first round, Belle cuts a slice of the pizza that she values
exactly 1/4. This is represented by the five light gray boxes in the
first two columns of Belle’s box representation. She then passes the
slice on to Chris who values it to be 7/20 > 1/4. Thus, Chris trims
the slice to exactly 1/4 according to his measure and passes on the
trimmed slice (the five dark gray boxes in the first column of Chris’
box representation) to David.

Since David values the trimmed slice only 3/20 < 1/4 according to
his measure, he passes the slice on as it is (without trimming it).
Edgar is the last one to evaluate the trimmed slice and considers it
to be worth 2/20 < 1/4.

As Chris is the last one trimming the slice, he is the one receiving
it and drops out.
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First round

We represent the portion a player is receiving by dark gray boxes.
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Summary

1. In the first round, we observe Sn ⊆ Sn−1 ⊆ · · · ⊆ S1 due to
potential trimming of the piece when passing between successive

payers, and Sn =
1

n
to the one who receives the final piece.

2. The same procedure is repeated with the remainder part ≥
n− 1

n
to every one staying behind in the division game.

3. Repeating the procedure until down to 2 players, which is then
finally settled by the cut-and-choose procedure.

Proportionality is guaranteed since every player receives a piece that
he thinks to be of size at least 1/n. Equitability is not under con-
sideration in this procedure.
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By risk aversion, for i = 2,3, . . . , n − 1, player i will not pass Si−1

without trimming when Vi(Si−1) >
1

n
since the piece may be received

by another player. The last player n may game around by trimming

only a small piece ε when Vn(Sn−1) >
1

n
. As a result, he will receive

the trimmed piece with value larger than 1/n.

Luckily, this does not violate proportionality. The last trimmed piece
has value less than 1/n for all earlier n− 1 players.

As a remark, if we assume that the nth player is not being informed
to be the last player, then the above strategy based on risk aversion
remains valid.

Failure of envy-freeness

None of the players already dropped out is involved in any way in the
assignment of future portions. Players already dropped out cannot
raise an objection if they consider any of the future pieces to be
worth more than 1/n.
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Envy-free discrete cuts procedure for 3-player division

Initialization:

1. Agent 1 divides the cake into three equally-valued pieces X1, X2, X3 :
V1(X1) = V1(X2) = V1(X3) = 1/3.

2. Agent 2 trims the most valuable piece according to V2 to create
a tie for most valuable. For example, if V2(X1) > V2(X2) ≥
V2(X3), agent 2 removes X ′ ⊆ X1 such that V2(X1\X ′) =
V2(X2). We call the three pieces – one of which is trimmed
– cake 1 (X1\X ′, X2, X3 in the example), and we call the trim-
mings cake 2 (X ′ in the example).

Remark If V2(X1) = V2(X2) ≥ V2(X3), then X ′ = φ.
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Exact division for Agent 1

V1(X1) = V1(X2) = V1(X3) =
1

3

V2(X1) > V2(X2) ≥ V2(X3)

Trim X ′ from X1 so that V2(X1\X ′) = V2(X2) ≥ V2(X3)

Cake 1 X1\X ′, X2, X3

Cake 2 X ′
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Division of cake 1:

Agent 3 chooses first from one of the three pieces of cake 1.

• If Agent 3 chose X1\X ′, then Agent 2 chooses X2. Otherwise,
Agent 2 receives X1\X ′.

Between Agents 2 and 3, we call them T and T according to

Agent T – takes X1\X ′; Agent T – the other person.

Agent 1 receives the remaining piece of cake 1 (always an untrimmed
piece) since X1\X ′ is guaranteed to be received by either Agent 2
or Agent 3.

Division of cake 2:

Agent T divides cake 2 into three equally-valued pieces.

Agents T,1 and T select a piece of cake 2 each, in that order. Agent
T definitely gets less than X1, so she will not be envied by Agent 1.
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Proof of envy-freeness

• The division of cake 1 is clearly envy free: Agent 3 chooses first;
agent 2 receives one of the two pieces that she views as tied
for largest; and agent 1 definitely receives an untrimmed piece,
which he also views as tied for largest.

• Now consider the division of cake 2. Agent T (who received the
trimmed piece) chooses first, and agent T is indifferent between
the three pieces. Agent 1 will never envy the combined pieces
received by T (even if T received all of cake 2). Note the clever
assignment of T to do the cutting of cake 2 and T to choose
first is aimed to avoid the potential envy of agent 1 against
the combined piece received by agent T . This is because the
combined piece received by T is less than X1. Obviously, T

would not envy T and Agent 1 since T does the cutting into
3 equal pieces according to his valuation, though he is the last
one to choose.

• Combining envy-free divisions of the two disjoint pieces of cake
yields an envy-free division of the combined cake. Hence, agents
T and T are not envious overall.
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Continuous moving knife procedures

1. Single-knife procedure: proportional but not envy-free

Suppose there are three kids who are to split the cake. One
strategy is for Mom (referee) to place a knife over one corner of
the cake and begin to move it slowly across the cake. When any
of the kids says “stop”, that kid (K1 let’s say) gets the piece.
Presumably K1 thinks she got 1

3 of her valuation and K2 and

K3 (who did not speak up) believe that remainder is at least 2
3.

By risk aversion, K1 should be refrained from saying “stop” too
late. This is because she runs into the risk of not being able to
achieve 1/3 with the remaining portion with valuation less than
2/3 when K2 or K3 initiates the first call of “stop”.
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Mom keeps on moving the knife, until K2 says “stop”. K2 calls
before K3 when the knife hits K2’s valuation of 1/2 of the remaining
cake earlier than K3. Lucky for both K2 and K3, they are likely to
receive more than 1

3 of their valuations.

