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Topic Two: Matching schemes

2.1 Marriage problems

– Deferred acceptable algorithm

– Stable solution

2.2 College admission and school choice problems

– Gale-Shapley student optimal stable mechanism

– Top trading cycles mechanism

– Boston school choice mechanism

– Chinese parallel mechanism

2.3 House allocation with existing tenants

2.4 Kidney exchange

2.5 Roommate problems and Irving algorithm
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2.1 Marriage problems

2012 Nobel Awards in Economics go to Shapley and Roth on their
works on matching schemes

• Each man has strict preferences over the women. Each woman
has strict preferences over the men.

A matching is a bijection (one-to-one correspondence) M between
m and w. There may be some men or women left unattached when
the numbers of men and women are not the same.

A man (woman) prefers the matching scheme M to another match-
ing scheme M ′ if he (she) prefers the partner he (she) is matched
to in M to the one he (she) is matched to in M ′.

Desirable property: stability of a matching

A man-woman pair (not one of the pairs in the matching scheme
M) blocks M if they prefer each other to their spouses under M . A
matching M is stable if there is no man-woman pair blocking M .
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Example

1 2 4 1 3 1 2 1 4 3
2 3 1 4 2 2 4 3 1 2
3 2 3 1 4 3 1 4 3 2
4 4 1 3 2 4 2 1 4 3

Men’s Preferences Women’s Preferences

The matching {(1, 4), (2,3), (3, 2), (4,1)} is stable. Stability may
be verified by considering each man in turn as a potential member
of a blocking pair.

Man 1 could form a blocking pair only with woman 2, but she prefers
her partner, man 3 to man 1 under this matching. Each of men 2
and 3 is matched with his favorite woman, so neither can be in a
blocking pair. Finally, man 4 could form a blocking pair only with
woman 4, but she would rather stick with her partner, man 1.

This matching favors men but not women, a property of the man-
oriented stable matching. In the reverse sense, each woman has the
worst partner that she can have in any stable matching.
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• A second example of a stable matching, indeed the only other
stable matching in this case, is {(1, 4), (2,1), (3, 2), (4,3)}, as
may be verified in a similar way.

• The matching {(1,1), (2,3), (3,2), (4,4)}, for example, is un-
stable because of the blocking pair (1,4); man 1 prefers woman
4 to his partner, woman 1, and woman 4 prefers man 1 to her
partner, man 4.

• Some other unstable matchings may have many more blocking
pairs: for example, the matching {(1,1), (2,2), (3,4), (4,3)}
has six.

Stable pair and fixed pair

A man m and a woman w constitute a stable pair if and only if m and
w are partners in some stable matching. In these circumstances, m

is a stable partner of w, and vice versa. If some man m and woman
w are partners in all stable matchings, then (m,w) is called a fixed
pair. In the above example, since there are only two stable matching
solutions, (1,4) and (3,2) are seen to be fixed pairs.
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Deferred acceptance algorithm

Gale, D. and Shapley, L., “College admissions and stability of mar-
riage”, American Mathematical Monthly, vol. 69, p.9-15 (1962).

Man-oriented version

1. Each man proposes to his favorite woman.

2. Each woman “engages” her favorite man among her proposers
and rejects the others. The woman holds the most preferred
man at this stage without commitment and the acceptance of
a more preferred man can be made in later rounds of proposals.

3. Each rejected man proposes to his next favorite woman.

4. Repeat steps 2 and 3 until all women have been proposed to.
That is, there are all rejected men have exhausted their own
individual lists.

For a given man m, we writer PM(m) as the partner (woman) as-
signed to m under the matching scheme M .
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Example
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Each boy approaches the first girl on their lists.

In the first round, Mary gets three offers, and holds on to Adam,
while rejecting the other two. Jane receives one offer, from Bob, so
she asks him to wait. Kate receives no offers, so at the end of the
day she has nobody. A girl does not commit to anyone, but may
improve her choice from later male proposers.
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In the second round, the two boys who are not being held onto
approach the second girls on their lists. In this case, Kate receives
both proposals, holds onto Don and sends Charlie away. Since
nobody proposed to Mary or Jane, they hold onto their boys from
the first round.

In the third round, Charlie (the only boy not currently held by a
girl), asks Jane. Since Jane ranks Charlie ahead of Bob (who she’s
held since the first round), she releases Bob, and holds onto Charlie.

In the fourth round, Bob asks Mary, but is rejected by her since
she ranks Adam higher. In the fifth round Bob asks his last choice,
Kate, but she rejects him as well, since she ranks Don higher.

All three girls have boys on hold, and the one unattached boy has
been rejected by all three girls. The process is done. Adam and
Mary end up together, as do Don and Kate, and Charlie and Jane.
Bob ends up alone. Poor Bob, he cannot hold on Jane even Jane
is less popular among the other 3 boys.
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Matching under man-oriented scheme M is stable (non-existence of
a blocking pair)

For any m, we show that one cannot find w such that (m,w) blocks
M . As a result, the scheme is stable. Assume contrary, there
exists m such that w ≻

m
PM(m), where m prefers w to the woman

(partner) PM(m) at this matching scheme M . By the procedure of
the man-oriented scheme, m must have proposed to w earlier under
M before being assigned to PM(m), but m must be rejected by w

before matching with PM(m). This gives PM(w) ≻
w

m, so (m,w)

cannot form a blocking pair. A contradiction is encountered.

Both (m,PM(m)) and (PM(w), w) are under M . Though w is more
preferred by m, however, w prefers PM(w) more than m.
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In Shapley’s example, (Don, Kate) and (Adam, Mary) are paired
under M , but (Don, Mary) cannot form a blocking pair. Note that
Don has been rejected by Mary since Mary prefers Adam over Don.
In the man-oriented matching solution, Don is paired with his second
choice Kate.

Set of achievable partners

There may be multiple stable matching solutions. We say that m

and w are achievable partner to each other if they are paired in a
stable matching. In analyzing optimality of the choice of partner un-
der stable matching, we only need to consider the set of achievable
partners of individual players.

In the first example, the set of achievable partners of man 2 is
{woman 1, woman 3}. The set of achievable partners of man 3 is
singleton {woman 2} since (3,2) is a fixed pair.
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M-optimality of man-oriented scheme M0

Every man gets his best achievable partner under the man-oriented
scheme M0.

Remark It suffices to show that no man is ever rejected by an
achievable woman. By the man-oriented procedure, since each man
proposes to women in sequential preference order starting from the
best choice to the less preferred choice, so every man gets his best
achievable partner.

Proof
To construct the proof, we use an induction argument and assume
that up to certain step in the procedure, no man has yet been
rejected by a woman in his set of achievable partners. In the next
step of the procedure, suppose a man m is rejected by a woman w

in his set of achievable partners, we try to establish a contradiction.
In other words, rejection by an achievable woman would not occur.
The proof is done.
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Let Am denote the set of achievable partners of man m and w ∈ Am.

1. At the first occurrence of rejection by a woman in the achievable
set, suppose w rejects m; and currently, w engages another man
m′. This mean m ≺

w
m′.

2. Since w ∈ Am, it is guaranteed that there exists a stable match-
ing M∗ such that m is paired with w while another woman w′ is
paired with m′ in this M∗-stable matching solution (since m has
been paired with w).

The final step is to show that (m′, w) blocks M∗, where m′ ≻
w

m and

w ≻
m′

w′, so that M∗ is not stable. That is, m′ and w prefer each

other more than the assigned pairings: (m,w) and (m′, w′). This
leads to a contradiction.
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(a) w prefers m′ to m as stated in Point (1);

(b) m′ prefers w to w′ (hard).

Recall that m′ engages with w currently. According to the pro-
cedure of the man-oriented scheme, up to the current step, m′

prefers w to any woman except for those who have previously
rejected m′. Based on the induction assumption, no man has
been rejected by a woman in his set of achievable partners. In
other words, those women who have rejected m′ are not in his
set of achievable partners.

We argue that m′ prefers w to any other woman in Am′. This
is because none of the women that have rejected m′ are in Am′

and w′ ∈ Am′. That is, w′ cannot be one of those who have
previously rejected m′, so w′ ≺

m′
w.
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Summary: Story upon the first occurrence of rejection of a man by
an achievable woman

Suppose there exists another stable scheme M∗ such that

m ↔ w and m′ ↔ w′, where w′ ∈ Am′.

We would like to show that (m′, w) blocks M∗, so a contradiction is
encountered. Based on the observations:

• m′ prefers w to any woman except for those who have rejected
m′,

• None of the women that have rejected m′ are in Am′ (deduced
from the assumption in the induction argument);

We deduce that m′ prefers w to w′. This is because w′ could not
have rejected m′ earlier since w′ ∈ Am′.
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Uniqueness of M-optimal stable solution under the man-oriented
scheme

There can only be one M-optimal stable matching (independent of
the order in which the men proposing). Suppose the man-oriented
scheme gives non-unique solutions, where m is assigned to w1 and
w2 in two different stable solutions. Either one of w1 and w2 is more
preferred by m based on strict preferences. By virtue of M-optimality
and strict preferences of choices, the pair where m is matched with
less preferred woman cannot appear in the matching solution under
the man-oriented scheme. Therefore, we observe uniqueness of M-
optimal stable solution under the man-oriented scheme.

