
Advanced Topics in Derivative Pricing Models

Topic 1 - Financial derivatives with embedded barrier features

1.1 Product nature of barrier options

• Accumulators

1.2 Partial differential equation approach and method of images

• Single-asset models

• Extension to multistate models

1.3 Probabilistic approach

• Density functions of restricted Brownian motions

• First passage time density functions

• Two-sided barriers

1.4 Approximation of probabilities of hitting time dependent barriers

• Brownian bridge technique
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1.5 Barrier derivatives under stochastic interest rates

• Fortet method

• Applications to defaultable bonds

1.6 Occupation time derivatives

• Proportional step options

• Transition density functions with killing rate

• Delayed barrier options and simple step options

1.7 Discretely monitored barrier options

• Continuity correction formulas

• Double-exponential fast Gauss transform algorithm

• Merton’s jump diffusion model
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1.1 Product nature of barrier options

A barrier option is either nullified, activated or exercised when the

underlying asset price breaches a barrier during the life of the option.

1. An out-barrier option (or knock-out option) is one where the

option is nullified prior to expiration if the underlying asset price

touches the barrier. The holder of the option may be compen-

sated by a rebate payment for the cancellation of the option. An

in-barrier option (or knock-in option) is one where the option

only comes in existence if the asset price crosses the in-barrier.

The holder has paid the option premium up-front since there

can be potential positive payoff with zero chance of negative

payoff.

2. When the barrier is upstream with respect to the asset price,

the barrier option is called an up-option; otherwise, it is called

a down-option.
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One can identify eight types of European barrier options, such as

down-and-out calls, up-and-out calls, down-and-in puts, down-and-

out puts, etc. updown

inout
callput

How do both buyer and writer benefit from the up-and-out call?

• With an appropriate rebate paid upon breaching the upside bar-

rier, this type of barrier options provide the upside exposure for

option buyer but at a lower cost.

• The option writer is not exposed to unlimited liabilities when the

asset price rises significantly since the liability amount is capped

at the payoff of the call at the upstream barrier.
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Barrier options are attractive since they give investors more flexibility

to express their view on the asset price movement in the option

contract design.

In general, embedded barrier feature in a derivative refers to the

trigger of certain event (say, knock-out with rebate, accumulation

of coupons, doubling of purchase, etc.) upon breaching of a barrier

level.

Discontinuity at the barrier (circuit breaker effect upon knock-out)

• Pitched battles often erupt around popular knock-out barriers in

currency barrier options and these add much unwanted volatility

to the markets.

• George Soros once said “knock-out options relate to ordinary

options the way crack relates to cocaine.”
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Accumulators

• Entails the investor entering into a commitment to purchase a

fixed number of shares per day at a pre-agreed price (the “Ac-

cumulator Price”). This Price is set (typically 10-20%) below

the market price of the shares at initiation. This is portrayed as

the “discount” to the market price of the shares.

Example

Citic Pacific entered into an Australian dollar accumulator as hedges

“with a view to minimizing the currency exposure of the company’s

iron ore mining project in Australia”. The company benefits from

strengthening in the A$ above the exchange rate of A$1 = US$0.87.
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Example of an accumulator on China Life Insurance Company

• Stock Price Movement of China Life Insurance Company Lim-

ited (June 12, 2009 - July 13, 2009)
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Decomposition of an accumulator under immediate settlement

Under the assumption of continuous monitoring of the upper knock-

out barrier and immediate settlement of the accumulated stock, one

can decompose an accumulator into a portfolio of up-and-out barrier

call and put options. Let K = strike price and H = upper knock-out

level, the payoff on the observation date ti is given by
0 if max0≤τ≤ti Sτ ≥ H

Sti −K if max0≤τ≤ti Sτ < H and Sti ≥ K

2(Sti −K) if max0≤τ≤ti Si < H and Sti < K,

where max0≤t≤ti Sτ signifies continuous monitoring of barrier.

• When Sti ≥ K, the ti-maturity put option is out-of-the-money

and the ti-maturity call option has the payoff Sti −K.

• When Sti < K, the call option is out-of-the-money and the put

option becomes in-the-money with payoff K − Sti. The two

put options are in short position, the payoff is −2(K − Sti) =

2(Sti −K).
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Pricing formulas

n = total number of observation dates
cuo = up-and-out barrier call option
puo = up-and-out barrier put option

Fair value of an accumulator (continuous monitoring approxima-

tion) =
∑n
i=1 cuo(ti;K,H)− 2puo(ti;K,H).

• For the ti-maturity call option, the payoff remains the same,

independent of whether the knock-out event occurs on ti or

otherwise. This is an uncommon type of up-and-out call, where

the call payoff is adopted as the rebate upon knock-out.
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Delayed settlement

• To take care of the delayed delivery of the stocks, the present

value of the purchase cost of each unit of stock on date ti has

to be adjusted by the time value of the strike price K paid on

the delivery date (several business days after the ending date

of the corresponding accumulation period). How to modify the

formula?

• More precisely, the underlying asset of the ti-maturity knock-

out option should be the forward contract with delivery price

K and maturity date Ti (Ti is a few business days after ti),

i = 1,2, . . . , n.
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1.2 Partial differential equation approach and method of im-

ages

Pricing formulation of a European single-asset down-and-out

call (continuous monitoring of barrier)

∂c

∂τ
=
σ2

2
S2 ∂

2c

∂S2
+ rS

∂c

∂S
− rc, S > B and τ ∈ (0, T ],

subject to

knock-out condition: c(B, τ) = R(τ)

terminal payoff: c(S,0) = max(S −X,0),

Here, B is a down-barrier and R(τ) is the time-dependent rebate.

Normally, B is set to be less than X; otherwise, the barrier is

breached even when it is in-the-money. The rebate is set so as

to avoid jump discontinuity in the payoff structure.
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After applying the transformation of variable: y = lnS, the barrier

becomes the vertical line y = lnB in the (y, τ)-plane. The governing

equation becomes

∂c

∂τ
=
σ2

2

∂2c

∂y2
+

(
r −

σ2

2

)
∂c

∂y
− rc,

defined in the semi-infinite domain: y > lnB and τ ∈ (0, T ].