The division is seen to be proportional where every player envisions
to receive at least 1/3. Envy may exist since K1 might think the
piece received by K3 or K2 has a value more than 1

3.
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Extension to n players

Given: Cake X = [0,1] and players p1, p2, . . . , pn with continuous
valuation functions.

Step 1:

• A knife is being held above the cake and is moved gradually and
continuously from the left to the right until any of the players
calls “Stop!” because she considers the piece of cake to the left
of the knife to be worth 1/n.

• In the case that several players call “Stop!” at the same time,
a random tie-breaker is applied (for the sake of simplicity, we
assume the outcome to be in favor of player pi, where i is the
smallest index among all players calling “Stop!”).
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• The knife cuts the cake at the current position.

• The player who called “Stop!” receives the left piece of the
cake and drops out.

Step 2,3, . . . , n − 1: Repeat Step 1 for all remaining players and
the remaining cake.

Step n: The last remaining player receives the remaining cake.
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2. Austin’s two-knife procedure: equitable (exact) division for
two players (Vi(Xi) = 1/2, for all i)

There is a single knife that moves slowly across the cake from
the left edge toward the right edge, until one of the players (say,
player 1) calls “stop” (at the point when the piece so determined
is of value exactly 1/2). Note that φ(x) = V ([0, x]) starts at zero
value at x = 0 and equals one at x = 1. There exists x∗ such
that φ(x∗) = 1/2.
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At this time, a second knife is placed at the left edge of the cake.
Player 1 then moves both knives across the cake in parallel fashion
(in such a way that the piece between the two knives remains to
have value exactly 1/2 in player 1’s measure).

When the knife on the right arrives at the right-hand edge of the
cake, the left-hand knife lines up with the position that the first
knife was in at the moment when player 1 first called “stop”. Let
the position of the left and right knife to be x1 and x2, respectively.
Suppose Player 1 shouts at x∗, then V1([0, x∗]) = 1

2 = V1([x∗,1]).

While the two knives are moving, player 2 can call “stop” at any
time (which he does precisely when the value of the piece between
the two knives is exactly 1/2 in his measure).

Player 1 divides the cake into exactly one half to his valuation within
the two knives at all times. Player 2 waits for a particular subinterval
between the two knives that is exactly one half. The piece between
the two knives has valuation equals 1

2 for both players (same for the
remaining piece of the cake).
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The mover (Player 1) always maintains V1([x1, x2]) = 1/2.

Note that x1 can be determined as a function of x2 via V1([x1, x2]) =
1/2 (see the above plot). Hence, V2([x1, x2]) can be visualized to
have continuous dependence on x2. We may write it as V2([g(x2), x2]).
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How can one guarantee that there will be a point where player 2
thinks the piece between the knives is of value exactly 1/2?

When the two knives start to move, x2 = x∗, V2([0, x∗]) < 1/2 since
player 2 does not initiate “stop”. Now, x2 increases from x∗ to 1
while keeping V1([x1, x2]) = 1/2. With x2 = 1, we have

1− V2([0, x∗]) = V2([x∗,1]) > 1/2.

Note that V2([g(x∗), x∗]) < 1/2 while V2([g(1),1]) > 1/2. By the
Intermediate Value Theorem, we deduce that there exists x̂ ∈ (x∗,1)
such that

V2([g(x̂), x̂]) = 1/2.
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Gaming around

If one player is assigned to receive the piece between the knives, then
she can game around the procedure by delaying the call to stop and
waiting for the other player to call first. The piece between the two
knives has evaluation higher than 1/2 since the point of evaluation
of 1/2 has passed. By risk aversion, the player calls “stop” right
after the two parallel knives start moving since there exists possibility
that the piece between the knives stays lower in valuation in all later
moments.

To avoid gaming around by delaying the “stop” call, the piece to be
received by either player is based on the throw of a fair coin after
the cutting has been done.
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Equitable division among two players into more than two
pieces

Two players cut cake into k pieces, k is any integer ≥ 2. Each piece
is valued at 1

k by both players.

Firstly, the two partners obtain a single piece of cake that both
of them value as exactly 1

k, for any integer k ≥ 2. We call this

procedure Cut2(1
k).

As the starting procedure, Alice makes k − 1 parallel marks on the
cake such that k pieces so determined have a value of exactly 1

k.

• If there is a piece that George also values as 1
k, then we are

done.

• Otherwise, there must be a piece that George values as less
than 1

k, and an adjacent piece that George values as more than
1
k. It is not possible to have all adjacent pairs to be more than
1
k or less than 1

k.
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• Let Alice place two knives on the two marks of one of these
pieces, and move them in parallel, keeping the value between
them at exactly 1

k, until they meet the marks of the other piece.
There must be a point at which George agrees that the value
between the knives is exactly 1

k.

• Use Cut2(1
k) to cut a piece which is worth exactly 1

k for both
partners.

• The remaining reassembled cake is worth exactly k−1
k for both

partners; use Cut2( 1
k−1) to cut another piece worth exactly 1

k−1

of the remaining cake, or 1
k of the original cake for both partners.

• Continue the procedure until there are k pieces.

By recursively applying Cut2, the two partners can divide the entire
cake to k pieces, each of which is worth exactly 1

k for both of them.
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Extension to n players

It is possible to divide a cake to n players, such that each player
receives a piece worth exactly 1

n for him.

