
MATH4999 — Capstone Projects in Mathematics and Eco-

nomics

Topic Four – Traffic flow models

4.1 Characteristics of traffic flows

– Traffic problems

– Velocity and traffic flows

– Flux and conservation law

4.2 Method of characteristic line

– Density wave velocity

4.3 Impact of a traffic light turning green

– Linear velocity-density relationship

4.4 Car-following models

1



4.1 Characteristics of traffic flows

Traffic problems

• Where to install traffic lights and stop signs?

• How long the cycle of traffic lights should be?

• How to develop a progressive traffic light system?

• Whether to change a two-way street to a one-way street?

• Where to construct entrances, exits and overpasses?

• How many lanes to build for a new highway?
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Problems to be solved include

• alleviate congestion

• maximize flow of traffic

Various levels of model formulations

1. Traffic flows along a unidirectional road versus a network

2. Individual cars to be considered as particles versus observations

made at fixed locations

3. Deterministic versus stochastic approach
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Two methods to measure car’s velocity

1. Measure the velocity ui of each individual car

ui =
dxi(t)

dt

Example

dx1
dt

= 45, t > 0 x1(0) = L;

dx2
dt

= 30, t > 0 x2(0) = 0.

The positions of the two cars are found to be

x1 = 45t+ L

x2 = 30t.
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2. Velocity field

We associate to each point in space and at each time a unique

velocity u(x, t). This is the velocity measured at time t by an

observer fixed at position x.

Analogy with the temperature field

Specify the temperature at fixed position and time, rather than

to associate a temperature with a moving air particle.
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Traffic flow q

Average number of cars passing per hour
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The traffic flow q is a function of time and position

Traffic flow, q(t), measured every half an hour

What happen if we take measurements over each 10-second inter-

val?
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Time

 in seconds

after 7 : 00

 Number of cars
Number of cars

per hour

0-9 0 0

10-19 2 720

20-29 1 360

30-39 4 1440

40-49 1 360

50-59 4 1440

The number of cars passing fluctuates wildly over successive 10-

second intervals.
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Determine the measuring time intervals according to the following

compromising criteria:

1. It is long enough so that many cars pass the observer (eliminat-

ing the wild fluctuations).

2. It is short enough so that variations in the traffic flows are not

smoothed over by averaging over a long period.
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Traffic density

Number of cars per mile

Distance along road Traffic density, number

(in miles) Number of cars of cars per mile

1− 11
4 23 92

11
4 − 11

2 16 64

11
2 − 13

4 22 88

13
4 − 2 8 32
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Example

Cars are equally spaced, all vehicles have the same length L and the

distance between cars is d. The traffic density (number of cars per

mile) is found to be

ρ =
1

L+ d
.

Remark

If we would like to approximate the traffic density as a continuous

function of x, then densities must be measured over intervals of

distance that are not too small nor too large.
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Let us illustrate by an example the significance of the measuring

interval. Consider a 2
10 of a mile segment of a (one-lane) highway,

further subdivided into one hundred smaller intervals of equal length,

with boundaries labeled from 0 to 100. Suppose a photograph was

taken and from it we determined that cars were located at the

following positions:

1.0,3.1,6.1,9.4,12.7,14.1,15.2,16.9,18.9,20.1,21.5,23.5,

25.8,28.9,31.3,34.8,37.0,40.1,43.4,44.9,46.4,47.9,49.6,

51.6,53.3,54.8,56.6,58.3,59.6,60.6,61.9,62.9,63.7,65.0,

66.6,69.5,72.1,76.3,78.8,81.6,84.2,87.7,90.8,95.1,99.3,

each car illustrated in the figure below as a ‘•’:

divided into 100 intervals of equal length
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Density at 50 = number of cars between 50−
m

2
and 50+

m

2
divided

by the length m (converted into numbers of cars per mile)
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Flux

Number of cars passing a fixed station per unit time:

q(x, t) = ρ(x, t)u(x, t),

or in words,

traffic flow = traffic density× velocity.

This is like the concept of flux in physics.

Number of cars between x = a and x = b at time t is

N(t) =
∫ b

a
ρ(x, t) dx.