Termination after finite number of steps

Since no boy proposes to any girl after she has rejected him, this
algorithm will reach a stable solution in a finite number of steps. In
the above example, it takes five rounds.
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Theorem In the man-optimal stable matching, each woman has
the worst partner that she can have in any stable matching.

Graphical interpretation of the theorem
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Assume contrary, suppose PM0
(w) is not the worst partner within

the set of achievable partners of w, it is guaranteed to find an
achievable partner m′ (behind m) under a stable matching M ′ such
that m′ = PM ′(w) and m is paired with another woman w′.

We argue that (m,w) blocks M ′, so M ′ cannot be a stable matching:

(i) m is a better partner of w than m′ = PM ′(w);

(ii) Recall that w is the best achievable partner of m under M0.
Therefore, w is a better partner of m than w′ = PM ′(m) since
both w and w′ ∈ Am.
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Degenerate case of single stable matching

It can happen that the man-oriented and woman-oriented versions of
the deferred acceptance algorithm yield the same stable matching.

Under this scenario, for all men and women, the set of achievable
partners becomes a singleton. This is because the best achievable
partner and worst achievable partner coincide in each achievable set
of partners. We have only one stable solution.

When there is only one stable matching, there is no issue of distin-
guishing “best” or “worst” partners among various stable solutions.

Reference
Roth, A.E. and Sotomayor, M., Two-sided matching: A study in
game-theoretic modeling and analysis, Cambridge University Press,
United Kingdom (1991).

18



2.2 College admission and school choice problems

College admission is an extension of the marriage problem if we
assume that males can have several wives, as each degree program
can admit multiple students.

Absence of justified envy among students

There is no unmatched student-school pair (i, s), where student i

prefers school s to her assignment and she has higher priority than
some other student who is assigned a seat at school s (equivalently,
school s accepts a student of lower priority).

The existence of such pair (i, s) indicates envyness of i against the
inferior student admitted and this would form a blocking pair. It
is desirable for the college admission matching solution to observe
envyfreeness.
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Example

Mary is admitted into MATH but finds that Tom is admitted into
MAEC (a program more preferred by Mary) while Tom has a lower
priority as ranked by MAEC. Definitely, Mary envies Tom. At the
same time, MAEC admits a weaker student (Tom) rather than Mary.
(Mary, MAEC) (though not a matched pair under the matching
scheme) forms a blocking pair with regard to the matched pairs
(Tom, MAEC) and (Mary, MATH). Absence of justified envyness
prevails if no such blocking pair occurs.
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Pareto efficiency

A matching µ is Pareto efficient if it is not possible to improve the
allocation of a student without making another student worst off.
A Pareto improvement is another allocation that all students are at
least as good and one student is strictly better. Pareto efficiency
means nonexistence of Pareto improvement.

Equivalently, there is no other matching µ′ such that

(i) all students weakly prefer µ′ to µ (all students are either indif-
ferent between µ′ and µ or prefer µ′ to µ);

(ii) there is at least one student who strictly prefer µ′ to µ, meaning
at least one student who is not assigned to the same school
under µ′ and µ and prefers the school she is assigned to under
µ′.
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Student optimal approach: Candidates fight to attach to a
program of higher preference
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A solider tries to break into the castle through one of the gangways
(in order of his preference). When a compartment in full, then
the intruder will fight with the weakest person admitted in that
compartment.

• The intruder is victorious by kicking out the weakest occupant.

• The intruder is defeated by the weakest occupant, he will try the
next preferred gangway (until having exhausted all his choices).

Each student can be admitted at most into one program. He tries
to attach to one of his dreamed programs in his order of preferences.
However, he may be knocked out by a stronger competitor which is
ranked higher than him by the program. Alternatively, he can knock
out the weakest (in terms of ranking by the program) who has
been tentatively attached to the program when his ranking in that
program is higher than that of this weakest student. Equivalently,
the attachment to a program by a student is tentative until all
students have exhausted their choices and he is not knocked out by
a stronger student in all later rounds.
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Example – Student optimal stable mechanism

The inputs are (i) students’ preferences, (ii) schools’ priorities, (iii)
school capacities. The priorities of the schools and the preferences
of the students are as follows:

s1 : i1 − ..i2 − i3 − i4 − ..i5 − i6 − i7 − i8
s2 : i3 − i5 − i4 − i8 − i7 − i2 − i1 − i6
s3 : i5 − i3 − i1 − i7 − i2 − i8 − i6 − i4
s4 : i6 − i8 − i7 − i4 − i2 − i3 − i5 − i1

i1 i2 i3 i4 i5 i6 i7 i8

s2 ..s1 s3 s3 ..s1 s4 ..s1 ..s1

s1 s2 s2 s4 s3 s1 s2 s2
s3 s3 s1 s1 s4 s2 s3 s4
s4 s4 s4 s2 s2 s3 s4 s3

Number of students that can be admitted:

n(s1) = 2, n(s2) = 2, n(s3) = 3, n(s4) = 3.
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Step 1: Students i2, i5, i7, i8 propose to school s1, student i1
proposes to school s2, students i3, i4 propose to school s3 and
student i6 proposes to school s4.

Since n(s1) = 2, school s1 tentatively assigns its seats to students
i2, i5 and rejects students i7, i8. Since school s1 is the only school
with excess proposals, all other students are tentatively assigned
seats at schools that they propose.

Step 2: Having been rejected at Step 1, each of students i7, i8
propose to school s2 which is their next choice. School s2 considers
student i1 whom it has been holding together with its new proposers
i7, i8. Since n(s2) = 2, school s2 tentatively assigns its seats to
students i7 and i8, and rejects student i1.
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Step 3: Having been rejected at Step 2, student i1 proposes to
school s1 which is her next choice. School s1 considers students
i2, i5 whom it has been holding together with its new proposer i1.
School s1 tentatively assigns its seats to students i1, i2 and rejects
student i5.

Step 4: Having been rejected at Step 3, student i5 proposes to
school s3 which is her next choice. School s3 considers students
i3, i4 whom it has been holding together with its new proposer i5.
Since school s3 has 3 seats, it tentatively assigns its seats to these
students.

Since no student proposal is rejected at Step 4, the algorithm ter-
minates. Each student is assigned her final assignment:(

i1 i2 i3 i4 i5 i6 i7 i8
s1 s1 s3 s3 s3 s4 s2 s2

)
.

A college A is said to be achievable by a student α if there is a
stable assignment that sends α to A. His achievable set Cα is the
set of all achievable colleges.
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The definition of stability in college admission matching requires
“nonwasteful” and “individual rationality”, besides envyfreeness. A
matching is nonwasteful if a student prefers a program to her match-
ing program, then that program must have filled its quota. A match-
ing is individually rational if no student prefer the no college option
to his assignment. Nonwasteful and individual rationality follow from
Pareto efficiency.

• Assume failure of nonwastefulness, then an empty seat is avail-
able that fails to admit the student who prefers the program
more. Pareto improvement exists by allocating the student to
that program.

• Suppose some student prefers no college to his assignment, we
then take away his assigned college and the vacant seat can
improve the assignment of another student. Therefore, Pareto
improvement exists.
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Student-optimality (Gale and Shapley, 1962)

The student-optimal scheme is optimal for students. That is, every
admitted student gets his best achievable college.

Similar to the earlier proof for the marriage problem, it suffices to
show that no student is ever rejected by an achievable college. E-
quivalently, the procedure only rejects students from colleges which
they could not be admitted to in any stable assignment (colleges
that are outside the achievable set). By the student optimal proce-
dure, each student approaches to colleges in sequential preference
order. Therefore, every student gets into his best achievable college.
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Key steps in the proof

By induction, suppose there has been no student rejected by an
achievable college so far and A has received a full quota of better
qualified students β1, β2, . . . , βq and rejects α. We would like to show
that A is not achievable for α. The rejection of any student by an
achievable college would never occur.

It suffices to show that A /∈ Cα, where Cα is the set of achievable
colleges of α. Assume contrary, suppose A ∈ Cα so that α is admit-
ted by A under some stable matching M∗ and some other student
βi goes to a less desirable college (call it B) than A.

29



Now, (α,A) and (βi, B) are paired under M∗. We argue that (βi, A)
blocks M∗. This is seen to be true since

(i) A accepts a student (α in this case) of lower priority since βi
has higher priority than α at college A (at the current step, A

keeps βi instead of α);

(ii) βi prefers A to any college except those colleges who have pre-
viously rejected βi.