3-player case

• Player #1 and #2 use Cut2(1
2) to give each one of them a piece

worth exactly 1
2 for them. The two separate pieces received by

one of the players are now put together as single piece.

• Player #3 uses Cut2(1
3) with player #1 to get exactly 1

3 of player

#1’s share and then Cut2(1
3) with player #2 to get exactly 1

3 of

player #2’s share. Player #1 remains with exactly 1
3; the same

is true for player #2. As for player #3, he gets exactly 1
3 of

the entire cake since he gets 1/3 of the two pieces that have
combined value of one.

#1 #3 #3 #2
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Envy-free moving-knife procedure for three players

1. Webb’s procedure (combined with Austin’s procedure)

Step 1: A referee slowly moves a knife across the cake until some-
one yells “Cut!” to indicate that she values the piece to
be cut off at one-third of the cake. Suppose that Annie
is the one who yells “cut”, and let P1 represent the piece
of cake that is cut off.

Step 2: Annie and Ben (chosen based on the throw of a fair coin
among Ben and Chris) now use Austin’s procedure to
divide the remaining cake into two pieces that they both
consider equally valuable. Let P2 and P3 denote these
two pieces.

1/3 to Annie equitable division between
upon her shout Annie and Ben by Austin’s procedure

Step 3: Chris chooses first from the three pieces P1, P2, and P3.
Ben chooses next, and Annie chooses last.
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Envy freeness (3 cuts for 3 players)

Chris envies no one since he gets to choose first. Since Annie yelled
“cut” the first time, she believes that P1 is exactly one-third of the
cake. She thinks that P2 and P3 are equally valuable and together
are worth two-thirds of the cake, so she thinks P2 and P3 are each
exactly one-third of the cake as well. Since she considers each of
the three pieces to be equally valuable, she envies no one.

Finally, Ben considers P1 to be less than one-third the cake since
he was not the one to yell “cut”. So he thinks P2 and P3 together
make up more than two-thirds of the cake. So Ben values P2 and
P3 equally, and strictly more than P1. Since Ben chooses second,
at least one of P2 and P3 will be available, so he envies no one.

• If Annie delays her shout, then she may receive a piece less than
1/3 of her valuation. Imagine that she may be the second person
to choose and the largest piece has been taken. She can choose
among the two equal pieces with valuation less than 1/3.
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2. Stromquist’s procedure with only two cuts

It requires only two cuts, the minimum for three pieces. There is
no natural generalization to more than three players which divides
the cake without extra cuts. For example, 11 cuts are required for
4-player envy free moving knife procedure.

The resulting partition is not necessarily efficient. For example, it
cannot produce the efficient allocation of cutting a cake when the
vanilla strips are on the two edges, while the chocolate strip and
banana strip are in the middle. Suppose Alice only favors chocolate,
Ben only favors banana and Chris favors only vanilla. The allocation
that allocates the parts according to the sole flavor is the only
efficient allocation since players’ valuations of all other allocations
can always be improved by choosing this efficient allocation, where
Vi(Xi) = 1, i = 1,2,3. However, this efficient allocation cannot be
achieved by this 3-player moving knife procedure with 2 cuts.

vanilla banana chocolate vanilla

54



The sword and 3 knives move simultaneously.

• A referee moves a sword from left to right over the cake in a
continuous manner, dividing it into a small left piece and a large
right piece.

• Each player moves his knife continuously that cuts the right por-
tion (right to the sword) into halves according to his valuation.

• When any player shouts “cut”, the cake is cut by the sword and
by whichever of the players’ knives happens to be the central
one of the three knives (that is, the second in order from the
sword).

55



The cake is divided in the following manner:

• The piece to the left of the sword, which we denote Left, is
given to the player who first shouted “cut”. We call this player
the “shouter” and the other two players the “quieters”.

• The piece between the sword and the central knife, which we
denote Middle, is given to one of the remaining players whose
knife is closest to the sword. The remaining piece, Right, is
given to the third player.

Summary

The shouter always receives the LEFT piece.

(i) Suppose A shouts, then B receives Middle and C receives Right.

(ii) Suppose B shouts, then A receives Middle and C receives Right.

(iii) Suppose C shouts, then A receives Middle and B receives Right.
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Strategy to ensure envyfreeness

Each player can act according to his own measure that guaran-
tees no other player receives more than him based on his personal
valuation. Precisely, this is envyfreeness.

• Always hold your knife such that it divides the part to the right
of the sword to two pieces that are equal in your eyes (hence,
your knife initially divides the entire cake to two equal parts and
then moves rightwards as the sword moves rightwards).

• Shout “cut” when Left becomes equal to the piece you are about
to receive if you remain quiet. That is, if your knife is leftmost,
shout “cut” if Left = Middle; if your knife is rightmost, shout
if Left = Right; if your knife is central, shout “cut” if Left =
Middle = Right.
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Gaming around

If the player does not shout according to the above strategy, she
may receive a smaller piece with certain probability though delaying
shout might yield a larger piece.

Take A as an example, if the sword has passed the point where Left
= Middle, A may be forced to take Middle (smaller than Left due
to delayed shout) when someone shouts subsequently. Based on
the “risk averse” assumption of the players, the players should play
honestly.

On the other hand, A will not shout too early (prior to Left =
Middle) since A can wait to receive larger piece of Left. For ex-

ample, A should remain not to shout even at VA(Left) =
1

3
since

VA(Middle) >
1

3
(since A’s knife position is still within the Middle

piece).
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How about A games around by choosing not to cut the portion on
the right of the sword into equal halves? Suppose A now becomes
the rightmost player by this gaming strategy, he will receive RIGHT
upon someone’s shout. However, VA(RIGHT) < VA(MIDDLE) since
he places higher valuation on the MIDDLE as A’s truthful knife
position should be more to the left.