Cars entering and leaving a segment [a, b] of a roadway
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Useful formulas of traffic flows

1.
dN

dt
= q(a, t)− q(b, t)

Consider the difference between the number of cars N(t) within

[a, b] at t = t0 and t = t1, so

N(t1)−N(t0) =
∫ t1

t0
q(a, t) dt−

∫ t1

t0
q(b, t) dt.

Since t0 is independent of t1, we have

dN(t1)

dt1
=

d

dt1

∫ t1

t0
[q(a, t)− q(b, t)] dt

= q(a, t1)− q(b, t1).

2. In general, since N(t) =
∫ b

a
ρ(x, t) dx, then

∂

∂t

∫ b

a
ρ(x, t) dx = q(a, t)− q(b, t).

It is more appropriate to use
∂

∂t
instead of

d

dt
since a and b can

be considered as additional independent variables.
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Conservation equation

Assuming ρ = ρ(x, t) and q = q(x, t), we have

∂ρ

∂t
+

∂q

∂x
= 0.

If we write q = ρu, then

∂ρ

∂t
+

∂

∂x
(ρu) = 0.

Proof

q(a, t)− q(b, t) = −
∫ b

a

∂

∂x
q(x, t) dx

so that ∫ b

a

[
∂ρ(x, t)

∂t
+

∂q(x, t)

∂x

]
dx = 0.

Since the above statement is valid for all values of the independently

varying limits of the integral, the only function whose integral is zero

for all intervals is the zero function. Therefore, we obtain

∂ρ(x, t)

∂t
+

∂q(x, t)

∂x
= 0.
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Consider the conservation equation

∂ρ

∂t
+

∂

∂x
(ρu) = 0.

There are two dependent variables ρ(x, t) and u(x, t) in one equa-

tion. If u(x, t) is know, then we have one equation for ρ(x, t). Un-

fortunately, we do not know the velocity field without solving the

equation.

We need an additional constitutive equation: q = q(ρ), which re-

flects the peculiarities of vehicular traffic.
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The flow may be zero when

1. there is no traffic, ρ = 0.

2. the traffic is almost not moving: u → 0 at ρ = ρm.

We expect that there exists unique ρ at which q achieves maximum,

so the constitutive relation to observe
d2q

dρ2
< 0.
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One simple choice is the quadratic equation:

q = umρ

(
1−

ρ

ρm

)
.

Now the conservation equation can be rewritten as

∂ρ

∂t
+

dq

dρ

∂ρ

∂x
= 0,

where
dq

dρ
is a known function.

Three basic quantities: q = ρu;

ρ = traffic density, q = flow rate, u = field velocity

1. Conservation law:
∂ρ

∂t
+

dq

dρ

∂ρ

∂x
= 0

2. Constitutive relation: q is given as a function of ρ with q = 0 at

ρ = 0 and ρ = ρmax.
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4.2 Method of characteristic line

A characteristic line connects points in the (x, t)-plane with constant

traffic density ρ.

Equation of the characteristic line: x = ξ + w(ρ)t,

where ξ is the point of intersection with the x-axis at which t = 0.

How to solve for ρ in terms of x and t? It is necessary to prescribe

the initial condition: ρ(x,0) = f(x). We write ρ = f(ξ) at t = 0.
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Method I: Solve for ξ = f−1(ρ), then substitute into the

characteristic equation:

x = f−1(ρ) + w(ρ)t.

Then solve implicitly (if possible) for ρ(x, t).

Method II: Solve implicitly for ξ from x = ξ + w(f(ξ))t;

then ρ(x, t) = f(ξ(x, t)).
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Recall the two governing equations:

conservation law:
∂ρ

∂t
+

∂q

∂x
= 0, q = ρu;

constitutive relation: q = q(ρ).

The conservation law and fundamental diagram of road traffic are

combined to give

∂ρ

∂t
+

dq(ρ)

dρ

∂ρ

∂x
= 0.

Consider an observer moving in some prescribed path x(t). The den-

sity of traffic at the observer’s position changes in time as governed

by

dρ

dt
=

∂ρ

∂t
+

dx

dt

∂ρ

∂x
.

Note that the change in ρ is due to the change in observer’s position.
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The density will remain constant from the observer’s viewpoint, as

characterized by
dρ

dt
= 0 or ρ = constant provided that

dx

dt
= q′(ρ).

This velocity q′(ρ) depends on the density.

• If the observer moves at q′(ρ), then the traffic density will appear

constant to that observer.