The boundary condition and initial condition, respectively, become

c(lnB, τ) = R(τ) and c(y,0) = max(ey −X,0).

Since the down-and-out barrier call option becomes a forward con-

tract at S → ∞, the far field boundary condition is

lim
S→∞

c(S, τ) = S −Xe−rτ .
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Recall that the density function

u(x, t) =
1

σ
√
2πt

exp

(
−
(x− µt)2

2σ2t

)
satisfies

∂u

∂t
=
σ2

2

∂2u

∂x2
− µ

∂u

∂x
with u(x,0+) = δ(x).

Green function

Setting µ = r−
σ2

2
, the Green function in the infinite domain: −∞ <

y <∞ is given by

G0(y, τ ; ξ) =
e−rτ

σ
√
2πτ

exp

(
−
(y+ µτ − ξ)2

2σ2τ

)
,

where G0(y, τ ; ξ) satisfies the initial condition:

lim
τ→0+

G0(y, τ ; ξ) = δ(y − ξ).
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Method of images

Assuming that the Green function in the semi-infinite domain takes

the form

G(y, τ ; ξ) = G0(y, τ ; ξ)−H(ξ)G0(y, τ ; η), y > lnB,

we are required to determine H(ξ) and η (in terms of ξ) such that

the zero Dirichlet boundary condition G(lnB, τ ; ξ) = 0 is satisfied.

Note that both G0(y, τ ; ξ) and H(ξ)G0(y, τ ; η) satisfy the differential

equation. Also, provided that η ̸∈ (lnB,∞), then

lim
τ→0+

G0(y, τ ; η) = 0 for all y > lnB.
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By imposing the boundary condition at y = lnB, one observes

H(ξ) =
G0(lnB, τ ; ξ)

G0(lnB, τ ; η)
= exp

(
(ξ − η)[2(lnB+ µτ)− (ξ+ η)]

2σ2τ

)
.

The assumed form of G(y, τ ; ξ) is feasible only if the right hand side

becomes a function of ξ only. This can be achieved by the judicious

choice of

η = 2 lnB − ξ,

so that

H(ξ) = exp
(
2µ

σ2
(ξ − lnB)

)
.
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• This method works only if µ/σ2 is a constant, independent of

τ . In other words, the method fails when the model parameters

are time dependent.

• The parameter η lies outside (lnB,∞). Actually, it can be vi-

sualized as the mirror image of ξ with respect to the barrier

y = lnB. In engineering perspective, an image sink of magni-

tude H(ξ) is placed at the image point η = 2 lnB− ξ so that the

combination of the source of unit strength at ξ and image sink

of strength H(ξ) at η give zero value at the barrier y = lnB.
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Pictorial representation of the method of images. The mirror is

placed along y = lnB.
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Once η and H(ξ) are determined, we have

H(ξ)G0(y, τ ; η)

= exp
(
2µ

σ2
(ξ − lnB)

)
e−rτ

σ
√
2πτ

exp

(
−
[y+ µτ − (2 lnB − ξ)]2

2σ2τ

)

=
(
B

S

)2µ/σ2 e−rτ

σ
√
2πτ

exp

(
−
[(y − ξ) + µτ − 2(y − lnB)]2

2σ2τ

)
.

In the last expression, the scalar multiple of the Gaussian term is

now independent of ξ so that integration with respect to ξ can be

performed more effectively.

The Green function in the specified semi-infinite domain: lnB < y <

∞ becomes

G(y, τ ; ξ) =
e−rτ

σ
√
2πτ

{
exp

(
−
(u− µτ)2

2σ2τ

)
−
(
B

S

)λ
exp

(
−
(u− 2β − µτ)2

2σ2τ

)}
,

where u = ξ − y and β = lnB − y = ln
B

S
. Also, λ =

2µ

σ2
=

2r

σ2
− 1 =

δ − 1 with δ =
2r

σ2
.
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Zero-rebate case

We consider the down-and-out barrier call option with zero rebate,

where R(τ) = 0, and let K = max(B,X), so eξ − X > 0 when

ξ ∈ (lnK,∞). The price of the zero-rebate European down-and-out

call can be expressed as

cdo(y, τ) =
∫ ∞

lnB
max(eξ −X,0)G(y, τ ; ξ) dξ

=
∫ ∞

lnK
(eξ −X)G(y, τ ; ξ) dξ

=
e−rτ

σ
√
2πτ

∫ ∞

lnK/S
(Seu −X)

[
exp

(
−
(u− µτ)2

2σ2τ

)

−
(
B

S

)2µ/σ2
exp

(
−
(u− 2β − µτ)2

2σ2τ

) du,
lnB < y <∞, τ > 0.
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The direct evaluation of the integral gives

cdo(S, τ) = S

[
N(d1)−

(
B

S

)δ+1
N(d3)

]

−Xe−rτ
[
N(d2)−

(
B

S

)δ−1
N(d4)

]
,

where

d1 =
ln S
K +

(
r+ σ2

2

)
τ

σ
√
τ

, d2 = d1 − σ
√
τ,

d3 = d1 +
2

σ
√
τ
ln
B

S
, d4 = d2 +

2

σ
√
τ
ln
B

S
, δ =

2r

σ2
.
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Suppose we define the modified European call price formula

c̃E(S, τ ;X,B) = SN(d1)−Xe−rτN(d2),

then cdo(S, τ ;X,B) can be expressed in the following succinct form

cdo(S, τ ;X,B) = c̃E(S, τ ;X,B)−
(
B

S

)δ−1
c̃E

(
B2

S
, τ ;X,B

)
.

One can show by direct calculation that the function
(
B

S

)δ−1
c̃E

(
B2

S
, τ

)
satisfies the Black-Scholes equation identically. Also, we observe

c̃E

(
B2

S
,0+

)
= 0, lnB < S <∞.