Proof of envy-free share

First, consider the two quieters. Each of them receives a piece that
contains his knife, so they do not envy each other. Additionally,
since they remained quiet, the piece they receive is larger in their
eyes then Left, so they also do not envy the shouter.

The shouter receives Left, which is equal to the piece he could
receive by remaining silent and larger than the third piece. For
example, suppose A is the shouter, then LEFT (piece received) =
MIDDLE (piece to be received if remains silent) > RIGHT (third
piece). Hence, the shouter does not envy any of the quieters.
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3-person chore (dirty work) division procedure (each getting
as little as possible of the share)

Step 1. Divide the chores into three portions using any 3-person envy-
free cake-division procedure (that guarantees players a piece
they think is the largest), such as the Stromquist moving-knife
procedure. Now label each portion by the name of the player
to whom the cake-division procedure would assign that portion
(this player believes that portion is the largest).

Step 2. Arrange players i and j to divide portion I into 2 pieces. This
can be achieved via Austin’s procedure: letting player i and one
other player, say j, agree on a 50-50 split, let the remaining
player k choose the half she thinks is smallest, and give the
other half to j.

Step 3. Repeat Step 2 for each player, then end the procedure.
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This procedure requires at most 8 cuts (Step 1 uses 2 cuts, and
Austin’s procedure uses at most 2 cuts each time it is applied).

Player i participates in cutting portions I and K.

• i and j cut portion I so that both portions are 50-50 to both
i and j; k picks the one that is smaller or equal, the remaining
portion I goes to j.

• k and i cut portion K so that both portions are 50-50 to both
k and j; j picks the one that is smaller or equal, the remaining
portion K goes to i.
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Proof of envy-freeness

Consider i, the pieces labelled J and K are smaller or equal to
the piece labelled I. He receives portions of pieces from J and K,
avoiding I (the piece that he considers to be the largest).

Observe the careful design of the cutters and orders of choosing the
pieces:

• For K, i is the late chooser but i serves as the cutter. There is
no harm to serve as the second chooser.

• For J, though i does not serve as the cutter, i is the first chooser.

• For I, i serves as the cutter to ensure that both pieces are larger
than (or at least equal) the two pieces received by i.
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(i) i does not envy j

We compare the two portions of pieces received by i and j.
For piece K, though j receives the portion earlier than i, i does
not envy since i does the cutting into equal halves to his own
valuation.
For piece I, j receives 50% of I to i’s valuation. Also, i chooses
the smaller or equal portion from piece J, and piece J is smaller
or equal to piece I.

(ii) i does not envy k

For piece J, i receives smaller or equal portion compared to that
of k.
For portion of piece I received by k, that portion is larger or
equal to that portion of K received by i.

63



1.3 Adjusted winner procedure for two-player allocation of
discrete goods

The adjusted winner procedure is a method of dispute resolution
(division of indivisible/discrete goods) for two players that guarantee
an outcome that is envy-free, equitable and efficient.

Suppose that Annie and Ben are getting divorced. Each player has
100 points to distribute over all the items according to which they
value most. Annie and Ben’s point distribution are below.

Annie Item Ben
35 House 15
20 Investments 25
10 Piano 25
5 TV 15
25 Dog 10
5 Car 10

100 Total 100
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Criteria of a good division procedure

• Fairness, like observing equitability, efficiency and envy-freeness

• Difficulty of manipulating a procedure that produces a division
(providing intrinsic incentive to be truthful about one’s evalua-
tions of item values)

Two-stage division

During the first stage, each item is initially awarded to the person
who values it most. So Annie receives the house and the dog, and
Ben receives the investment account, baby grand piano, plasma TV,
and the car. At this point, Annie has 60 points, and Ben has 75
points. Since Ben has more points, we say that Ben is the initial
winner.

• In case there is a tied (equal point) item, the tied item is given
to whomever has fewer points at the time.
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Ben is the initial winner, some items are taken away from Ben to
Annie

The next stage is the equitability adjustment. We need to transfer
items, or fractions thereof, from Ben to Annie until the point totals
of each are equal and the allocation is thus equitable. To determine
the order, for each of Ben’s items, we consider the ratio of the
points assigned by Ben to the item to the points assigned by Annie
to the item. Note that each of these ratios will be at least 1, since
Ben received the items to which he had assigned more points.

The ratios for each of Ben’s items are as follows:

Investment :
25

20
= 1.25

Piano :
25

10
= 2.5

TV :
15

5
= 3

Car :
10

5
= 2
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How to achieve Pareto efficiency?

The taking away of items (whole or partial) from the initial win-
ner starts with the item for which the ratio above is the smallest,
then the next smallest, and so on. Intuitively, this is the sensible
way to achieve Pareto efficiency since the “cost” to Ben per point
transferred to Annie is smallest.

For example, transferring the TV requires lowering Ben’s point total
by 3 points for every 1 point transferred to Annie, while transferring
the car would only lower Ben’s point total by 2 for every 1 point
transferred to Annie.
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We start with the ratio for the Investment, since it has the smallest
ratio. If we were to transfer the entire Investment to Annie, then
Annie would have more points than Ben.

Let x be the fraction of the Investment transferred from Ben to
Annie, so that 1 − x is the fraction retained by Ben. After the
transfer, Annie will have 60 points (from the house and dog) plus
20x (her portion of the investments), while Ben will have 50 points
(from the piano, TV, and car) plus 25(1 − x) (his portion of the
investments).