• Each observer moves at a constant velocity on each individual

characteristic line, but different observers may move at different

constant velocities since they start with different initial traffic

densities.
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Along the curve
dx

dt
= q′(ρ),

dρ

dt
= 0 or ρ = constant. Here, ρ equals

the value ρ(α,0) = ρα, a known constant. The characteristic line is

given by

x = q′(ρα)t+ α

and ρ = ρα on this straight line.
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Given the point (x∗, t∗), we find the traffic density by determining

the characteristic line that goes through the point. We have

ρ(x∗, t∗) = ρ(γ,0)

where γ is the intercept on the x-axis.

Properties of the density wave velocity dq/dρ

1. Since it is assumed that
dq

dρ
decreases as ρ increases, the wave

velocity decreases as the traffic becomes denser.

2.
dq

dρ
= ρ

du

dρ
+ u as deduced from q = ρu(ρ).

Since cars slow down as the traffic density increases, we have
du

dρ
≤ 0, and consequently

dq

dρ
≤ u.
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Consider
∂ρ

∂t
+ q′(ρ)

∂ρ

∂x
= 0,

since
dρ

dt
=

∂ρ

∂t
+

dx

dt

∂ρ

∂x
so that ρ remains constant along the line

dx

dt
= q′(ρ).

Suppose the initial condition:

ρ(x,0) = f(x), −∞ < x < ∞

is given. If one of the characteristics, say C, interests t = 0 at x = ξ,

then ρ = f(ξ) on the whole of the characteristic C. The slope of C

is q′(f(ξ)) = F (ξ). Equation of C is found to be

x = ξ + F (ξ)t.
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Given any point (x0, t0) in the x-t plane, we solve for ξ0 such that

x0 = ξ0 + F (ξ0)t0, then the value of ρ at (x0, t0) is ρ0 = f(ξ0).

Potential difficulties

Two characteristics may intersect, then this leads to violation of

single-valuedness of the traffic density function.
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Wave phenomena in traffic flows

A wave is any recognizable signal that is transferred from one part of

the medium to another with a recognizable velocity of propagation.

We model the propagation of traffic density as wave.

Wave velocity: w(q) =
dq

dρ
; if an observer moves at the wave velocity,

then he observes constant velocity of traffic flow.
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The signal of constant traffic density a is propagated from point

A at time 0 to point A′ at a later time T with wave velocity q′(a),

where
xA′ − xA
T − 0

= q′(a).
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4.3 Impact of a traffic light turning green

• The position of traffic light is taken to be x = 0.

• Assume the cars to be bumper to bumper behind the traffic

light, ρ = ρmax for x < 0.

• Assume that there is no traffic ahead of the light (the light has

stopped traffic long enough) so that

ρ = 0 for x > 0.
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Recall that the traffic density ρ(x, t) is constant along the charac-

teristics. The governing equation is given by

dx

dt
=

dq(ρ)

dρ
= ρ

du

dρ
+ u.

The traffic density propagates at the velocity
dq

dρ
. Since ρ remains

constant, the density moves at a constant velocity. The character-

istics are straight lines, namely,

x = t
dq(ρ)

dρ
+ k.

Each characteristic corresponds to a different integration constant

k.

Traffic density: expected qualitative behavior after red light turns

green.
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Imagine you are in the first car. As soon as the light changes you

observe zero density ahead of you, and therefore in this model you

accelerate instantaneously to the speed umax.

1. Consider all characteristics that intersect the initial data at x >

0. Note that ρ(x,0) = 0 for x > 0.

Hence, ρ = 0 along all the characteristics lines where

dx

dt
=

dq

dρ

∣∣∣∣∣
ρ=0

= u(0) = umax.

The characteristic velocity at zero density is always umax, the

car velocity for zero density.

32



You would not reach the point x until t = x/umax and thus there

would be no cars at x for t < x/umax.
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2. Consider all characteristics that intersect the initial data at x <

0, where ρ(x,0) = ρmax. Note that

dx

dt
=

dq

dρ

∣∣∣∣∣
ρ=ρmax

= ρmax
du

dρ

∣∣∣∣∣
ρ=ρmax

= ρmaxu
′(ρmax) < 0

since u(ρmax) = 0 and u′(ρmax) < 0.