Since a student approaches the colleges in sequential preference
order and only be rejected by non-achievable colleges, the student is
admitted into the most preferred college among the set of achievable
colleges. In other words, every student admitted into a college gets
his best achievable college.
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Program optimal approach: Each program gives out all K

offers to the top K candidates
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• Each admissions officer gives out all the K offers to the top K

candidates.

• If there are more than one offer is given to the candidate, then
the candidate will return the less preferred offers to the ad-
missions officers, who will then give them to the next eligible
candidates in the queues. No candidate holds more than one
offer. When this is achieved, then those who have an offer in
hand are the ones who are selected for admission.

The program tries to keep the best students, and may lose some
of them if these stronger students give up the offers and go to
the individually more desirable program. In other words, a program
cannot get a more eligible student willing to accept its offer to
replace the weakest one already accepted.

In this college optimal deferred acceptance scheme, the candidates
are passive. They wait for better offers from more desirable colleges
to arrive.
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Serial dictatorship scheme

Generate a priority ordering (rank list) of students based on either
test scores or random drawing. All colleges observe the same priority
ordering of students.

Round 1: For the first student in the ranking, assign his first

choice. This student and his assignment are removed

from the system.

. .

. .

. .

Round k: Only consider the kth student in the ranking. Assign her

first choice among the remaining college slots. Again,

this student and assignment are removed from the sys-

tem.

The algorithm terminates when all students have been matched or
when no college slot remains.
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Strategy-proofness – Individual student cannot gain by gaming around

The best strategy for students is to report their most preferred
colleges in sequence. Regardless of the behavior of others, the
student simply needs to truthfully reveal preference, which is the
dominant strategy. It is impossible to get into more preferred school
once they are taken earlier by stronger students.

Elimination of justified envy

By assigning students one after another according to ranking, the
central authority will not go to the next student without considering
all choices of the higher ranked students. If one student s prefers
another college c to her assigned µ(s), her test score must be lower
than the student µ−1(c) assigned to college c.
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Pareto efficiency

The student with the highest test score cannot be better off since
he gets his most preferred college. Any change in his assignment
would make him worse off, as there is a strict preference.

The student with the second highest score cannot be better off
since she gets her most preferred college among college slots. Any
change in her assignment would make her worst off. The same
argument can be applied to students that are ranked lower.

In summary, a student can be better off only by getting a more pre-
ferred school from a stronger student. That student must become
worst off.

In reality, the admissions algorithm is complicated by two-step ad-
missions process, with college acceptance first and faculty allocation
second. It may happen that a student chooses according to

engineering at Peking University ≻ engineering at Tianjin University

≻ business at Peking University
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Turkey’s centralized college optimal multi-category serial dic-
tatorship scheme

In Turkey, the centralized student placement office that assigns s-
tudents to colleges, in fact to the particular faculties (for example,
engineering, medical, dental, business, etc.) of colleges, with no
student is assigned to more than one college-faculty.

The standardized examination consists of several component tests,
including mathematics, science, verbal aptitude, etc.. Faculties use
different combinations of tests to arrive at rankings of the students
since different faculties prize different skills. The preference of a
student over colleges includes the no-college option, which may be
placed ahead of some colleges (maybe none).

Every faculty-type ranks the applying students identically, strictly
according to the relevant scores in the category skills. The term
college means a college-faculty (e.g. HKUST-Science) so that a
college is associated with a particular well defined skill category.
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• Let qt be the quota of colleges in category t. With the ranking
induced by the test scores in this category t, assign (only) the
colleges in category t to (at most qt) students using the serial
dictatorship applied to the ranking. That is, student with the
highest score in category t is assigned his top choice among
those colleges in category t, the student with the next highest
score is assigned her top choice among the remaining slots in
this category, and so on.

• Do the same procedure for all categories.

• Assign the no-college option c0 to all students who are not as-
signed to a college. This leads to a tentative assignment since
a student may be assigned slots in two or more colleges.

This scheme is college oriented where students are passive, similar
to women in man-oriented deferred acceptance scheme.
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In the next step, we consider the following two scenarios for each
student.

(i) If a student is assigned no slot, then his preference list remains
the same.

(ii) If a student is assigned one or more slots, then move the no-
college option c0 directly after the rest of the assigned slots
in the previous slot. Therefore, the student is guaranteed to
receive the best among the assigned slots or even later in case
some better choice becomes available when it is released by
other student that has multiple assigned slots.

The rankings of students by the colleges are not changed. The
algorithm terminates when no student is assigned more than one
slot.
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Numerical example

S = {s1, s2, s3, s4, s5}, C = {c1, c2, c3}, q = {qc1, qc2, qc3} = (2,1,1),
T = {t1, t2}, t(c1) = t1, t(c2) = t(c3) = t2.

s1 : c2 ≻ c1 ≻ c0 ≻ c3, f1 = (90,90);
s2 : c1 ≻ c2 ≻ c3 ≻ c0, f2 = (80,60);
s3 : c1 ≻ c3 ≻ c2 ≻ c0, f3 = (70,70);
s4 : c1 ≻ c2 ≻ c0 ≻ c3, f4 = (60,80);
s5 : c2 ≻ c3 ≻ c1 ≻ c0, f5 = (50,50).

s1 dislikes c3 more than c0 and same for s4, so c3 is the least popular
college among the students. Note that s5 is the weakest student.

The academic scores induce the following rankings in t1 and t2:

t1 : s1 ≻ s2 ≻ s3 ≻ s4 ≻ s5
t2 : s1 ≻ s4 ≻ s3 ≻ s2 ≻ s5
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Step 1

t1 :
s1 s2
c1 c1

t2 :
s1 s4 s3
c2 − c3(

s1 s2 s3 s4 s5
c1, c2 c1 c3 c0 c0

)
Poor s4, who loses to s1 in t2 and both s2 and s3 in t1.

Modified preference lists for students that are assigned at least one
slot

s1 : c2 ≻ c0 ≻ c1 ≻ c3
s2 : c1 ≻ c0 ≻ c2 ≻ c3
s3 : c1 ≻ c3 ≻ c0 ≻ c2

The preference lists for s4 and s5 (with no assigned slot) remain the
same.
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Step 2

t1 :
s1 s2 s3
− c1 c1

t2 :
s1 s4 s3
c2 − c3(

s1 s2 s3 s4 s5
c2 c1 c1, c3 c0 c0

)

s1 : c2 ≻ c0 ≻ c1 ≻ c3
s2 : c1 ≻ c0 ≻ c2 ≻ c3
s3 : c1 ≻ c0 ≻ c3 ≻ c2
s4 : c1 ≻ c2 ≻ c0 ≻ c3
s5 : c2 ≻ c3 ≻ c0 ≻ c1

Step 3

t1 :
s1 s2 s3
− c1 c1

t2 :
s1 s4 s3 s2 s5
c2 − − − c3

Final matching solution:

(
s1 s2 s3 s4 s5
c2 c1 c1 c0 c3

)
. Note that s4 with

scores (60,80) is not assigned due to his dislike of c3 (ranked below
c0) while s5 with scores (50,50) is assigned to the least popular
college c3.
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Failure to respect improvement

S = {s1, s2}, C = {c1, c2}, q = (qc1, qc2) = (1,1),
T = (t1, t2), t(c1) = t1, t(c2) = t2.

s1 : c1 ≻ c2 ≻ c0, f1 = (80,90);

s2 : c2 ≻ c1 ≻ c0, f2 = (90,80).

The outcome under the multi-category serial dictatorship mecha-
nism is (

s1 s2
c2 c1

)
.

Both students are assigned to their second choice since c1 prefers
s2 and c2 prefers s1. Suppose we modify f̂1 = (70,70). The new

outcome becomes

(
s1 s2
c1 c2

)
. Paradoxically, student s1 is rewarded

by getting his top choice as a result of worse performance. This
college optimal scheme respect the preferences of students less.
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Example – 18 candidates and 4 programs
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Letter ‘C’ indicates the College Optimal Stable Solution. Letter ‘S’
indicates the Student Optimal Stable Solution. Letter ‘M ’ indicates
a Third Stable Solution.

For the stronger candidates, the assignments to the programs are
identical under any stable assignment schemes. The corresponding
achievable set is a singleton, where the best college and worst college
coincide.
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A small number of weaker candidates (107, 111, 117 at the border
line of acceptance) are assigned to different programs by these stable
solutions.
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Three candidates, 107, 111 and 117, are assigned to different pro-
grams under C, S and M .

(i) 107 is assigned to his second choice K4 under C; however, he
is assigned to his first choice K1 under S and M . 107 gets into
better college under the student optimal stable solution.

(ii) 111 is assigned to his first choice K4 under S; however, he is
assigned to his second choice K3 under C and M .