To guarantee that the resulting point totals are equal, we need to
ensure that 60 + 20x = 75 − 25x. Solving the equation, we obtain
x = 1

3.

Annie receives the house, the dog, and one-third of the investment
portfolio, while Ben keeps the piano, TV, car and two-thirds of the
investments.

Each person walks away with an impressive total of 662
3 points, well

over half the total value.
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How to split indivisible goods?

If we had needed to split the piano, it certainly would not be simple
since a third of a piano is not very valuable to anyone!

Together, then Annie and Ben might decide to sell the piano and
split the profits according to the prescribed proportions. Or if Ben
receives the larger share, he may choose to own the whole piano by
buying out Annie’s share (challenge: how to set the price if it is not
in the market).

• If after the whole portion of an item is transferred, the initial
winner still has the larger point total, then the next item is
transferred. The procedure terminates until transferring an item
results in equal point total.

• The procedure can be easily modified in the case of unequal
entitlements, for instance if a prenuptial agreement indicated
that the shared property be divided 60%-40%.
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Summary of the Adjusted Winner procedure

Suppose that Ann and Bob are each given 100 points to distribute
among n goods as he/she sees fit. In other words, Ann and Bob
each select a valuation, α = (A1, . . . , An) and β = (B1, . . . , Bn),
respectively. For convenience rename the goods so that

A1/B1 ≥ A2/B2 ≥ · · ·Ar/Br ≥ 1 > Ar+1/Br+1 ≥ · · ·An/Bn.

Let α/β be the above vector of real numbers (after renaming of the
goods). Notice that this renaming of the goods ensures that Ann,
based on her valuation α, values the goods G1, . . . , Gr at least as
much as Bob; and Bob, based on his valuation β, values the goods
Gr+1, . . . , Gn more than Ann does.
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The Adjusted Winner algorithm proceeds as follows:

1. Give all the goods G1, . . . , Gr to Ann and Gr+1, . . . , Gn to Bob.
Let X, Y be the number of points received by Ann and Bob
respectively. Assume for simplicity that X ≥ Y .

2. If X = Y , then stop. Otherwise, transfer a portion of Gr from
Ann to Bob which makes X = Y . If equitability is not achieved
even with all of Gr going to Bob, transfer Gr−1, Gr−2, . . . , G1 in
that order to Bob until equitability is achieved.
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Israeli-Palestinian conflict in the Middle East

Five major issues to be negotiated:

1. West Bank: Several areas of the West bank are inhabited by
Israelis who have no desire to leave their homes. The Palestini-
ans, however, believe that these settlements are illegal, and that
the Israelis should evacuate.

2. East Jerusalem: In 1967, Israel unified control over all the
Jerusalem by defeating Jordanian forces in the Six Days War.
A majority of the residents of east Jerusalem are Palestinian,
however, and both Israelis and Palestinians argue that East
Jerusalem is central to their sovereignty.
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3. Palestinian Refugees: Israel has refused to recognize that its
establishment and expansion in 1948 and 1967 displace Pales-
tinian villages and communities. The Palestinians insist that
Israel recognizes the refugees “right to return” to Israel, and
provides compensation for the refugees and to Arab states that
have hosted the refugees.

4. Palestinian Sovereignty : Israel does not recognize Palestine as
a sovereign nation.

5. Security : Some Israelis fear that terrorism would flourish under
a Palestinian state that lacks the means to effectively fight ter-
rorism. Specific security issues include: border control, control
of airspace, security in Jerusalem, and “early warning stations”
in the West Bank and Gaza.
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Point allocation

By examining the expert opinions and interim agreements, we arrive
at the following reasonable estimates of possible point allocations
by each side.

Israel Item Palestine

22 West Bank 21
25 East Jerusalem 23
12 Palestinian Refugees 18
15 Palestinian Sovereignty 24
26 Security 14

100 Total 100
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In the first stage of the adjusted winner procedure, Israel wins the is-
sues of the West Bank, East Jerusalem and security, while Palestine
wins the issues of refugees and sovereignty.

After the first stage, Israel has 73 points and Palestine has 42 points.
Since Israel is the initial winner, then we look at the ratios of points
for the issues won by Israel:

West Bank :
22

21

East Jerusalem :
25

23

Security :
26

14

The equitability adjustment begins with the West Bank since 22
21 <

25
23 <

26
14. Not the whole West Bank will be transferred since transfer-

ring the entire West Bank would give the Palestinians more points
than the Israelis.
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To determine the percentage x of the West Bank retained by Israel,
we solve for x in the following equation:

51 + 22x = 42 + 21(1− x) = 63− 21x

43x = 12

x =
12

43
≈

2

7
.

The Israelis are left with the issues of East Jerusalem, security, and
roughly 2

7 of the issue of the West Bank. The Palestinians are left

with the issues of refugees, sovereignty, and roughly 5
7 of the issue

of the West Bank.

Remark The division of land is easier though different parts of
the land may have different individual valuations. The division of
sovereignty would require political interpretation of varying degrees
of autonomy.
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Equitability, efficiency and envy-freeness

Equitability : The procedure is equitable by design. The procedure
ends when the point totals of each party are equal.

Efficiency (in Pareto sense): There exist no other allocations that
give higher point to one player and at least as good for the oth-
er player when compared to the allocations based on the adjusted
winner procedure.

Envy-freeness: This property follows from the other two when ex-
actly two parties are involved.