The characteristics are all parallel straight lines with negative

slopes.

The cars are still facing bumper to bumper in the region: x <

ρmaxu′(ρmax)t.

After the light changes to green, the cars start moving and this

takes a finite amount of time before each car moves.
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Method of characteristics: regions of no traffic (ρ = 0) and bumper-

to-bumper traffic (ρ = ρmax).
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Waiting times at a traffic light

Ignoring the driver’s reaction and acceleration time, the nth car waits

an amount of time that equals

t =
(n− 1)L

−ρmaxu′(ρmax)
,

where L is the front-to-front distance between two consecutive cars.

It would be interesting to measure the waiting times at a traffic

light as a function of the car’s position. One can perform this

experiment.

• Is the waiting time roughly linearly dependent on the car’s po-

sition as predicted above? Use the data to compute u′(ρmax).

• Does u′(ρmax) significantly vary for different road situations?
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The density has not been determined in the region

ρmaxu
′(ρmax)t < x < umaxt,

the region in which cars actually pass through the green traffic light!

To solve the problem, we first assume that the initial traffic density is

not discontinuous, but smoothly varied between ρ = 0 and ρ = ρmax

in a very small distance ∆x near the traffic light.
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Suppose there is a very small distance ∆x near the traffic light

where the initial traffic density is smoothly varied between ρ = 0

and ρ = ρmax. The equation of the characteristic line is

x =
dq

dρ
t+ x0.

Since ρ changes continuously between ρ = 0 and ρ = ρmax, the

velocity
dq

dρ
is always between umax and ρmaxu′(ρmax).

(i) For a denser traffic, so higher ρ, then
dq

dρ
is smaller

(ii) There is a value for ρ such that
dq

dρ
= 0, so q attains its maximum

value.
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Space-time diagram for the rapid transition from no traffic to bumper-

ro-bumper traffic.
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As soon as the light changes from red to green, the maximum flow

occurs at the light, x = 0, and it stays there for all future time.

If this theory is correct, that is, u = u(ρ), then we position an

observer at a traffic light. One then wait until the light turns red

and many cars line up. When the light turns green, we simply

measure the traffic flow at the light.

This measured traffic flow of cars will be constant and equal to the

maximum possible for the road (called the capacity of the road).

40



Taking the limit ∆x → 0, then ρ is constant along the characteristic:

dx

dt
=

dq

dρ
,

which are straight lines emanating from x = 0.

It is as though at the discontinuity (x = 0) that all traffic densities

between ρ = 0 and ρ = ρmax are observed. The observers (follow-

ing constant density) then travel at different constant velocities
dq

dρ
depending on which density they initially observe at x = 0. Along

each characteristic, the density is constant.
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Method of characteristics: ∆x is the initial distance over which

density changes from 0 to ρmax.

Fan-shaped characteristics due to discontinuous initial data.
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To obtain the density at a given x and t, we must determine which

characteristic line that goes through (x, t). Assuming that
dq

dρ
de-

pends only on ρ, we solve algebraically for ρ as a given value of
x

t
.

From the graph, for a given value of
x

t
for

dq

dρ
, we read out the

solution for ρ.
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The Fundamental Diagram of Road Traffic can be used to determine

graphically the density at a given position on the roadway in the

region of fanlike characteristics.

Given t and x, the slope of the straight line from the origin to the

point (t, x) in the figure equals dq/dρ. Thus this straight line must

have the same slope as the tangent to the flow-density (q-ρ) curve.

The traffic density can thus be estimated by finding the density on

the q-ρ curve whose slope is the same as x/t.
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Traffic density in fan-like region of characteristics: graphical technique.

Linear velocity-density relationship

If the velocity-density relationship is assumed to be linear, then

u(ρ) = umax

(
1−

ρ

ρmax

)
.
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The traffic flow is given by

q = ρu = umaxρ

(
1−

ρ

ρmax

)
and

dq

dρ
= umax

(
1−

2ρ

ρmax

)
.
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Under the linear velocity-density assumption, the density at which

the traffic flow is maximized is exactly one-half the maximum den-

sity, ρ =
ρmax

2
. The speed is one-half the maximum speed

u

(
ρmax

2

)
=

umax

2
.