(iii) 117 is assigned to his fourth choice K1 under C, third choice
K4 under M and second choice K3 under S. The achievable set
of programs of 117 is {K3,K4,K1}, while K2 is non-achievable
since K2 places 117 as its lowest priority. 117 gets the worst
choice under the college optimal stable solution.

A student fails to get admitted into a college if his achievable set is
the empty set. In this numerical example, the same set of students
would be admitted into colleges, irrespective to the use of any one
of the three stable matching schemes.
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Absence of justified envy may conflict with Pareto efficiency

s1 : i1 − i3 − i2 i1 : s2 s1 s3
s2 : i2 − i1 − i3 i2 : s1 s2 s3
s3 : i2 − i1 − i3 i3 : s1 s2 s3

There is only one stable matching:(
i1 i2 i3
s1 s2 s3

)
.

Note that s1 and s2 get their respective best student already while
s3 is least welcomed by all students. Therefore, all schools would
not complain.

i3 may envy i1 since i1 gets into s1. However, this is not a justified
envy since s1 prefers i1 to i3. The same argument applies to the
potential envy of i2 by i3. Again, such envyness is not justified.
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Free of justified envy may force students to share schools that are
not Pareto efficient. The above stable matching is Pareto dominat-
ed by (

i1 i2 i3
s2 s1 s3

)
since i1 and i2 can both receive better assignment (Pareto improve-
ment). Hence, Pareto efficiency is not observed. Since 2 out of 3
students have been assigned to their respective best choice, non-
existence of Pareto improvement is guaranteed.

However, under the Pareto efficient matching, (i3, s1) forms a block-
ing pair with regard to (i3, s3) and (i2, s1) since i3 prefers s1 to s3
and s1 prefers i3 to i2. The Pareto efficient matching is not free of
justified envyness.

Free of justified envy does not imply Pareto efficiency and vice versa.
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Top trading cycles mechanism

The top trading cycles mechanism is Pareto efficient but does not
completely eliminate justified envy.

Step 1: Assign a counter for each school which keeps track of how
many seats are still available at the school. Initially set the counters
equal to the capacities of the schools.

• Each student points to her favorite school under her announced
preferences.

• Each school points to the student who has the highest priority
for the school.
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Formation of cycles

A cycle is an ordered list of distinct schools and distinct students
(s1, i1, s2, . . . , sk, ik) where s1 points to i1, i1 points to s2, . . . , sk
points to ik, ik points to s1.

Since each vertex has one out-going edge, by starting with any
vertex and following edges formed, we must find a cycle. We will
not get “stuck” since there is always one out-going edge and there
are a finite number of vertices, we must repeatedly visit some vertex
to end up in a cycle.

Moreover, each school can be part of at most one cycle. Similarly,
each student can be part of at most one cycle.

Every student in a cycle is assigned a seat at the school she points to
and is removed. The counter of each school in a cycle is reduced by
one and if it reduces to zero, the school is also removed. Counters
of all other schools stay put.
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Step k: Each remaining student points to her favorite school among
the remaining schools and each remaining school points to the stu-
dent with highest priority among the remaining students. There is
at least one cycle.

• Every student in a cycle is assigned a seat at the school that
she points to and is removed.

• The counter of each school in a cycle is reduced by one and if
it reduces to zero the school is also removed. Counters of all
other schools stay put.

The algorithm terminates when all students are assigned a seat.
The number of steps cannot be more than the number of students.
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Example

Use the same schools’ priorities and students’ preferences as that on
p.23. Let cs1, cs2, cs3 and cs4 indicate the counters of the schools.

Step 1:
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By starting at i2, i5, i7 or i8, we end up at s1. When the procedure
of pointing to the most desirable school continues, it is guaranteed
that eventually one student points to some school that has been
visited earlier in the pointing process.

There are two cycles formed in Step 1: (s1, i1, s2, i3, s3, i5) and
(s4, i6).

• Students i1, i3, i5, i6 are assigned one slot at schools s2, s3, s1, s4
respectively and removed.

• In step 1, every school participates in a cycle. All counters are
reduced by one for the next step.
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Step 2:

There is only one cycle formed in Step 2: (s1, i2). As a result,
student i2 is assigned one slot at school s1 and removed. The
counter of school s1 is reduced by one to zero and it is removed.
All other counters stay put.
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Step 3:

There is only one cycle formed in Step 3: (s3, i7, s2, i4). Students
i7, i4 are assigned one slot at schools s2, s3, respectively, and re-
moved. The counters of schools s2 and s3 are reduced by one.
Since there are no slots left at school s2, it is removed. Counters
of schools s3 and s4 stay put.
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Step 4:

There is only one cycle in Step 4: (s4, i8). Therefore student i8 is
assigned one slot at school s4 and removed. There are no remaining
students so the algorithm terminates. The final matching is(

i1 i2 i3 i4 i5 i6 i7 i8
s2 s1 s3 s3 s1 s4 s2 s4

)
.

The matching outcomes ensure Pareto efficiency.
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Top trading cycles mechanism is Pareto efficient

It suffices to show that it is always impossible to make a student
better off without hurting the other student. As a result, Pareto
improvement cannot be achieved, so Pareto efficiency is established.

• Any student who leaves at Step 1 is assigned her top choice and
cannot be made better off.

• Any student who leaves at Step 2 is assigned her top choice
among those seats remaining at Step 2. However, She cannot
get the better school that has left in Step 1. In other words, she
cannot be made better off without hurting someone who left at
Step 1 since all students in Step 1 got their best choice.

• Proceeding in a similar way, no student can be made better off
without hurting someone who left at an earlier step. Therefore
the top trading cycles mechanism is Pareto efficient.
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Top trading cycles mechanism is strategy-proof

Consider a student i with true preferences Pi. Fix an announced
preference profile Q−i = (Qj)j∈I\{i} for every student except i.

Let T be the step at which student i leaves under a game preference
Qi, (s, i1, s1, . . . , sk, i) be the cycle she joins, and thus school s be
her assignment.

Let T ∗ be the step at which she leaves under her true preferences
Pi. We want to show that her assignment under Pi is at least as
good as school s, so gaming strategy does not help.
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Case 1: T ∗ < T

Since student i fails to participate in a cycle prior to Step T ∗, we
deduce that the same schools remain in the algorithm at Step T ∗

whether student i announces Qi or Pi.

The assignments made earlier than T ∗ are NOT affected by the
adoption of either Pi or Qi by student i. There is no impact on
schools available to others since no schools (or quotas) have been
removed due to a cycle formed by student i prior to T ∗.

Student i is assigned a school at his best choice remaining at T ∗

under Pi. This must be at least as good as school s.
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Case 2: T ∗ ≥ T

The key observation is that the same students and schools remain
at Step T whether i announces Qi or Pi. At Step T , the pointing
pattern s → i1, i1 → s1, . . ., sk → i is observed. The key is that this
pointing pattern persists as long as student i remains.

Under Qi, student i points to school s within a closed cycle, so i

receives s. We argue that this is not necessarily the best school of
i among remaining schools at step T .

Indeed, when student i announces Pi truthfully, he can either receive
a better assignment than school s or at least s in this round or a
later round. This is because school s remains after T since the
pointing pattern s → i1, i1 → s1, . . ., sk → i persists. Since student
i truthfully points to his best remaining choice of school at each
step, either i gets a better choice than s or s takes in i when i goes
down to s as his best choice.
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School choice mechanisms

Primary school graduating students choose their secondary schools
under a school choice mechanism. The priorities are based on home
location, siblings, religious attachment, academic scores, etc. It is
different from the College admission problem, where colleges have
preferences over students. Here, the priorities are enforced by laws
and schools have no say on how the priority order is determined.

Schools are viewed as objects to be consumed. Students are the
only “economic agents”, not schools. School choice matching is
considered as one-sided matching.

The priority of student i is violated (or disrespected) at a matching if
there exists another student j who is assigned to school s such that
(i) student i prefers school s to his current assignment, (ii) student i

has higher priority than student j for school s. Violation of priorities
may induce parents to seek legal action for such envyness.
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Boston student assignment mechanism

1. Each student submits a preference ranking of the schools.

2. For each school a priority ordering is determined according to
the following hierarchy:

• First priority: sibling and walk zone.

• Second priority: sibling.

• Third priority: walk zone.

• Fourth priority: students other than above.

Students in the same priority group are ordered based on a previously
announced lottery.

A secondary school has to take in students who have chosen the
school as their first choice before admitting other students.

Political correctness: Government may boost that a high portion of
students can get into their first choice.
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Round 1: Only the first choices of the students are considered. For
each school, consider the students who have listed it as their first
choice and assign seats of the school to these students one at a
time following their priority order until either there are no seats left
or there is no student left who has listed it as her first choice.

Round 2: Only the second choices of these students are considered.
For each school with still available seats, consider the students who
have listed it as their second choice and assign the remaining seats
to these students one at a time following their priority order until
either there are no seats left or there is no student left who has
listed it as her second choice. The same procedure is repeated with
the kth choice, k = 3,4, . . ..