The above form allows us to observe readily the satisfaction of the

boundary condition: cdo(B, τ) = 0, and the terminal payoff condi-

tion.
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Remarks

1. Closed form analytic price formulas for barrier options with ex-

ponential time dependent barrier, B(τ) = Be−γτ , can also be

derived. However, when the barrier level has an arbitrary time

dependence, the search for an analytic price formula for the

barrier option fails.

2. Closed form price formulas for barrier options can also be ob-

tained for other types of diffusion process followed by the un-

derlying asset price. The types of processes include the square

root constant elasticity of variance process (volatility is a power

function of the stock price) and the double exponential jump

diffusion process (to be discussed in Sec. 1.7).

3. The monitoring period for breaching of the barrier may be lim-

ited to only part of the life of the option. The pricing of this

type of partial barrier option as a compound option is outlined

in Problem 4 in Homework One.
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4. Since the nullification of the out-option is compensated by the

activation of the in-option counterpart, it is obvious that

cdi(S, τ ;X,B) + cdo(S, τ ;X,B) = cE(S, τ ;X),

valid for either B < X or B ≥ X. Assuming B < X, so that

K = max(B,X) = X, the price of a down-and-in call option can

be deduced to take the following simple form:

cdi(S, τ ;X,B) =
(
B

S

)δ−1
cE

(
B2

S
, τ ;X

)
.

5. With a rebate B(τ) paid upon knock-out at S = B, the value of

the rebate provision is given by

∫ τ
0
e−ru

ln S
B√

2πσ

exp

−
[
ln S
B+

(
r−σ2

2

)
u
]2

2σ2u


u3/2

R(τ − u) du,

where u is the time lapsed from the current time (see Problem

3 in Homework One for the mathematical derivation using the

pde approach).
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Multistate models

Assume that there are m underlying risky assets, and let Si denote

the price process of asset i, i = 1,2, ...,m. Let I denote an external

barrier variable that determines whether the option is nullified or

activated when I hits some prescribed threshold level B. Write

n = m+1. The terminal payoff function may not involve I.

Under a risk neutral measure Q, the dynamics of Si, i = 1,2, ...,m,

and I are governed by

dSi
Si

= (r − qi) dt+ σi dZi, i = 1,2, ...,m,

dI

I
= (r − qn) dt+ σn dZn.

Let ρij deonte the correlation coefficient between dZi and dZj, i, j =

1,2, ..., n.

We apply the following transformation of variables:

xi =
1

σi
lnSi, i = 1,2, ...,m; xn =

1

σn
ln
I

B
.
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Let V = V (x1, x2, ..., xn) denote the price function of a down-and-

out option on these m underlying assets and the external barrier

variable. The governing partial differential equation for V with a

downstream barrier is given by

∂V

∂τ
=

1

2

n∑
i=1

n∑
j=1

ρij
∂2V

∂xi∂xj
+

n∑
i=1

µi
∂V

∂xi
− rV,

−∞ < xi <∞, i = 1,2, ...,m; 0 < xn <∞, τ > 0,

where µi =
r − qi −

σ2i
2

σi
, i = 1,2, ..., n.

Two-step procedure to find the Green function of the governing

equation:

1. Find the Green function for the infinite domain.

2. Use the method of images to find the Green function for the

semi-infinite domain.
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Green function for the infinite domain

We would like to derive the Green function of the following n-

dimensional equation defined in the infinite domain:

∂V

∂τ
=

1

2

n∑
i=1

n∑
j=1

ρij
∂2V

∂xi∂xj
+

n∑
i=1

µi
∂V

∂xi
−rV, −∞ < xi <∞, i = 1,2, ..., n.

Let yi = xi+ µiτ , i = 1,2, ..., n and ϕ = erτV , then ϕ is governed by

∂ϕ

∂τ
=

1

2

n∑
i=1

n∑
j=1

ρij
∂2ϕ

∂yi∂yj

=
1

2

(
∂

∂y1

∂

∂y2
· · ·

∂

∂yn

)
R


∂
∂y1
∂
∂y2...
∂
∂yn

ϕ, −∞ < yi <∞, i = 1,2, ..., n.

Here, R is the symmetric and semi-positive definite covariance ma-

trix whose entries are Rij = ρij, i, j = 1,2, ..., n. We rule out the

unlikely case where R is singular. As a consequence, R becomes

positive definite and all its eigenvalues are strictly positive.
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Since R is symmetric and positive definite, there exists an orthonor-

mal matrix Q such that QTQ = QQT = I and

QTRQ = Λ,

where the columns of Q are the normalized eigenvectors of R and Λ

is a diagonal matrix whose entries are the (positive) eigenvalues of

R. Let Λ−1/2 denote the inverse of the positive square root of the

diagonal matrix Λ. Note that R = QΛQT so that R−1 = QΛ−1QT .

We apply the following linear transformation of variables:

z = (z1 z2 · · · zn)
T = Λ−1/2QT (y1 y2 · · · yn)

T

= Λ−1/2QTy,

so that(
∂

∂y1

∂

∂y2
· · ·

∂

∂yn

)T
= Λ−1/2Q

(
∂

∂z1

∂

∂z2
· · ·

∂

∂zn

)T
.

We then obtain

∂ϕ

∂τ
=

1

2

n∑
i=1

∂2ϕ

∂z2i
.
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The fundamental solution to the above n-dimensional prototype

equation in the infinite domain is given by

ϕ(z1, z2, ..., zn, τ) =
1

(2πτ)n/2
exp

(
−
z21 + z22 + ...+ z2n

2τ

)
,

−∞ < zi <∞, i = 1,2, ..., n.

Note that zTz = yTQΛ−1QTy = yTR−1y, and the Jacobian of the

transformation is det(Λ−1/2QT ) = 1√
detR

.