Since this is a two-player allocation, we have envyfreeness ⇔ pro-
portionality. It is highly desirable to observe that all of the four
fairness criteria are met in the adjusted winner procedure.

We prove efficiency later. The next key result:

equitability + efficiency⇒ envyfreeness.
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Proof of envy-freeness

We prove by contradiction. Suppose that the allocation is equitable
and efficient, but not envy-free. Since envy-freeness and proportion-
ality are equivalent for two players, by virtue of failure of proportion-
ality, it must be the case that at least one of the players received
less than half according to his own valuation. The assumption of
equitability implies that both players received less than half.

This allocation is not Pareto efficient because we can find another
division in which both players do better: give each player’s share to
the other player (swapping the allocation). If each player originally
received x points, where x < 50, then now each receives 100−x > 50
points, so this allocation is strictly better for both players involved,
contradicting efficiency of the original allocation.
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Pareto efficiency in the adjusted winner procedure

Parties: Annie and Ben.
Items: G1, ..., Gn to be divided between Annie and Ben.

In the first stage of the adjusted winner procedure, every item is first
given to the person who values it most. Items are then transferred
from the initial winner to the other player until both have an equal
number of points.

The proof of efficiency hinges on the order in which the items are
transferred: the transfer begins with the item with the smallest
ratio of points given by the initial winner to points given by the
other player. In this way, we minimize the effective cost to the
initial winner for all points transferred to the other player.

Ai = points allocated by Annie for Gi
Bi = points allocated by Ben for Gi
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Lemma 1

Suppose that we have an allocation of the items in which

(i) Annie values item Gi at least as much as Ben does: Ai ≥ Bi;

(ii) Ben values item Gj at least as much as Annie does: Bj ≥ Aj.

Suppose that Annie trades her portion of Gi for Ben’s portion of
Gj.

If this trade is strictly better for one player, then it is strictly worse
for the other. That is, Pareto improvement of allocation is NOT
possible.
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Proof

Recall that Ai ≥ Bi and Bj ≥ Aj. During the trade, Annie gives
away a total of aiAi points, and gains a total of bjAj points. If the
trade is strictly better for Annie, then

bjAj > aiAi. (1)

We compare Ben’s points before or after trade, where

Ben′s points after trade − Ben′s point before trade

= aiBi − bjBj
≤ aiAi − bjAj since Bj ≥ Aj and Bi ≤ Ai
< 0 by virtue of (1),

so Ben is strictly worse off after the trade.

Similarly, if the trade is strictly better for Ben, then it is strictly
worse for Annie.

It is not surprising that the trade cannot achieve one player strictly
better and the other player at least as good since both players give
away portions of goods that worth more to the donor than the
receiver.
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Lemma 2

Suppose that we have transfer of portion of a pair of items that

observe
Aj
Bj
≤ Ai

Bi
. If Annie trades her portion of Gi for Ben’s portion

of Gj, and this trade is strictly better for one player, then the trade
is strictly worse for the other.

Proof
If the trade is better for Annie, then bjAj > aiAi. Since

Aj
Bj
≤ Ai

Bi
,

then AjBi ≤ AiBj. Now, consider

Ben′s points after trade − Ben′s point before trade

= aiBi − bjBj

< Bi

(
bjAj

Ai

)
− bjBj since bjAj > aiAi

= bj

(
BiAj −BjAi

Ai

)
≤ 0 since AjBi ≤ AiBj,

so Ben is strictly worse off after the trade.
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If the trade strictly benefits Ben, it follows that aiBi > bjBj. We
then have

Annie′s points after trade − Annie′s point before trade

= bjAj − aiAi

< bjAj −Ai

(
bjBj

Bi

)
since aiBi > bjBj

= bj

(
AjBi −AiBj

Bi

)
≤ 0 since AjBi ≤ AiBj,

so Annie is strictly worse off after the trade.

Remark

Note that Ai ≥ Bi and Bj ≥ Aj ⇒
Aj

Bj
≤
Ai
Bi

. Lemma 2 uses the less

stringent condition and arrives at the same result that if the trade
is strictly better off for one player, then it is strictly worse for the
other.
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Lemma 3

If a given allocation is not efficient, then there exist single item
goods Gi and Gj and some portions thereof such that if Annie
exchanges her fraction ai of Gi for Ben’s fraction bj of Gj, the
resulting trade yields an allocation that is at least as good for both
players and strictly better for at least one of the players.

Proof

Since the given allocation is not efficient, there exist disjoint sets
S and T of goods belonging to Annie and Ben, respectively, such
that an exchange of S and T makes Annie better off without hurting
Ben. We start with

S �
Ben

T and T �
Annie

S.

The key in the proof of Lemma 3 is to show that S and T can each
be taken to be a fraction of a single item.
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Assumption of weak additivity of preferences: If A and B are dis-
joints sets of goods, and the player values A at least as much as
some set X of goods and B at least as much as some set Y of
goods, then she must value A ∪ B at least as much as X ∪ Y . In
other words, given A � X and B � Y , then A ∪B � X ∪ Y .

Write S = S1 ∪ ... ∪ Sn, where Si’s are pairwise disjoint, and Si is a
fraction αi of a single item, where 0 ≤ αi ≤ 1. Ben can now break
up T into a disjoint union T = T1∪ ...∪Tn (not necessarily subsets of
a single item) such that an exchange of Si for Ti yields an allocation
that is no worse for him than the current allocation. This is always
possible since goods are assigned with known values. That is, Ben
splits T into T1, T2, . . . , Tn such that

Si �
Ben

Ti, i = 1,2, . . . , n.