Once a student misses her first choice, she may be admitted into a
school which may be quite low in her preference list. Students (and
parents) have to game around the mechanism. If the dreamed first
choice is too competitive, the student may cheat by putting a less
preferred choice as the first choice in order to secure admission into
a reasonably good but not the best school.
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JUPAS

Students can choose up to 20 programs. Programs can rank stu-
dents based on their test scores and interview performance. Howev-
er, programs do not have the full information of the preference lists
of students on their ranking orders on programs, except in the form
of 5 bands. Band A contains the top 3 choices, Band B contains
the next 3 choices, etc. A program is informed whether a student
has selected the program to be among the top 3 choices in Band
A, but not the exact order of first, second or third choice.

The categorization into bands help programs to conduct interviews
for students who show strong interest in their programs. As the
common practice, most elite programs only admit students who
choose the specific program as their Band A choices.

Similar to the school choice problems, JUPAS applicants have to
game around to set their Band A choices to programs whose ex-
pected minimum admission scores are close but lower than their
examination scores.
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School tiers system in China

• Colleges are categorized into different tiers.
Key colleges (National 985 and 211 universities) belong to the
first tier and admit students first.
Ordinal colleges belong to the second tier.
Vocational training colleges are included in the third tier.

• College admissions in China proceed sequentially in peers. Only
when assignments in the first tiers are finalized, admissions in
the second tier start; and so on.
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Chinese parallel mechanism

We consider the following Shanghai version of the Chinese parallel
mechanisms in its simplest version, with two parallel choices.

• An application to the first ranked school is sent for each student
at the first step.

• Throughout the allocation process, a school can hold no more
applications than its capacity. If a school receives more applica-
tions than its capacity, it retains the students with the highest
priority up to its capacity and rejects the remaining students.

• Whenever a student is rejected from his first choice school, her
application is sent to her second choice school. Whenever a
student is rejected from her second choice school, she can no
longer make an application in this round.
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• Throughout each round, whenever a school receives new ap-
plications, these applications are considered together with the
retained applications for that school. Among the retained and
new applications, the ones with the highest priority up to the
capacity are retained.

• If a student is rejected by his first two choices in the initial round,
then he participates in a new round of applications together with
other students who have also been rejected from their first two
choices, and so on. At the end of each round the assigned
students and the slots assigned to them are removed from the
system.

The assignment process ends when no more applications can be
rejected.
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We call it to be application-rejection mechanism with e schools,
which coincides with

1. Boston mechanism when e = 1,

2. Chinese parallel mechanism when 2 ≤ e < ∞ (Shanghai version
when e = 2),

3. deferred acceptance mechanism when e = ∞.

Within the family of application-rejection mechanism ϕe:

1. e = 1, Boston mechanism is Pareto efficient.

2. e = ∞, deferred acceptance mechanism is both strategy-proof
and stable.

For any e, ϕe is more manipulable than ϕe
′
whenever e′ > e.

Therefore, among application-rejection mechanisms, Boston mech-
anism is the most manipulable and the deferred acceptance mech-
anism is the least manipulable member.
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A “successful” strategy for a student is one that ensures that he is
assigned to his “target school” at the end of the initial round. In this
sense, missing the first choice in the Boston mechanism could be
more costly to a student than in a Chinese parallel mechanism such
as the Shanghai, which offers a “second chance” to the student
before he loses his priority advantage. On the other hand, at the
other extreme of this class lies the deferred acceptance mechanism,
which completely eliminates any possible loss of priority advantage
for a student.

It is in the best interest of each student to put his within-round
choices in their true order. More precisely, for a student facing ϕe,
any strategy that does not list the first e choices (that are considered
in the initial round) in their true order is dominated by the otherwise
identical strategy that lists them in their true order.
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Timing of preference submission by students

• Before the examination (2 provinces).

• After the examination but before knowing the examination s-
cores (3 provinces).

• After knowing the examination scores (26 provinces).

Complaint from a parent in China on the old college admission
scheme (similar to the Boston mechanism): “My child achieved a
score of 632 in the college entrance examination last year. Unfortu-
nately, he was not accepted by his first choice. After his first choice
rejected him, his second and third choices were already full. My
child had no choice but to repeat his senior year.”

The application-rejection algorithm is praised by one student in
Shanghai: “I could give Peking University a try ... Even though
I failed to be admitted by Peking University, Fudan University ac-
cepted me at the end, thanks to the parallel choice algorithm.”
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Example

Consider a problem with three students i1, i2, and i3 and three
schools s1, s2, and s3, each with one seat. Student preferences are:

i1 : s2 − s1 − s3
i2 : s1 − s2 − s3
i3 : s1 − s2 − s3,

and priorities are:

s1 : i1 − i3 − i2
s2 : i2 − i1 − i3
s3 : i3 − i1 − i2.
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Under the student-proposing deferred acceptance mechanism, the
matching produced is

µDA =

(
i1 i2 i3
s1 s2 s3

)
.

In this matching, none of the students obtain their top choice. The
matching is not Pareto efficient. However, since there are no block-
ing pairs, it is stable.

Under the top trading cycles mechanism, the matching produced is

µTTC =

(
i1 i2 i3
s2 s1 s3

)
.

This matching is Pareto efficient since both student i1 and i2 have
obtained their top choice. However, student i3 and school s1 form
a blocking pair, so the matching is not stable.

Under the Boston mechanism, the matching produced is

µBOS =

(
i1 i2 i3
s2 s3 s1

)
.
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Poor i2, he gets the worst choice s3 since he loses to i3 in competing
for the first choice s1 and his second choice s2 has been taken by
i1 in the first-choice round.

This matching is Pareto efficient since i1 and i3 have obtained their
first choice. However, student i2 and school s2 form a blocking
pair, so the matching is not stable. Moreover, had students i2
reported that s2 was her top choice, that is, s2 − s1 − s3, she would
have received an assignment there, which demonstrates that the
mechanism is not strategy-proof:

µgame
BOS =

(
i1 i2 i3
s3 s2 s1

)
.

The outcome of the Boston mechanism is Pareto efficient, provided
that students truthfully reveal their preferences. Proof of Pareto
efficiency can follow similar argument as that of the Top Trading
Cycle algorithm. However, truthful revelation is rarely in the best
interest of students, and efficiency loss is expected.
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Game around the system

With gaming on both sides (initiated by programs, followed by s-
tudents), envy-freeness would not be guaranteed. A program may
admit students with lower scores while missing other applicants with
higher scores. Mediocre programs and students may benefit from
the gaming strategies on both sides.

Social welfare enhanced or undermined? How to quantify social
welfare?

To what extent can programs admit reasonably good quality of
students with high interest in the programs?

Information collection on the minimum admission scores is impor-
tant for students to help make better informed decision. How much
an uninformed student loses her chance of getting into a program
of reasonable level of desirability?
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2.3 House allocation with existing tenants

A house allocation problem with existing tenants consists of

1. A finite set of existing tenants, IE;

2. A finite set of new applicants, IN ;

3. A finite set of occupied houses, H0 = {hi}i∈IE;

4. A finite set of vacant houses, HV ;

5. A list of preference relations, P = (Pi)i∈IE∪IN .

We assume no consumption externalities, where agents care only
the houses but not their neighbors. Also, there is an ordering f of
the agents, where this order may indicates seniority or priority of
the agents. Otherwise, an ordering can be generated by lottery.
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In some earlier mechanisms, those who want to move are asked to
give up their houses before they are assigned another one.

If there is no guarantee of getting a better house, the tenants may
simply keep their current houses, which may result in loss of poten-
tial gains from trade. We would like to ensure that the new assigned
houses would not be worst off than the original assignment for ex-
isting tenants. This is called individual rationality.

Pareto efficient: There is no other allocation that makes all agents
weakly better off and at least one agent strictly better off.

Strategy proof: Truth telling is a weakly dominant strategy for every
agent.
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Let IE = {i1, i2, i3, i4}, IN = {i5}, H0 = {h1, h2, h3, h4}, and HV =
{h5, h6, h7}. The existing tenant ik occupies the house hk for k =
1, . . . ,4.

Let the ordering f order the agents as i1 − i2 − i3 − i4 − i5 and let
the preferences be as follows:
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• All vacant houses h5, h6 and h7 all point to i1 (the agent with
highest priority). In this way, i1 would not lose the top priority
to get into one of the vacant houses.

• All occupied houses point to their existing tenants, like h2 points
to i2. The existing tenant would not lose the occupied house
unless he finds better house.

• All agents point to their top choice; like i1 points to h2 and i3
points to h2.

A closed cycle is formed: i1 gets h2 and i2 gets h7.
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• Since i1 and i2 move out in the first round, h1 becomes available.