The maximum traffic flow is

q

(
ρmax

2

)
=

ρmaxumax

4
.
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Space-time diagram for the traffic light problem

Now, u′(ρmax)ρmax = −umax so that the left side characteristics are

bounded by x = −umaxt. How to calculate the density in the fanlike

region:

−umaxt < x < umaxt ?

From the equation

x

t
=

dq

dρ
= umax

(
1−

2ρ

ρmax

)
,

we obtain

ρ =
ρmax

2

(
1−

x

umaxt

)
.
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For a fixed time, the density is linearly dependent on x (in the fanlike

region).

For t > 0, and at x = 0, we obtain ρ =
ρmax

2
. This is the density

corresponding to the maximum flow.
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Let us follow observers staying with the constant densities ρmax,

3ρmax/4, ρmax/2, ρmax/4, and 0, marked by • on the diagram be-

low representing the initial density. Each observer is moving at a

different constant velocity. After some time (introducing an arrow

showing how each observer must move), the diagram shows that

the linear dependence of the wave velocity on the density yields a

linear density profile.
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Motion of an individual car starting at −x0 (x0 > 0)

The velocity of the car is given by the field velocity

dx

dt
= u(x, t) = umax

(
1−

ρ

ρmax

)
.

Car path (while car is not moving).

The car stays still until the wave, propagating the information of

the change of the light, reaches the car. After t = x0/umax, the car

moves at the velocity given in the fanlike region.
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When the car starts moving, its velocity is first zero and then slowly

increases. Given ρ =
ρmax

2

(
1−

x

umaxt

)
, we have

dx

dt
=

umax

2
+

x

2t
.

We solve for

t
dx

dt
−

x

2
=

umax

2
t

with the auxiliary condition: t =
x0

umax
and x = −x0.

The solution takes the form

x(t) = umaxt+Bt1/2.

The arbitrary constant is determined by

−x0 = x0 +B

(
x0

umax

)1/2
so

B = −2x0

(
umax

x0

)1/2
= −2(x0umax)

1/2.
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Hence, the position of the car is

x = umaxt− 2(x0umaxt)
1/2

and the car velocity is

dx

dt
= umax −

(
x0umax

t

)1/2
.

As t → ∞, the car reaches the maximum velocity umax.

How long does it take the car to actually pass the light? We set

x = 0, where

0 = umaxt− 2(x0umaxt)
1/2

giving

t = 4
x0

umax
,

At what speed is the car going when it passes the light? This is

umax/2.
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The path is parabolic since the relation is x = umaxt−2(x0umaxt)1/2.
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Number of cars passing the traffic light over a given time

interval

If the light stays green until time T , how many cars will pass the

traffic light?

Recall that a car starting at −x0 passes the traffic light at t =

4x0/umax. At time T , a car stating from −umaxT/4 will be at the

light. The number of cars contained in that distance is ρmax

(
umaxT

4

)
.

Numerical computation

For a one-minute light, using ρmax = 225 and umax = 40mph, the

number of cars passing=
225

4
· 40 ·

1

60
≈ 37.5 cars.
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Solution for ρ(x, t)

1. Parameterizing the initial position as a function of x and t.

Each characteristic is labeled by its position x0 at t = 0. Hence,

for given values of x and t, we try to find x0. This is done by

eliminating ρ from the two equations:

x = umax

(
1−

2ρ

ρmax

)
t+ x0 and ρ = f(x0) ⇒ x0 = x0(x, t).

Example

Supposing ρ(x,0) =
ρmax

1+ ex/L
, then

x = umax

(
1−

2

1+ ex0/L

)
t+ x0.

Since the density at the point (x, t) depends on x0, then

ρ(x, t) = ρ(x0,0) = f(x0) = f(x0(x, t)).
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2. Parameterizing the initial position as a function of the initial

density

First, we determine x0 as a function of ρ; that is, x0 = x0(ρ).

We then substitute x0 = x0(ρ) into x = umax

(
1− 2ρ

ρmax

)
t+x0, we

obtain an equation involving only x, t and ρ, giving ρ’s depen-

dence on x and t.
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Suppose the initial density varies in a prescribed way: ρ(x,0) = f(x).

Assume u(ρ) = umax

(
1−

ρ

ρmax

)
, then

dx

dt
=

dq

dρ
= umax

(
1−

2ρ

ρmax

)
.

The characteristic starting from x = x0 is

x = umax

(
1−

2ρ

ρmax

)
t+ x0.