The fundamental solution ϕ(y1, y2, ..., yn, τ) in the infinite domain

can be expressed as

ϕ(y1, y2, ..., yn, τ) =
1

(2πτ)n/2
1√

detR
exp

(
−
yTR−1y

2τ

)
,

−∞ < yi <∞, i = 1,2, ..., n.
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Multistate Green function in the semi-infinite domain

Corresponding to the homogeneous boundary condition at xn = 0,

we seek the Green function in the semi-infinite domain represented

by the form:

G(y, τ, ξ) =
e−rτ

(2πτ)n/2
1√

detR

[
exp

(
−

1

2τ
(y − ξ)TR−1(y − ξ)

)
−H(ξ) exp

(
−

1

2τ
(y − η)TR−1(y − η)

) ]
,

where η is to be determined so that the homogeneous condition at

xn = 0 is satisfied.
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Extended method of images to multistate Green function

Observe that in general the following quantity

F =
exp

(
− 1

2τ (y − ξ)TR−1(y − ξ)
)

exp
(
− 1

2τ (y − η)TR−1(y − η)
)
∣∣∣∣∣∣
xn=0

is a function of ξ and τ . We would like to examine whether an

appropriate choice of η can be found such that F is a function of

ξ only. If otherwise, the Green function does not admit the above

analytic representation.
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We consider

−
1

2τ

[
(y − ξ)TR−1(y − ξ)− (y − η)TR−1(y − η)

]
=−

1

2τ
{(ξTR−1ξ − ηTR−1η)

− 2[y1e
T
1R

−1(ξ − η) + ...+ yn−1e
T
n−1R

−1(ξ − η) + yne
T
nR

−1(ξ − η)]},

and observe that at xn = 0, yn = µnτ so that the last term becomes

µneTnR
−1(ξ − η), which is independent of τ .

In order to make F to be independent of τ , we choose η1, η2, ..., ηn

such that

ξTR−1ξ = ηTR−1η

eTi R
−1(ξ − η) = 0, i = 1,2, ..., n− 1.
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The solution to the above algebraic system of equations is found to

be

η = ξ − 2ξnRen.

To verify the claim, we observe that

eTi R
−1(ξ − η) = 2ξne

T
i R

−1Ren = 0, i = 1,2, ..., n− 1,

and

ηTR−1η = (ξ − 2ξnRen)
TR−1(ξ − 2ξnRen)

= ξTR−1ξ − 4ξne
T
nξ +4ξ2ne

T
nRen = ξTR−1ξ.
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The corresponding value for H(ξ) is found to be

H(ξ) = exp
(
µne

T
nR

−1(ξ − η)
)
= exp(2µnξn).

As a result, the semi-infinite Green function can be expressed as

G(y, τ ; ξ)

=
e−rτ

(2πτ)n/2
1√

detR

[
exp

(
−

1

2τ
(y − ξ)TR−1(y − ξ)

)
− exp(2µnξn) exp

(
−

1

2τ
(y +2ξnRen − ξ)TR−1(y +2ξnRen − ξ)

) ]
.

The semi-infinite Green function takes the same form, independent

of the external barrier variable being upstream or downstream.
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Alternative representation

Observe that y − ξ = x + µτ − ξ = x − (ξ − µτ) so that the drift

µ applied to x has to be swapped in sign when the drift is applied

to ξ. By virtue of the symmetry property of the Green function,

an alternative representation of the semi-infinite Green function is

given by

G(y, τ ; ξ)

=
e−rτ

(2πτ)n/2
1√

detR

[
exp

(
−

1

2τ
(y − ξ)TR−1(y − ξ)

)
− exp(−2µnxn) exp

(
−

1

2τ
(y − 2xnRen − ξ)TR−1(y − 2xnRen − ξ)

) ]
.

This form is preferred since the option price formulas are derived

based on the spatial integration with respect to the dummy vari-

ables: ξ1, ξ2, ..., ξn.
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Two-state option model

We consider the valuation of a European out-option on one under-

lying risky asset and with single external barrier variable.

• Let θ denote a binary variable which equals 1 or −1, depending

on whether the barrier is downstream or upstream, respectively.

The interval of definition for ξ2 is (0,∞) or (−∞,0) correspond-

ing to θ = 1 or −1, respectively.

• Let η be a binary variable which equals 1 or −1, corresponding

to the option being a call or a put, respectively. The terminal

payoff is given by

max(η(S1,T −X),0)),

where X is the strike price and S1,T is the asset price at maturity

T .
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The price of a European out-option with an external barrier is given

by

V (S1, I, τ)

= ηS1e
−q1τ

[
N2(ηd̂1,−θê1; ηθρ12)− e−2(µ2+ρ12σ1)x2N2(ηd̂

′
1,−θê

′
1; ηθρ12)

]
− ηXe−rτ

[
N2(ηd̂2,−θê2; ηθρ12)− e−2µ2x2N2(ηd̂

′
2,−θê

′
2; ηθρ12)

]
,

where

d̂2 =
ln S1

X
+ µ1σ1τ

σ1
√
τ

, d̂1 = d̂2 + σ1
√
τ, d̂′1 = d̂1 −

2ρ12x2√
τ

, d̂′2 = d̂2 −
2ρ12x2√

τ
,

ê1 = −
x2 + (µ2 + ρ12σ1)τ√

τ
, ê2 = −

x2 + µ2τ√
τ

, ê′1 = ê1 +
2x2√
τ
, ê′2 = ê2 +

2x2√
τ
.
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1.3 Probabilistic approach: density functions of restricted

Brownian motions and first passage time density functions

Realized extremum value of the asset price process

The realized maximum and minimum value of the asset price process

from time zero to time t (under continuous monitoring) are defined

by

mt
0 = min

0≤u≤t
Su

M t
0 = max

0≤u≤t
Su,

respectively. The terminal payoffs of the various types of barrier

options can be expressed in terms of mT
0 and MT

0 . For example,

consider the down-and-out call and up-and-out put with barrier B

(downstream or upstream), their respective terminal payoff can be

expressed as

cdo(ST , T ;X,B) = max(ST −X,0)1{mT
0>B}

puo(ST , T ;X,B) = max(X − ST ,0)1{MT
0 <B}.
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First passage time

Suppose B is the down-barrier, we define τB to be the stopping time

at which the underlying asset price crosses the barrier and enters

into the down-region (stopping event) for the first time:

τB = inf{t|St ≤ B}, S0 = S.