• Now, i3 is the highest ranking agent, so h1, h5 and h6 all point
to i3.

• There are two cycles (i3, h1) and (i4, h4). Therefore i3 is as-
signed h1 and i4 is assigned his own house h4.
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• The available houses h3, h5, and h6 all point to the only remain-
ing agent i5. The only cycle is (i5, h3). Therefore i5 is assigned
h3.

Final outcome (
i1 i2 i3 i4 i5
h2 h7 h1 h4 h3

)

The new assignment for an existing tenant would not be worst
off since an existing tenant always has his original assigned house
pointing to him until he leaves. The new assignment of i cannot be
worse than his original assignment.
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MIT · NH4 mechanism

The following mechanism is used at the residence NH4 of MIT. It
works as follows:

(i) An ordering f of agents is chosen from a given distribution of
agents.

(ii) The first agent is tentatively assigned his or her top choice
among all houses, the next agent is tentatively assigned his top
choice among the remaining houses, and so on, until a squatting
conflict occurs.

(iii) A squatting conflict occurs if it is the turn of an existing tenant
but every remaining house is worse than his or her current house.
That means someone else, the conflicting agent, is tentatively
assigned the existing tenant’s current house.
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When this happens

(a) the existing tenant is assigned his or her current house and
removed from the process, and

(b) all tentative assignments starting with the conflicting agent
and up to the existing tenant are erased.

At this point the squatting conflict is resolved and the process
starts over again with the conflicting agent. Every squatting
conflict that occurs afterwards is resolved in a similar way.

(iv) The process is over when there are no houses or agents left. At
this point all tentative assignments are finalized.
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Let IE = {i1, i2, i3, i4}, IN = {i5}, H0 = {h1, h2, h3, h4}, and HV =
{h5}. Here the existing tenant ik occupies the house hk for k =
1,2,3,4. Let the ordering f order the agents as i1 − i2 − i3 − i4 − i5
and let the preferences be as follows:
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Round one

i1 i2 i3 i4

h3 h4 h5 h3
}

occupied
h5

h4

i4 is assigned to h4 and leaves. The house held by i2 (conflicting
agent) is reassigned.

Round two

i1 i2 i3

h3 h5 h5 occupied

h3

i3 is assigned to h3 and leaves. The house held by i1 (conflicting
agent) is reassigned.
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Round three

i1 i2 i5

h5 h2 h1

i2 is assigned h2 since h4 and h5 are gone. The new comer is
assigned the fourth choice h1. Poor i3, though he is at the top of
the order, he only gets the third choice since the top two choices
are assigned to the existing occupants due to resolution of squatting
conflicts.

Therefore the final matching is(
i1 i2 i3 i4 i5
h5 h2 h3 h4 h1

)
which is Pareto dominated by both(

i1 i2 i3 i4 i5
h3 h2 h5 h4 h1

)
and

(
i1 i2 i3 i4 i5
h4 h2 h5 h3 h1

)
.
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2.4 Kidney exchange

Most transplanted kidneys are from cadavers, but there are also
many transplants from live donors. Live donor kidneys are prefer-
able to cadaver kidneys due to a higher survival rate from surgery. A
successful transplant requires the donor and recipient to be compat-
ible in blood and tissue types. There has always been a considerable
shortage of kidneys, compared with demand.

Direct exchange

This involves two patient-donor pairs in which a transplant from the
donor to the intended patient is infeasible, but successful transplants
are possible using the kidney from the other patient-donor pair.
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Indirect exchange

This involves an exchange between one incompatible patient-donor
pair and the cadaver queue. The patient in the (donor, patient)
pair receives high priority on the cadaver queue, in return for the
donation of his donor’s kidney to someone on the queue.

This improves the welfare of the patient in the pair, compared with
having a long wait for a suitable cadaver kidney. It also benefits the
recipient of the live kidney, and others on the queue who benefit
from the increase in kidney supply due to an additional living donor.
In general, patients gain more if they are given wider choices of
kidneys under the exchange mechanism.

Reference
Roth, A.E., Sönmez, T. and Ünver, M.U. (2004). “Kidney ex-
change”, Quarterly Journal of Economics, vol. 119(2), p.457-488.
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Cadaver queue: The waiting list for cadaver kidneys is highly struc-
tured, with scores being assigned to each candidate based on fac-
tors, like blood type, tissue, age, size. These factors affect whether
a transplant is likely to succeed. This allows for strict preferences
within any kidney exchange mechanism.
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Parallels between the kidney exchange system and college dor-
mitories allocation

• The tenant of the requested dormitory room is moved to the
top of the queue ahead of the person who requested that room.
This feature ensures every existing tenant a room that is no
worse than his own. If a donor gives a kidney to the cadaver
queue, his intended recipient jumps to the top of the queue.

• The number of rooms in the room allocation is fixed, whereas
the number of kidneys is not. We do not know how long one has
to wait in the cadaver queue until a compatible kidney becomes
available.

• There are unoccupied rooms and new students who do not have
occupied rooms. The counterpart of new students are patients
who have no living donors. The counterpart of vacant rooms
are cadaveric kidneys that are not targeted for specific patients.
While occupied rooms and vacant rooms can be simultaneously
allocated, this is not possible in the context of kidney exchange
due to uncertainty in the arrivals of kidneys.
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Top trading cycles and chains (TTCC) mechanism

There are n donor-recipient pairs, (ki, ti), i = 1,2, . . . , n. The donor
ki is interpreted as kidney ki and intended recipient ti as patient ti.

Given a patient ti, let Ki ⊂ K denote the set of living donor kidneys
that are compatible with patient ti. Let w denote the option of
entering “the waiting list with priority”, reflecting the donation of
his donor’s kidney ki. Let Pi denote his strict preferences over
Ki ∪ {ki, w}.

• If patient ti ranks kidney ki at the top of his preferences, that
means he and his donor do not wish to participate in an ex-
change.

• If patient ti ranks ki on top of w, that means he and his donor do
not consider exchanging kidney ki with priority in the cadaveric
kidney waiting list.
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Cycles and w-Chains

In each round each patient ti points either toward a kidney in Ki∪{ki}
or toward w, and each kidney ki points to its paired recipient ti. At
least, ti can point back to ki as the last resort. However, he always
hopes to receive better kidney.

A cycle is an ordered list of kidneys and patients {k′1, t
′
1, k

′
2, t

′
2, . . . , k

′
m,

t′m} such that kidney k′1 points to patient t′1, patient t′1 points to
kidney k′2, . . ., kidney k′m points to patient t′m, and patient t′m points
to kidney k′1. Note that each kidney or patient can be part of at
most one cycle and thus no two cycles intersect.
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A w-chain is an ordered list of kidneys and patients {k′1, t
′
1, k

′
2, t

′
2, . . . ,

k′m, t′m} such that kidney k′1 points to patient t′1, patient t′1 points to
kidney k′2, . . ., kidney k′m points to patient t′m, and patient t′m points
to w. We refer to the pair (k′m, t′m) whose patient receives a cadaver
kidney in a w-chain as the head and the pair (k′1, t

′
1) whose donor

donates to someone on the cadaver queue as the tail of the w-chain.

We need to have a well-defined chain selection rule. Selection of
longer w-chains will benefit more patients, so this choice of a chain
selection rule has efficiency implications.
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For a given kidney exchange problem, the TTCC mechanism deter-
mines the exchanges as follows.

1. Initially, all kidneys are available, and all agents are active. At
each stage of the procedure each remaining active patient ti
points to his most preferred remaining unassigned kidney or to
the wait-list option w, whichever is more preferred. Each re-
maining kidney ki points to its paired recipient ti.
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2. There is either a cycle, or a w-chain, or both.

(a) Proceed to Step 3 if there are no cycles. Otherwise, locate
each cycle, and carry out the corresponding exchange. Re-
move all patients in a cycle together with their assignments.

(b) Each remaining patient points to his top choice among re-
maining kidneys, and each kidney points to its paired recipien-
t. Locate all cycles, carry out the corresponding exchanges,
and remove them. Repeat until no cycle exists.
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3. If there are no pairs left, we are done. Otherwise, each remaining
pair is the tail of a w-chain. Select only one of the chains
with the chain selection rule. The assignment is final for the
patients in the selected w-chain. The chain selection rule also
determines whether the selected w-chain is removed and the
associated exchanges are all immediately assigned (including the
kidney at the tail, which is designated to go to a patient on
the cadaver queue), or if the selected w-chain is kept in the
procedure although each patient in it is passive henceforth.

4. After a w-chain is selected, new cycles may form. Repeat Step-
s 2 and 3 with the remaining active patients and unassigned
kidneys until no patient is left.

At the end of the procedure, each patient with a living donor is
assigned a kidney (or a high priority place on the waiting list).
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Consider a kidney exchange problem with 12 pairs (k1, t1), . . . , (k12, t12)
with preferences as follows:

Note that patient ti either assigns ki as the lowest priority, or oth-
erwise w. The later case corresponds to the case where ki is not
compatible, so ti is put at the top of the cadaver queue.