Along the above characteristic, density is constant and its value is

f(x0). Here, we assume that the characteristics do not intersect.
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Example

Consider the velocity function

u(ρ) = umax

(
1−

ρ

ρmax

)
and the density function

ρ(x,0) =


ρmax x < 0

ρmax
(x−L)2

L2 0 < x < L

0 x > L

.
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If x0 > L or x0 < 0, then the characteristics start from a region

of constant density. The corresponding density wave velocities are

given by

dq

dρ

∣∣∣∣∣
ρ=0

= umax and
dq

dρ

∣∣∣∣∣
ρ=ρmax

= −umax.

We obtain the density function

ρ =

{
0 for x > umaxt+ L
ρmax for x < −umaxt

.

The two set of characteristic lines at x ≤ 0 and x ≥ L.
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Method I: x0 = x0(x, t)

For the characteristics that start from 0 < xo < L, we have

ρ =
ρmax(x0 − L)2

L2
,

so the equation for this characteristic is

x = umax

[
1−

2

L2
(x0 − L0)

2
]
t+ x0, 0 < x0 < L.

Solving for x0:

(x0 − L)2
2umaxt

L2
− (x0 − L) + x− L− umaxt = 0,

we obtain

x0 − L =
1−

√
1− 8umaxt

L2 (x− L− umaxt)

4umaxt/L2
,

where the negative sign is chosen.
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Since ρ =
ρmax(x0 − L)2

L2
, we obtain

ρ(x, t) =
ρmax

L2

[
1−

√
1− 8umaxt

L2 (x− L− umaxt)
]2

16u2maxt
2/L4

So that

ρ(x, t)

ρmax
=

−L+
√
L2 − 8umaxt(x− L− umaxt)

4umaxt


2

.
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As a check of the satisfaction of the auxiliary conditions, we observe

(i) as x → umaxt+ L, ρ → 0

(ii) as x → −umaxt, ρ →
ρmax

L2

[
1−

√(
1+ 4umaxt

L

)2]2
16u2maxt

2/L4
= ρmax.

(iii) as t → 0, using
√
1− t ≈ 1−

t

2
for small t, we have

ρ(x, t) =
ρmax

L2

[
1−

(
1− 4umaxt

L (x− L)
)]2

16u2maxt
2/L4

=
ρmax(x− L)2

L2
.

This is precisely the initial condition: ρ(x,0), 0 < x < L.
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Method II: x0 = x0(ρ)

First, we determine x0 as a function of ρ,

(x0 − L)2 =
L2ρ

ρmax
or x0 = L± L

√
ρ

ρmax
.

The negative sign must be chosen so that

x0 = L− L
√
ρ/ρmax = L

(
1−

√
ρ

ρmax

)
.

As ρ varies between 0 and ρmax, x0 varies between 0 and L.

The equation for the density becomes

x = umax

(
1−

2ρ

ρmax

)
t+ L

(
1−

√
ρ

ρmax

)
.
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If we treat the above equation as a quadratic equation for
√
ρ/ρmax,

then we obtain(√
ρ

ρmax

)2
2umaxt+ L

√
ρ

ρmax
+ (x− L− umaxt) = 0.

Solving the quadratic equation, we obtain√
ρ

ρmax
=

−L+
√
L2 − 8umaxt(x− L− umaxt)

4umaxt
,

where the positive sign of the square not has been chosen since√
ρ

ρmax
> 0.
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Summary of the calculation procedures

Given the point (x, t), find the characteristic that originates from

the point (x0,0). On the characteristic, the density ρ is constant.

Equation of the characteristic:
dx

dt
=

dq

dρ
.

Let ρ(x,0) = f(x), then the equation of the characteristic that

passes through (x, t) is

dx

dt
=

dq

dρ

∣∣∣∣∣
ρ=f(x0)

,

where q = ρu and u = u(ρ) is given (from empirical observations).

The characteristics are straight lines.
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Fan-like characteristics

When the characteristics resemble the fan-like rays bounded by two

boundary characteristics, we have
dx

dt
=

x

t
since the characteristics

are straight lines through the origin.

Kinematic equation:
dx

dt
= u(ρ)

We try to obtain ρ as a function of x and t.