Assume S > B and asset price path continuity, we may express τB
(commonly called the first passage time) as

τB = inf{t|St = B}.

In a similar manner, if B is the up-barrier and S < B, we have

τB = inf{t|St ≥ B} = inf{t|St = B}.

• A random variable τ : Ω → [0,∞) is called a Ft-stopping time if

{τ ≤ t} ∈ Ft for all t ∈ [0,∞). That is, it is possible to decide

whether {τ ≤ t} has occurred on the basis of knowledge of Ft.
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Expectation representation of a European down-and-out call

Assuming S > B, it is easily seen that {τB > T} and {mT
0 > B} are

equivalent events if B is a down-barrier. By virtue of the risk neutral

valuation principle, the price of a down-and-out call at time zero is

given by

cdo(S,0;X,B) = e−rTEQ[max(ST −X,0)1{mT
0>B}]

= e−rTEQ[(ST −X)1{ST>X}1{τB>T}].

The determination of the price function cdo(S,0;X,B) requires the

determination of the joint density function of ST and mT
0 .
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Reflection principle

Let W0
t (Wµ

t ) denote the Brownian motion that starts at zero, with

constant volatility σ and zero drift rate (constant drift rate µ). We

would like to find P [mT
0 < m,W

µ
T > x], where x ≥ m and m ≤ 0.

Zero-drift Brownian motion W0
t

Given that the minimum value mT
0 falls below m, then there exists

some time instant ξ,0 < ξ < T , such that ξ is the first time that

W0
ξ equals m. Here, ξ is seen to be the first passage time to the

down-barrier m. As Brownian paths are continuous, there exist some

times during which W0
t < m. In other words, W0

t decreases at least

below m and then increases at least up to level x (higher than or

equal to m) at time T .
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Pictorial representation of the reflection principle of the Brownian

motion W0
t . The dotted path after the stopping time ξ is the mirror

reflection of the Brownian path at the level m. Suppose W0
T ends

up at a value higher than x, then the reflected path W̃0
T at time T

has a value lower than 2m− x.
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Suppose we define the random process

W̃0
t =

{
W0
t for t < ξ

2m−W0
t for ξ ≤ t ≤ T,

that is, W̃0
t is the mirror reflection of W0

t at the level m within the

time interval between ξ and T .

• Note that W0
t is Ft-Brownian and the first passage time ξ is

a Ft-stopping time. The strong Markov property of a Brown-

ian motion states that for each stopping time ξ, the increment

W0
ξ+u−W0

ξ , u ≥ 0, is a Brownian motion that is independent of

the path history from time zero up to ξ.

• Though the stopping time ξ depends on the path history {W0
t :

0 ≤ t ≤ ξ}, it will not affect the Brownian motion at later times.

The reflection of the Brownian path dictates that

W̃0
ξ+u − W̃0

ξ = −(W0
ξ+u −W0

ξ ), u > 0.
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• By the strong Markov property of Brownian motions, the two

Brownian increments have the same distribution, and the dis-

tribution has zero mean and variance σ2u. In other words, for

every Brownian path that starts at 0, travels at least m units

(downward, m ≤ 0) before T and later travels at least x − m

units (upward, x ≥ m), there is an equally likely path that starts

at 0, travels m units (downward, m ≤ 0) some time before T

and travels at least m− x units (further downward, m ≤ x).

• Hence, {W0
T > x} ∩ {mT

0 < m} is equivalent to {W̃0
T < 2m − x}.

Equivalently, we claim that the two events {W0
T > x}∩{mT

0 < m}
and {2m−W0

T > x} are equal in probability. We then have

P [W0
T > x,mT

0 < m] = P [2m−W0
T > x]

= P [W0
T < 2m− x] since W0

t has zero drift

= N

(
2m− x

σ
√
T

)
, m ≤ min(x,0).
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Non-zero drift Brownian motion W
µ
t

We apply the Girsanov Theorem to effect the change of measure

for finding the above joint distribution when the Brownian motion

has non-zero drift.

Suppose under the measure Q,Wµ
t is a Brownian motion with vari-

ance rate σ2 and drift rate µ. We change the measure from Q to

Q̃ such that Wµ
t becomes a Brownian motion with variance rate σ2

and zero drift under Q̃. As an illustration, we consider

P [Wµ
T < y] = EQ[1{Wµ

T<y}
] = E

Q̃

[
1{Wµ

T<y}
exp

(
µW

µ
T

σ2
−
µ2T

2σ2

)]

=
∫ y
−∞

1√
2πσ2T

e
− z2

2σ2T e
µz

σ2e
−µ2T

2σ2 dz

=
∫ y
−∞

1√
2πσ2T

e
−(z−µT )2

2σ2T dz = N

(
y − µT

σ
√
T

)
.
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• Note that the Radon-Nikodym derivative: exp

(
µW

µ
T

σ2
−
µ2T

2σ2

)
is

appended in transforming from Q to Q̃. Also, the density func-

tion ofWµ
T under Q̃ is given by Q̃[Wµ

T ∈ dz] =
1√

2πσ2T
e−z

2/2σ2Tdz.

• When the µ-drift Brownian motion W
µ
T does not go beyond y,

the zero-drift Brownian motion W0
t does not go beyond y− µT .

This intuition gives P [Wµ
T < y] = N

(
y − µT

σ
√
T

)
.