The final matching is
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FIGURE I
Example 1, Round 1

There is a single cycle C1 = (k11, t11, k3, t3, k2, t2). Remove the cycle
by assigning k11 to t2, k3 to t11, and k2 to t3.
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FIGURE II
Example 1, Round 2

Upon removing cycle C1, a new cycle C2 = (k7, t7, k6, t6, k5, t5) form-
s. Remove it by assigning k7 to t5, k6 to t7, and k5 to t6.
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FIGURE III
Example 1, Round 3

No new cycle forms, and hence each kidney-patient pair starts a
w-chain. The longest w-chains are W1 = (k8, t8, k4, t4, k9, t9) and
W2 = (k10, t10, k1, t1, k9, t9). Since t1, the highest priority patient, is
in W2 but not in W1, choose and fix W2. Assign w to t9, k9 to t1,
and k1 to t10 but do not remove them. Kidney k10, the kidney at
the tail of W2, remains available for the next round.
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FIGURE IV
Example 1, Round 4

Upon fixing the w-chain W2, a new cycle C3 = (k4, t4, k8, t8) forms.
Remove it by assigning k4 to t8, and k8 to t4.
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FIGURE V
Example 1, Round 5

No new cycles form, and the pair (k12, t12) “joins” W2 from its tail
to form the longest w-chain W3 = (k12, t12, k10, t10, k1, t1, k9, t9). Fix
W3, and assign k10 to t12. Since no patient is left, w-chain W3 is
removed, and kidney k12 at its tail is offered to the highest priority
patient at the cadaveric waiting list.
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2.5 Roommate problems and Irving algorithm

A roommate problem involves a set of 2n persons, where n is positive
integer. Each person has strict preferences over the others.

We define a matching to be a partition µ of the people into n pairs.
The roommate problem is to find a matching which is stable in the
sense that there are no two persons which are not roommates and
they prefer each other to their assigned roommates.

The roommate problem and marriage problem are different since
the roommates problem allows matching between any two persons
in the same group while marriage problem allows matching between
one man and one woman in two separate groups.
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Example: 6-person roommate problem

The preference lists of the 6 persons are given as follows:

Preferences

1st 2nd 3rd 4th 5th

1 4 6 2 5 3

2 6 3 5 1 4

3 4 5 1 6 2

4 2 6 5 1 3

5 4 2 3 6 1

6 5 1 4 2 3

Main goals: Develop an algorithm in identifying ”stable matching”
(divide the 6 persons into 3 pairs) in this roommate problem
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Irving algorithm

The algorithm is a series of elimination steps to rule out some
impossible pairs that cannot appear in the stable matching.

First phrase
This stage is very similar to the Gale-Shapley algorithm in the stable
marriage problem: Each person (say x) takes turn to make proposal
to another person (say y) based on his/her own preference (from
the first choice to the last choice).

1. When x proposes to y, we have two possible scenarios:

• If y does not hold any other proposal, then y will keep x’s
proposal.

• If y holds a proposal from another person other than x, then
y will keep the better proposal and reject the poorer pro-
posal (based on y’s preference list). Similar to the marriage
problem, each person can hold at most one proposal only.

2. If x’s proposal is rejected by y, then x makes another proposal
to his next preference and repeats the process until his proposal
is accepted by someone or finds no one to accept the proposal.
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This is similar to the man-oriented marriage matching where each
player (serving as man) treats other players as women (dual role
as man and woman). On one hand, his proposal is accepted (best
match); on the other hand, he accepts someone’s proposal (worst
match).

The iteration stops when either

• every person holds a proposal or

• one person is rejected by everyone.

Remark If a stable matching does not exist, then an unlucky guy is
not assigned a partner. Given the practical concern that you cannot
throw away a student applying for a dormitory room, we need to
find a matching solution using another criterion.

105



Example

Players Preference List

A B C M

B C A M

C A B M

M arbitrary

As a remark, non-existence of stable solution of the roommates
problem is revealed in the first phase already when M is rejected by
all others.

keeps proposal from proposal accepted by

A C B

B A C

C B A
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Proposition
Suppose A rejects B in the proposal sequence, then A and B can
not be paired in a stable matching.

Proof
Assume contrary, there are pairs in a stable matching that involve
earlier rejection of one partner by another partner in an assigned
pair. Suppose that, of all the rejections that involve two students
who are partners in some stable matching, the rejection of x by y

is the first chronologically. This means y prefers another person z

to x and engages with z; that is, z proposes to y earlier than x. In
this stable matching M , suppose that x is paired with y and z is
paired with w. For stability of M , z must prefer w to y; otherwise
(y, z) forms a blocking pair, a contradiction to stability of M . We
deduce that z chooses to propose to y after rejected by w. Now,
there exists another pair (z, w) where rejection of z by w occurs
earlier. A contradiction to the assumption that (x, y) is the first
pair is encountered.
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By applying the above rule to the numerical example, the results
are as follows. Notation: 5 → 4,×1, means 5 proposes to 4 and 4
rejects 1 and keeps 5.
1 → 4 (first choice, kept by 4 temporarily)

2 → 6 (first choice, kept by 6 temporarily)

3 → 4,×3 (4 prefers 1 to 3, keeps old proposer 1 and rejects new
proposer 3) (3,4) is ruled out

3 → 5 (goes to the second choice)

4 → 2 (first choice, kept by 2 temporarily)

5 → 4,×1 (4 prefers 5 to 1, rejects 1) (1,4) is ruled out

1 → 6,×2 (1 proposes to the next best choice 6, 6 kicks 2 out)
(2,6) is ruled out

2 → 3 (second choice, kept by 3 temporarily)

6 → 5,×6 (6 proposes to 5 but fails) (5,6) is ruled out

6 → 1 (goes to the second choice)
Note that “6” keeps “1” while “1” keeps “6”. We expect that
(1,6) forms a pair.
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After step 10, each person holds a proposal and the iteration stops.

Preferences Proposal

1st 2nd 3rd 4th 5th kept

1 4 6 2 5 3 “6”

2 6 3 5 1 4 “4”

3 4 5 1 6 2 “2”

4 2 6 5 1 3 “5”

5 4 2 3 6 1 “3”

6 5 1 4 2 3 “1”

“4” has been proposed by “1”, “3” and “5”. According to the
preferences of “4”, “4” keeps “5”. Given that “1” and “3” have
been rejected by “4”, by virtue of the earlier proposition, (1,4) and
(3,4) cannot form a pair in a stable matching solution.

“6” keeps the proposal from “1” and kicks off the earlier proposer
“2”. “5” rejects “6” and keeps the proposer “3” at the end of the
first phase (worst match) but “5” may want to get better partner.
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The purpose of the first phase is to rule out some pairs that never
appear in the stable matching solution. Suppose that x is rejected
by y, one should expect that (x, y) cannot form a pair since y can
find a better partner.

Accordingly, the pairs (1,4), (2,6), (3,4), (5,6) cannot be paired in
any stable matching. Hence, one can delete the corresponding en-
tries in the lists and the preference lists reduce to

Preferences Proposal

1st 2nd 3rd 4th 5th kept

1 4 6 2 5 3 “6”

2 6 3 5 1 4 “4”

3 4 5 1 6 2 “2”

4 2 6 5 1 3 “5”

5 4 2 3 6 1 “3”

6 5 1 4 2 3 “1”
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Best possible match and worst possible match

• Suppose that x’s proposal is accepted by y after the first phrase,
after perhaps several earlier rejections by others, then x cannot
have a better partner than y. So y will be the ”upper bound”
of x’s potential partners.

This is obvious since x’s proposal has been rejected by any per-
son w better than y, where x and w cannot be partners. Since
the proposal goes sequentially from the top choice to less good
choice, the first keeper of x’s proposal is the best match for x.

• Suppose x keeps a proposal from another person z after the first
phrase. Since x is the “upper bound” of z’s potential partners,
x is secured to have at least z. Perhaps, x may reject z in the
second phase when x can find a better partner. Therefore, x

cannot have a partner worse than z. In other word, z will be the
“lower bound” of x’s potential partners.
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Proof of the lower bound property

We prove by contradiction. Suppose that x gets a partner worse
(say u) than z in the final roommate allocation. Since z is not paired
with x, we let v be z’s final roommate. Since z’s proposal goes to
x in the first phase, it follows that v must be worse than x since
x is the upper bound of z’s partners. Note that (x, z) can form a
blocking pair since x prefers z to u and z prefers x to v, and the
matching is unstable.

(x, z) forms a blocking pair
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As an example, we consider preference list of person 2 in the ex-
ample. Since he proposes to 3 and it is kept by “3”, while keeps a
proposal from 4, so “3” is the best partner that 2 can get and “4”
is the worst partner that 2 can get. So partner of person 2 can be
3, 5, 1 or 4.