67



4.4 Car-following models

Car-following theory

Model the single-lane (no passing) relatively dense traffic on long

straight highways.
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Homogeneity assumptions

All drivers in the line drive the same type of cars which are in the

same mechanical condition and all drivers react the same way to

a given situation. Quantities considered: speed, acceleration and

separation distances.

Pipes’ Model

California Vehicle Code statement: A good rule for following an-

other vehicle at a safe distance is to allow yourself the length of a

car (about 15 feet) for every 10 miles per hour (14.67 ft/sec) you

are traveling.

Define T ∗ = 15ft/[14.67ft/sec] ≈ 1.02s (take it to be 1 sec as an

approximation)
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Let L∗ = 15ft be the length of the vehicles, then

xn(t) = xn+1(t) +
L∗

14.67
vn+1(t) + L∗ + b∗, (1)

where vn+1(t) is the speed of the (n + 1)st vehicle (in units of 10

miles per hour).

The quantity b∗ is added, which is the legal distance at rest. If

b∗ = 0, this would mean the car behind will touch the bumper of

the car ahead when the vehicles are at rest. Differentiating with

respect to t in eq.(1), we obtain

vn(t) = vn+1(t) + T ∗dvn+1(t)

dt
. (2)

If we set T ∗ = 1, we have

an+1(t) =
dvn+1(t)

dt
= vn(t)− vn+1(t).
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The trailing car adjusts the acceleration an+1(t) in response to the

relative velocity between the vehicle and the vehicle ahead.

response = sensitivity × stimulus
↑ ↑ ↑

acceleration an+1(t)
1
T ∗ relative velocity vn − vn+1

Other possible modification

Recall that the California Vehicle Code dictated

xn(t)− xn+1(t)− b∗ − L∗ − T ∗vn+1(t) = 0. (1)

Suppose there is a fluctuation in the behavior of the lead car, as

a result of response lags, that causes Eq(1) to be violated. Define

sn+1(t) = xn(t)−xn+1(t)−b∗−L∗−T ∗vn+1(t). Say, when sn+1(t) >

0, the (n+1)th driver would accelerate according to

an+1(t+ T ) = λ0[xn(t)− xn+1(t)− b∗ − L∗ − T ∗vn+1(t)].
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Delay response model

Consider the delay response model

d2xn(t+ T )

dt2
= −λ

[
dxn(t)

dt
−

dxn−1(t)

dt

]
,

where T is the reaction time and λ measures the sensitivity of the

two-car interaction. Integrating the equation, we obtain

dxn(t+ T )

dt
= −λ[xn(t)− xn−1(t)] + dn.

Imagine a steady state situation where all cars are equidistant apart,

and so they are moving at the same speed. That is,

dxn(t+ T )

dt
=

dxn(t)

dt

and let d = dn (independent of n) be the common distance.

We simplify the equation as follows:

dxn(t)

dt
= −λ[xn(t)− xn−1(t)] + d.
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Suppose we define the traffic density ρ by the relation

xn−1(t)− xn(t) =
1

ρ
,

we obtain the velocity-density relation

u =
λ

ρ
+ d.

We choose d by noting that at the maximum density (bumper-to-

bumper traffic) u = 0. Finally, we obtain

u = λ

(
1

ρ
−

1

ρmax

)
.
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To avoid infinite velocity at zero value of ρ, we may modify the

velocity-density relation as

u =

{
umax ρ < ρc

λ
(
1
ρ − 1

ρmax

)
ρ > ρc

.
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Example

Suppose λ =
c

xn−1(t)− xn(t)
, then the revised equation is

d2xn(t+ T )

dt2
= c

dxn(t)
dt − dxn−1(t)

dt

xn(t)− xn−1(t)
.

Upon integrating, we obtain

dxn(t+ T )

dt
= c ln |xn(t)− xn−1(t)|+ dn.

Assume steady state condition, this leads to

u = −c ln ρ+ d.

We choose the integration constant such that the velocity is zero

at the maximum velocity. We then obtain

u = −c ln
ρ

ρmax
.
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Furthermore, we consider

q = ρu = −cρ ln
ρ

ρmax
,

so that

0 =
dq

dρ
= −c

(
ln

ρ

ρmax
+1

)
.

One can check that maximum q occurs at

ρ =
ρmax

e
and u

(
ρmax

e

)
= c.
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