Remark: Each Si is single item but Ti is not.
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Starting from
S �

Ben
T and T �

Annie
S,

then perform the division:

S = S1 ∪ . . . ∪ S5 T = T1 ∪ . . . ∪ T5

Si is a fraction αi of Si �
Ben

Ti, i = 1,2, . . . ,5

single item i, i = 1,2, . . . ,5. Ti is not a fraction of single item
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Recall a simpler algebraic result. Suppose we have

x1 + x2 + · · ·+ xn > y1 + y2 + · · ·+ yn,

then there exists at least one i such that xi > yi.

In the current context, for a given i, there is no guarantee that
Ti �

Annie
Si. The next step in the proof is to show that there exists

at least one i such that Ti �
Annie

Si.

Assume contrary, suppose Si �
Annie

Ti for all i, by the weak additivity

of preferences, then the existing allocation is at least as good for
Annie as the one obtained by exchanging S1 ∪ ...∪ Sn = S for T∪...∪
Tn = T , contradicting the assumption that an exchange of S and T

makes Annie better off without hurting Ben.

Relabeling if necessary, suppose that Annie prefers the allocation
obtained by exchanging S1 for T1 to the existing allocation. Now
S1 consists of some portion of a single good, but T1 may consist of
portions of several goods.
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Division of T1 into a disjoint union

Now T1 �
Annie

S1, then Annie splits S1 such that T1j �
Annie

S1j, j =

2,3, . . . ,m, where T1 = T12 ∪ . . . ∪ T1m and S1 = S12 ∪ . . . ∪ S1m,
m ≤ n, and T1j is some portion of the single jth good. Recall that
S12, . . . , S1m belong to the same item S1, while T1j is portion of the

jth item.

Though T1j �
Annie

S1j, j = 2,3, . . . ,m, there is no guarantee that

S1j �
Ben

T1j for given j. However, it is not possible to have S1j ≺
Ben

T1j

for all j. If so, this would give S1 ≺
Ben

T1 by weak additivity, a

contradiction to the earlier result (see p.85). Therefore, there exists
j∗ such that S1j∗ �

Ben
T1j∗. Note that each S1j∗ and T1j∗ is coming

from single item, where S1j∗ comes from item 1 and T1j∗ comes
from item j∗, j∗ 6= 1. Since S and T are disjoint, when S contains
a fraction of the first item, T does not contain any fraction of the
first item.
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In conclusion, we have found S1j∗ and T1j∗, each is a portion of a
single item for which an exchange of S1j∗ for T1j∗ yields an allocation
that is strictly better for Annie and no worse for Ben than the
existing allocation.

Split S1 into S1 = S12 ∪ . . . ∪ S15 Split T1 into T1 = T12 ∪ . . . ∪ T15

such that T1j �
Annie

S1j, j = 2, . . . ,5. where T1j is a fraction βj of

There exists j∗ such that S1j∗ �
Ben

T1j∗. single item j, 0 ≤ βj ≤ 1,

j = 2, . . . ,5. T1 does not

contain any fraction of G1.
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Summary

Starting from S �
Ben

T and T �
Annie

S, where S and T generally

involve multiple items. We would like to achieve S1j∗ �
Ben

T1j∗ and

T1j∗ �
Annie

S1j∗, where each S1j∗ and T1j∗ is a fraction of distinct

single item.

1. Split S such that S = S1∪ · · · ∪Sn, where Si is a fraction of item
i (single), i = 1,2, . . . , n. Ben cuts T into T = T1 ∪ · · · ∪ Tn such
that Si �

Ben
Ti for all i.

By weak additivity, we can show that there exists some i such
that Ti �

Annie
Si. For notional convenience, write these particular

Si and Ti as S1 and T1, respectively.
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2. Split T1 such that T1 = T12∪T13 · · ·∪T1n, where T1j is a fraction
of single item, j = 2,3, . . . , n. Note that T1 does not contain
any fraction of item 1 since S and T are disjoint sets.

Annie cuts S1 into S1 = S12 ∪ · · · ∪ S1n such that T1j �
Annie

S1j,

j = 2,3, . . . , n. Again, by weak additivity, we can show that there
exists j∗ such that S1j∗ �

Ben
T1j∗ while T1j∗ �

Annie
S1j∗, j

∗ 6= 1.

We have found S1j∗ and T1j∗, each consisting of a portion of a single
item for which an exchange of S1j∗ for T1j∗ yields an allocation that
is strictly better for Annie and no worse for Ben than the existing
allocation.
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Proof of Pareto efficiency of the adjusted winner procedure

We prove by contradiction. Assume failure of Pareto efficiency, then
Pareto improvement as exemplified by Lemma 3 can be stated as
follows: there exist single item goods Gi and Gj and portions thereof
such that if Annie exchanges her fraction ai of Gi for Ben’s fraction
bj of Gj, the resulting trade yields an allocation that is at least as
good for both and strictly better for at least one.

In the following steps of proof, details of the adjusted winner proce-
dure are incorporated in the arguments. Without loss of generality,
we assume that Annie was the initial winner after the first step of
the adjusted winner procedure. Since Annie still has at least ai of
item Gi, then Annie (initial winner) must value item Gi at least as
much as Ben does, so Ai ≥ Bi. Indeed, any item held by Annie
(initial winner) observes the property that Annie gives higher value
(or at least the same value) to the item than Ben.
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(i) Bj ≥ Aj
Now if Ben values item Gj at least as much as Annie does, Bj ≥ Aj,
then Lemma 1 implies that the trade will not give both parties at
least as good and one party is strictly better as we are assuming.
This leads to a contradiction.