• In order that we can apply the reflection principle that is ap-

plicable under the zero-drift case, we perform all expectation

calculations under Q̃ whereby W
µ
t becomes a zero-drift Brown-

ian motion.
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Recall that the two events {W0
T > x}∩{mT

0 < m} and {2m−W0
T > x}

are equal in distribution. We transform from Q to Q̃ by appending

exp

(
µ

σ2
(2m−W

µ
T )−

µ2T

2σ2

)
under which 2m−Wµ

T becomes zero-drift

Brownian motion. Also, Wµ
T is a Brownian motion with zero-drift

under Q̃. For m ≤ min{x,0}, we then have

P [Wµ
T > x,mT

0 < m]

=E
Q̃

[
1{2m−Wµ

T>x}
exp

(
µ

σ2
(2m−W

µ
T )−

µ2T

2σ2

)]

= e
2µm
σ2 E

Q̃

[
1{Wµ

T<2m−x} exp

(
−
µ

σ2
W
µ
T −

µ2T

2σ2

)]

= e
2µm
σ2

∫ 2m−x

−∞

1√
2πσ2T

exp

(
−

z2

2σ2T
−
µz

σ2
−
µ2T

2σ2

)
dz

= e
2µm
σ2

∫ 2m−x

−∞

1√
2πσ2T

exp

(
−
(z+ µT )2

2σ2T

)
dz

= e
2µm
σ2 N

(
2m− x+ µT

σ
√
T

)
.
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Consider the restricted Brownian motion Wµ
t that has a downstream

barrier m over the period [0, T ] so that mT
0 > m. Given that Wµ

t

does not breach the barrier m, we would like to derive the joint

distribution

P [Wµ
T > x,mT

0 > m], and m ≤ min(x,0).

By applying the law of total probabilities, we obtain

P [Wµ
T > x,mT

0 > m]

= P [Wµ
T > x]− P [Wµ

T > x,mT
0 < m]

= N

(
−x+ µT

σ
√
T

)
− e

2µm
σ2 N

(
2m− x+ µT

σ
√
T

)
, m ≤ min(x,0). (A)

By setting m = x, and since W
µ
T > m is implicitly implied from

mT
0 > m, we obtain the following distribution function for mT

0 :

P [mT
0 > m] = N

(
−m+ µT

σ
√
T

)
− e

2µm
σ2 N

(
m+ µT

σ
√
T

)
.
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Extension to upstream barrier

Consider the restricted Brownian motion W
µ
t that has an upstream

barrier M over the period [0, T ] so that MT
0 < M , the joint distri-

bution function of Wµ
T and MT

0 can be deduced using the following

relation between MT
0 and mT

0 :

MT
0 = max

0≤t≤T
(σZt+ µt) = − min

0≤t≤T
(−σZt − µt),

where Zt is the standard Brownian motion. Since −Zt has the same

distribution as Zt, the distribution of the maximum value of Wµ
t is

the same as that of the negative of the minimum value of W−µ
t .
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By swapping −µ for µ,−M for m and −y for x, we obtain

P [−Wµ
T > −y,−MT

0 < −M ]

=P [Wµ
T < y,MT

0 > M ]

= e
2µM
σ2 N

(
y − 2M − µT

σ
√
T

)
, M ≥ max(y,0).

In a similar manner, we obtain

P [Wµ
T < y,MT

0 < M ]

= P [Wµ
T < y]− P [Wµ

T < y,MT
0 > M ]

= N

(
y − µT

σ
√
T

)
− e

2µM
σ2 N

(
y − 2M − µT

σ
√
T

)
, M ≥ max(y,0). (B)

Lastly, by setting y =M , we obtain the following distribution func-

tion for MT
0 :

P [MT
0 < M ] = N

(
M − µT

σ
√
T

)
− e

2µM
σ2 N

(
−
M + µT

σ
√
T

)
.
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Density function of a restricted Brownian motion with one-

sided downstream barrier

We define fdown(x,m, T ) to be the density function of Wµ
T with the

downstream barrier m, where m ≤ min(x,0), that is,

fdown(x,m, T ) dx = P [Wµ
T ∈ dx,mT

0 > m].

By differentiating eq. (A) with respect to x and swapping the sign,

we obtain

fdown(x,m, T )

=
1

σ
√
T

[
n

(
x− µT

σ
√
T

)
− e

2µm
σ2 n

(
x− 2m− µT

σ
√
T

)]
1{m≤min(x,0)}.
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Extension to upstream barrier

Similarly, we define fup(x,M, T ) to be the density function of Wµ
T

with the upstream barrier M , where M > max(y,0). By differenti-

ating eq. (B) with respect to y, we obtain

P [Wµ
T ∈ dy,MT

0 < M ]

= fup(y,M, T ) dy

=
1

σ
√
T

[
n

(
y − µT

σ
√
T

)
− e

2µM
σ2 n

(
y − 2M − µT

σ
√
T

)]
dy1{M≥max(y,0)}.
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Transition density function of a restricted Geometric Brownian

motion with downstream barrier

Suppose the asset price St follows the Geometric Brownian motion

under the risk neutral measure such that ln
St

S
= W

µ
t , where S is

the asset price at time zero and the drift rate µ = r −
σ2

2
. Let

ψ(ST ;S,B) denote the transition density of the asset price ST at

time T given the asset price S at time zero and conditional on

St > B for 0 ≤ t ≤ T . Here, B is the downstream barrier. From the

density function fdown(x,m, T ), we deduce that ψ(ST ;S,B) is given

by

ψ(ST ;S,B) =
1

σ
√
TST

n
ln ST

S −
(
r − σ2

2

)
T

σ
√
T



−
(
B

S

)2r
σ2

−1
n

ln ST
S − 2 ln B

S −
(
r − σ2

2

)
T

σ
√
T


 .
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First passage time density function of a Brownian motion

Let Q(u;m) denote the density function of the first passage time at

which the downstream barrier m is first hit by the Brownian path

W
µ
t , that is, Q(u;m) du = P [τm ∈ du].