2| 6 3︸︷︷︸
best

5 1 4︸︷︷︸
worst

.

The above observation allows us to rule out additional invalid pairs.
Given the preference list of x and suppose that x gets z’s proposal
and his proposal is keep by y. We can

– delete all people that are worse than z. At the same time, one
can delete “x” from the preference list of person who is deleted.

– delete all people that are better than y. This have been done in
the first step already.
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For the given example, one can apply this procedure and further
reduce the preference lists as follows:

Preferences Proposal

1st 2nd 3rd 4th 5th kept

1 6 2 5 3 “6”

2 3 5 1 4 “4”

3 5 1 6 2 “2”

4 2 6 5 “5”

5 4 2 3 1 “3”

6 1 4 3 “1”

• For “1”, since he keeps “6” as the proposer, so “6” is already
the worst partner. We can cancel all players lower in “1”’s
preference list.

• Once we know that (1,2) is out, we can delete “1” from “2”’s
preference list.
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Preferences Proposal

1st 2nd 3rd 4th 5th kept

1 6 “6”

2 3 5 4 “4”

3 5 2 “2”

4 2 5 “5”

5 4 2 3 “3”

6 1 “1”

The first phrase allows us to reduce the preference lists by eliminat-
ing invalid pairs so that one can identify the stable matching in the
second phase.

• Only the pair (1,6) is fixed, while partners for “2”, “3”, “4”
and “5” have not yet fixed.
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The reduced preference lists obtained from the first phrase algorithm
have the following properties:

(i) If x’s proposal is kept by y, then x is last on y’s list (x is lower
bound of y’s potential partner). y may improve his choice in
later rounds. However, x consider y as the best choice (except
for those who have rejected x). y is the upper bound of x’s
potential partners.

(ii) a appears in b’s list if and only if b appears on a’s list.

When there is only one person in each list in the reduced preference
lists, a stable matching is achieved by assigning the person to the
sole person in his list. This is seen in the pair (1,6).

Based on the proposals kept by them, we observe that each person
(2,3,4,5) keeps the proposal from the worst person. In the context
of stable matching, each person tries to find a partner as good as
possible. The purpose of the second phrase of rotational elimination
is to find whether it is possible for them to identify better partners.
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All-or-nothing cycle

Given a reduced preference lists, we let {a1, a2, . . . , ar} be a subset
of people drawing from the set of people whose lists contain more
than 1 person. We let bi be the first preference of ai.

The sequence {a1, a2, . . . , ar} is an all-or-nothing cycle if and only if

• for any i = 1,2, . . . , r − 1, the second person in ai’s current
preference list is the first person in ai+1’s;

• the second person in ar’s current reduced preference list is the
first in a1’s.
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How to find all-or-nothing sequence? It amounts to finding a cycle
where each person can secure the second best from his list.

One can adopt the following algorithm to identify such a cycle:

Step 1: Choose an arbitrary person a1.

Step 2: Find b2, which is the second person on a1’s list.

Step 3: Once b2 is identified, find its worst match. This is a2.
Accordingly, b2 is the first person in a2’s list.

Step 4: (General Case) Given ai, we find bi+1, which is the second
person in ai’s list. We determine ai+1 such that bi+1 is the first
person on ai+1’s list.

Repeat Step 4 until the iterates a′j start to repeat. The all-or-
nothing cycle can be obtained by taking out the “repeated compo-
nent”.
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2 3 5 4

3 5 2

4 2 5

5 4 2 3

We consider the reduced lists in the numerical example. We take
a′1 = 2. Then we have

i ai bi bi+1

1 2 3 5

2 3 5 2

3 4 2 5

4 3 5 2

5 4 2 5

6 3 5 2

7 4 2 5

The sequence {a1, a2} = {3,4} is the desired all-or-nothing se-
quence.

119



How can all-or-nothing algorithm improve the outcome?

Given an all-or-nothing cycle {a1, a2, . . . , ar} and the preference list
of each of ais (shown below),

Preferences Preferences

1st 2nd 3rd 1st 2nd 3rd Last

a1 b1 b2 · · · b1 · · · a1
a2 b2 b3 b2 a2
a3 b3 b4 b3 a3
... ...

ar br b1 br ar

Recall that while b1 is the best match for a1, however, a1 is the
worst match for b1. Since a1 cannot compete better than ar, so a1
is rejected by b1. Next, a1 proposes to b2 (second best person in
a1’s list).
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One can improve his partner as follows:

• We start with person b1. b1 can improve his partner by rejecting
a1’s proposal. Recall that a1 proposes to b1 who is the first
preference in a′1s list while a1 is the worst choice in b1’s list. To
close the loop, we observe that b1 accepts ar.

• Since a1 is rejected by b1, a1 proposes to b2 (second best).

• b2 will accept a1’s proposal and reject a2’s proposal since a1 is
better than a2. Recall that a2 is the worst choice for b2.

• Since a2 is now rejected by b2, a2 proposes to b3.

• By continuing the process, ar is rejected by br and ar proposes
to b1. Lastly, b1 accepts ar and b1 has rejected a1 earlier.

We need to ensure that the sequence is cyclic so that b1 (initial one)
is able to get a new partner after rejecting a1.
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1st 2nd 3rd 4th 5th

a1 = 3 5 2

a2 = 4 2 5

Preferences

New Last

proposal proposal

received rejected

b1 = 5 4 · · · 3

b2 = 2 3 4

In the new round, 3 proposes to 2 (next best) and 4 proposes to 5
(next best);
Both 2 and 5 are happy since both get their better choice.
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From the example, we see that {a1, a2} = {3,4} is the all-or-nothing
cycle.

• Since “5” (b1) is the first preference of “3” (a1) in the reduced
list, we force “5” to reject “3”’s proposal. (So 3 and 5 cannot
form a pair by Lemma 1)

• Then “3” proposes to “2”. Then “2” accepts “3”’s proposal
and rejects “4”’s proposal (2 and 4 cannot form a pair by Lemma
1).

• Then “4” proposes to “5” and “5” accepts “4”’s proposal and
reject “3”.

Here, we observe that both “5” (b1) and “2” (b2) can get a better
proposal (partner). That is,

• “5” receives “4”’s proposal (instead of “3”)

• “2” receives “3”’s proposal (instead of “4”)
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Since each of “2” and “5” have received a better proposal, so each
of them rejects the old proposal that is held by him (i.e. “5” rejects
“3” and “2” rejects “4”). We can further delete the corresponding
entries in the reduced preference lists.

Preferences Proposal

1st 2nd 3rd 4th 5th held

1 6 “6”

2 3 5 4 “3”

3 5 2 “2”

4 2 5 “5”

5 4 2 3 “4”

6 1 “1”
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Any entries that are behind the proposal being held should be deleted
since the proposal held is already the worst partner. We then delete
“5” from the list of “2” and “2” from the list of “5”, the final list
becomes

Preferences Proposal

1st 2nd 3rd 4th 5th held

1 6 “6”

2 3 “3”

3 2 “2”

4 5 “5”

5 4 “4”

6 1 “1”

Since there is only one entry in each list, thus we conjecture that
the pairs (1,6), (2,3) and (4,5) constitutes the stable matching.
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Wisdom of the Irving algorithm

The Irving algorithm breaks the deadlock between {proposer is en-
gager’s worst choice} and {engager is proposer’s best choice}.

• After the first phase, each person knows his best potential part-
ner (who accepts his proposal) and his worst potential partner
(whose proposal has been engaged).

• In the second phase, the proposers go down to their second best
partner and seek for cyclic relations between proposers and en-
gagers. With the new proposers, engagers improve their choices.
On the other hand, the proposers go down their ranked lists of
potential partners by one. The iteration ends when every person
has only one partner in his list.

• Stable matching is guaranteed since the ranked list choices go
down from the best choice one by one. Blocking pair would not
exist. Hopefully, this is intuitively acceptable.
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Multiple stable roommate matching solutions

Stable solution may not exist. It can be proven rigorously that if
A is any stable roommate assignment, then there is an execution
of Irving’s algorithm that produces A. For the following 8-person
roommate problem, a former MAEC student tried with different
choices of a1, (starting person in the second phase) and managed
to obtain 3 stable matching solutions:

1 2 5 4 6 7 8 3
2 3 6 1 7 8 5 4
3 4 7 2 8 5 6 1
4 1 8 3 5 6 7 2
5 6 1 8 2 3 4 7
6 7 2 5 3 4 1 8
7 8 3 6 4 1 2 5
8 5 4 7 1 2 3 6

The 3 stable matching solutions are

{(1,2), (3,4), (5,8), (6,7)},

{(1,4), (2,3), (5,6), (7,8)},

{(1,5), (2,6), (3,7), (4,8)}.
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