(ii) Bj < Aj
Since Bj < Aj, Ben values item Gj less than Annie does. Ben does
not receive any portion of Gj in the first stage of allocation. Since
Ben has part of Gj, so he must have received that during the transfer
stage of the adjusted winner procedure.

Comparing Gi and Gj, Gi is still held by Annie (initial winner) while
Gj (whole or part) is received by Ben (initial loser) in the transfer
stage. As a consequence of Gj being chosen in the transfer stage, we

deduce that Ai
Bi
≥ Aj

Bj
. By Lemma 2, this contradicts our assumption

that the trade benefits at least one and at least as good for the
other.
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Manipulability

Determining point totals is itself not an easy task. The situation
is still more stressful if the parties involved need to worry about
strategies as well, especially in the case of a divorce where each
party has in depth knowledge of the other’s like and dislike.

It is natural to wonder whether this knowledge would enable one
party to manipulate the system, and achieve a better outcome by
submitting dishonest point allocations.

Unless knowledge of the other’s party’s valuations is strictly one-
sided, then honesty is the best policy in the adjusted winner proce-
dure.
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Example: Honesty is the best policy

Suppose that Annie and Ben are getting a divorce, and currently
share the following items: a townhouse in Central Square, season
passes to the Red Sox, and a painting.

They value the items as follows:

Annie Item Ben

50 Townhouse 30
20 Red Sox Tickets 50
30 painting 20

100 Total 100
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Applying the adjusted winner procedure, we see that Annie is initially
awarded the townhouse and the painting, while Ben gets the Red
Sox tickets.

Annie currently has 80 points, while Ben has 50, so Annie is the
initial winner. The ratio of points for the townhouse is 5

3, while

the ratio for the painting is 3
2, so the painting needs to be divided.

Solving for x in the following equation gives the fraction of the
painting that Annie keeps:

50 + 30x = 50 + 20(1− x) = 70− 20x giving x =
2

5
.

Annie ends up with the townhouse and 2
5 of the painting (Annie and

Ben decide that she will buy out his share of the painting), and Ben
gets the Red Sox tickets and 3

5 of the painting. Each with a total
of 62 points.
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Knowledge on one side

Annie is confident that she can estimate Ben’s point allocations
fairly well, and decides to submit the following false valuations,
rather than her true preferences given above

Annie’s fake valuations Item Ben’s sincere valuations

32 Townhouse 30
48 Red Sox Tickets 50
20 painting 20

100 Total 100

• Lower her value of Townhouse to be slightly above that of Ben.

• Set her value of painting to be the same as that of Ben so
that the tied item is given to her since she scores lower after
allocating the Townhouse and Tickets.

• Since the sum of points is 100, as a result, the value of Tickets
is increased to be slightly below that of Ben.
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Intuitively, Annie might do better under this scenario. By indicating
that she values the townhouse only slightly more than Ben, she
hopes to win the townhouse but at a lower cost, thereby winning a
higher percentage of the painting as well.

In the first step of the process, Annie still gets the townhouse and
the painting, and Ben gets the Red Sox tickets. Annie has 52
points (according to her false point allocations), and Ben has 50.
The painting is split since the ratio of values is lowest. Solving for
x gives the fraction of the painting that Annie keeps:

32 + 20x = 50 + 20(1− x) = 70− 20x giving x =
19

20
.

By lowering the point to the Townhouse as much as possible, Annie
has 18 = 50−32 points of difference. Furthermore, she gains more
by lowering the point of painting from 30 to 20. This is achieved
by increasing the point to tickets.
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Knowledge on both sides

With this kind of knowledge on both sides, it becomes much riskier
to submit false preferences. While it may be to someone’s advan-
tage to be dishonest (Annie might still get lucky if Ben chooses
to submit his true point allocations even with knowledge of Annie’s
preferences), this strategy can also backfire, resulting in an outcome
that is worse than the honest outcome.

For example, if Ben thinks that Annie will be honest, he may submit
the following point allocations:

Annie’s sincere valuations Item Ben’s fake valuations

50 Townhouse 45
20 Red Sox Tickets 25
30 painting 30

100 Total 100
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If Annie were honest, then Ben and Annie would each get 52.5
points based on Ben’s fake valuations, though this would really
constitute over 68 points for Ben according to his true valuations.
The resulting point is higher than 62 if both are honest.

But if Annie and Ben both submit these false preferences, the result
is not good for either.

In the first step of the process, Annie receives the Red Sox tickets,
and Ben gets the townhouse and painting. The ratio for the painting
is 1.5 while the ratio for the townhouse is 45

32, strictly less.

The following calculation gives the fraction of the townhouse to be
given to Annie:

48 + 22x = 30 + 45(1− x) = 75− 45x giving x =
27

77
.
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So Annie gets just over a third of the townhouse and the Red
Sox tickets, while Ben gets just under 2

3 of the townhouse and the
painting. Although this appears to be just over 59 points for each
with the false point allocations, both Annie and Ben do much worse
according to their true preferences.

Annie’s share give her 50× 27
77 + 20, roughly 37.5 points and Ben’s

share gives him 30 × 50
77 + 20, just under 39.5 points. Both Annie

and Ben would have fared much better had they been honest!

Final remark
In addition to guaranteeing an allocation that is envy-free, equitable,
and efficient, the adjusted winner procedure also promotes honesty.
This is true at least when knowledge of the other party’s preference
is not strictly one-sided.
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