We determine the distribution function P [τm > u] by observing that

{τm > u} and {mu
0 > m} are equivalent events. This gives

P [τm > u] = P [mu
0 > m]

= N

(
−m+ µu

σ
√
u

)
− e

2µm
σ2 N

(
m+ µu

σ
√
u

)
.
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The first passage time density function Q(u;m) associated with the

downstream barrier is then given by

Q(u;m) du = P [τm ∈ du]

= −
∂

∂u

[
N

(
−m+ µu

σ
√
u

)
− e

2µm
σ2 N

(
m+ µu

σ
√
u

)]
du1{m<0}

=
−m√
2πσ2u3

exp

(
−
(m− µu)2

2σ2u

)
du1{m<0}.

Let Q(u;M) denote the first passage time density associated with

the upstream barrier M . In a similar manner, we obtain

Q(u;M) = −
∂

∂u

[
N

(
M − µu

σ
√
u

)
− e

2µM
σ2 N

(
−
M + µu

σ
√
u

)]
1{M>0}

=
M√

2πσ2u3
exp

(
−
(M − µu)2

2σ2u

)
1{M>0}.
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Now, we consider ln
St

S
to be a Brownian motion with drift r −

σ2

2
.

We write B as the option barrier, either upstream or downstream.

The normalized barrier under the Brownian motion is ln
B

S
. When

the barrier is downstream (upstream), we have ln
B

S
< 0

(
ln
B

S
> 0

)
.

The combined first passage time density function is given by

Q(u;B) =

∣∣∣ln B
S

∣∣∣
√
2πσ2u3

exp

−
[
ln B

S −
(
r − σ2

2

)
u

]2
2σ2u

 .

Suppose a rebate R(t) is paid to the option holder upon breaching

the barrier at level B by the asset price path at time t. Since the

expected rebate payment over the time interval [u, u+ du] is given

by R(u)Q(u;B) du, so the expected present value of the rebate is

given by

rebate value =
∫ T
0
e−ruR(u)Q(u;B) du.
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When R(t) = R0, a constant value, direct integration of the above

integral gives

rebate value = R0

(B
S

)α+
N

δ ln B
S + βT

σ
√
T


+
(
B

S

)α−
N

δ ln B
S − βT

σ
√
T

 ,
where

β =

√√√√(r − σ2

2

)2
+2rσ2, α± =

r − σ2

2 ± β

σ2
,

δ = sign
(
ln
S

B

)
.

Here, δ is a binary variable indicating whether the barrier is down-

stream (δ = 1) or upstream (δ = −1).
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Two-sided barriers

We take the initial position X0 = 0. Let g(x, t; ℓ, u) denote the

density function of the restricted Brownian motion Xt with two-

sided absorbing barriers at x = ℓ and x = u, where the barriers are

positioned such that ℓ < 0 < u.

Recall that Xt = ln
St

S
, and if L and U are the absorbing barriers of

the asset price process St, respectively, then ℓ = ln
L

S
and u = ln

U

S
.

The partial differential equation formulation for g(x, t; ℓ, u) is given

by (see Problem 3.8 in Kwok’s text)

∂g

∂t
= −µ

∂g

∂x
+
σ2

2

∂2g

∂x2
, ℓ < x < u, t > 0,

with the homogeneous boundary conditions:

g(ℓ, t) = g(u, t) = 0 and g(x,0+) = δ(x).
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Both x = ℓ and x = u are the absorbing barriers (equivalent to

say “particles are removed from the system once these barriers are

hit”), so the probability of staying at each of these barriers is zero.

Defining the transformation

g(x, t) = e
µx

σ2
− µ2t

2σ2 ĝ(x, t),

we observe that ĝ(x, t) satisfies the forward Fokker-Planck equation

with zero drift:

∂ĝ

∂t
(x, t) =

σ2

2

∂2ĝ

∂x2
(x, t).

Note that the factor e
µx

σ2
− µ2t

2σ2 resembles the Radon-Nikodym deriva-

tive: exp

(
µW

µ
t

σ2
−
µ2t

2σ2

)
.
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The auxiliary conditions for ĝ(x, t) are seen to remain the same as

those for g(x, t). Without the barriers, the infinite-domain funda-

mental solution to the above equation is known to be

ϕ(x, t) =
1√

2πσ2t
exp

(
−

x2

2σ2t

)
.

Like the one-sided barrier case, we try to add extra terms to the

above solution such that the homogeneous boundary conditions at

x = ℓ and x = u are satisfied.
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Method of images revisited

We attempt to add the pair of negative terms −ϕ(x − 2ℓ, t) and

−ϕ(x− 2u, t) whereby

[ϕ(x, t)− ϕ(x− 2ℓ, t)]

∣∣∣∣∣
x=ℓ

= 0 and [ϕ(x, t)− ϕ(x− 2u, t)]

∣∣∣∣∣
x=u

= 0.

Note that ϕ(x−2ℓ, t) and ϕ(x−2u, t) correspond to the fundamental

soluton with initial condition: δ(x− 2ℓ) and δ(x− 2u), respectively.

Writing the above partial sum with three terms as

ĝ3(x, t) = ϕ(x, t)− ϕ(x− 2ℓ, t)− ϕ(x− 2u, t),

we observe that the homogeneous boundary conditions are not yet

satisfied since

ĝ3(ℓ, t) = −ϕ(x− 2u, t)

∣∣∣∣∣
x=ℓ

̸= 0

ĝ3(u, t) = −ϕ(2− 2ℓ, t)

∣∣∣∣∣
x=u

̸= 0.
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To nullify the non-zero value of −ϕ(x−2u, t)

∣∣∣∣∣
x=ℓ

and −ϕ(x−2ℓ, t)

∣∣∣∣∣
x=u

,

we add a new pair of positive terms ϕ(x−2(u−ℓ), t) and ϕ(x+2(u−
ℓ), t). Similarly, we write the partial sum with five terms as

ĝ5(x, t) = ĝ3(x, t) + ϕ(x− 2(u− ℓ), t) + ϕ(x+2(u− ℓ), t),

and observe that

ĝ5(ℓ, t) = ϕ(x− 2(u− ℓ), t)

∣∣∣∣∣
x=ℓ

̸= 0

ĝ5(u, t) = ϕ(x+2(u− ℓ), t)

∣∣∣∣∣
x=u

̸= 0.

Whenever a new pair of positive terms or negative terms are added,

the value of the partial sum at x = ℓ and x = u becomes closer

to zero. In a recursive manner, we add successive pairs of positive

and negative terms so as to come closer to the satisfaction of the

homogeneous boundary conditions at x = ℓ and x = u.
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• The two absorbing barriers may be visualized as a pair of mirrors

with the object placed at the origin (see Figure on the next

page).

• The source at the origin generates a sink at x = 2ℓ due to the

mirror at x = ℓ and another sink at x = 2u due to the mirror at

x = u.

• To continue, the sink at x = 2ℓ (x = 2u) generates a source at

x = 2(u− ℓ) [x = 2(ℓ− u)] due to the mirror at x = u (x = ℓ).

• As the procedure continues, this leads to the sum of an infinite

number of positive and negative terms.
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Infinite number of images

The double-mirror analogy provides the intuitive argument showing

why g(x, t) involves an infinite number of terms.

A graphical representation of an infinite number of sources and sinks

due to a pair of absorbing barriers (mirrors) with the object placed at

the origin. The positions of the sources and sinks are αj = 2(u− ℓ)j
and βj = 2ℓ+2(u− ℓ)(j − 1), respectively, j = 0,±1,±2, . . ..
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The solution to g(x, t) is deduced to be

g(x, t) = e
µx

σ2
− µ2t

2σ2 ĝ(x, t)

= e
µx

σ2
− µ2t

2σ2
∞∑

n=−∞
[ϕ(x− 2n(u− ℓ, t), t)− ϕ(x− 2ℓ− 2n(u− ℓ), t)]

=
e
µx

σ2
− µ2t

2σ2

√
2πσ2t

∞∑
n=−∞

[
exp

(
−
[x− 2n(u− ℓ)]2

2σ2t

)

− exp

(
−
[(x− 2ℓ)− 2n(u− ℓ)]2

2σ2t

)]

=
∞∑

n=−∞

e
2µ
σ2
n(u−ℓ)

√
2πσ2t

exp

(
−
[x− µt− 2n(u− ℓ)]2

2σ2t

)

−
e
2µ
σ2

[ℓ+n(u−ℓ)]
√
2πσ2t

exp

(
−
[(x− µt− 2ℓ)− 2n(u− ℓ)]2

2σ2t

) .
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Alternative representation: eigenfunction expansion

Let P (x, t;x0, t0) denote the transition density function of the re-

stricted Brownian process Wµ
t = µt+σZt with two absorbing barriers

at x = 0 and x = ℓ, where ℓ > 0. We take the convenience of set-

ting one of the absorbing barriers to be x = 0. Using the method

of separation of variables, the solution to P (x, t;x0, t0) admits the

following eigenfunction expansion

P (x, t;x0, t0) = e
µ

σ2
(x−x0)− µ2

2σ2
(t−t0)2

ℓ

∞∑
k=1

e−λk(t−t0) sin
kπx

ℓ
sin

kπx0
ℓ

where the eigenvalues are given by

λk =
k2π2σ2

2ℓ2
.

P (x, t;x0, t0) satisfies the forward Fokker-Planck equation with auxil-

iary conditions: P (0, t) = P (ℓ, t) = 0 and P (x, t+0 ;x0, t0) = δ(x−x0),
0 < x0 < ℓ.
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Proof (Separation of variables):

The eigenfunctions sin
kπx

ℓ
, k = 1,2, . . ., are seen to satisfy the

homogeneous boundary conditions at x = 0 and x = ℓ. The solution

in the form of eigenfunction expansion assumes an infinite series of

the form

P (x, t;x0, t0) =
∞∑
k=1

Ake
−λk(t−t0) sin

kπx

ℓ
,

where the eigenvalues λk, k = 1,2, . . ., are determined so that each

term e−λk(t−t0) sin
kπx

ℓ
satisfies the governing differential equation:

∂P

∂t
=
σ2

2

∂2P

∂x2
. This requires that the eigenvalues should be given by

−λk = −
σ2

2

k2π2

ℓ2
or λk =

k2π2σ2

2ℓ2
, k = 1,2, . . . .
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Lastly, we determine the constants Ak, k = 1,2, . . ., using the initial

condition:

δ(x− x0) =
∞∑
k=1

Ak sin
kπx

ℓ
.

By virtue of the orthogonality of the eigenfunctions, we have∫ ℓ
0
Ak sin

2 kπx

ℓ
dx =

∫ ℓ
0
δ(x− x0) sin

kπx

ℓ
dx, 0 < x0 < ℓ.

Lastly, we obtain Ak =
2

ℓ
sin

kπx0
ℓ

, k = 1,2, . . ..

The solution of the density function can be expressed either as

an infinite series of Gaussian kernel functions using the method

of images or the eigenfunction expansion approach. These two

solutions are equivalent by virtue of the Poisson summation formula.

It has been shown that the Gaussian kernel series has a faster rate

of convergence to the exact value with respect to the number of

terms n used.
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The density function of the first passage time to either barrier is

defined by

q(t; ℓ, u) dt = P (min(τℓ, τu) ∈ dt),

where τℓ = inf{t|Xt = ℓ} and τu = inf{t|Xt = u}. We consider the

corresponding distribution function

P (min(τℓ, τu) ≤ t) = 1− P (min(τℓ, τu) > t) = 1−
∫ u
ℓ
g(x, t) dx

where
∫ u
ℓ
g(x, t) dx is the total probability that Wµ

t stays within (ℓ, u).

The density function of the first passage time is given by

q(t; ℓ, u) = −
∂

∂t

∫ u
ℓ
g(x, t) dx =

1√
2πσ2t3

∞∑
n=−∞

[2n(u− ℓ)− ℓ] exp

(
µℓ

σ2
−
µ2t

2σ2

)
exp

(
−
(2n(u− ℓ)− ℓ]2

2σ2t

)

+ [2n(u− ℓ) + u] exp

(
µu

σ2
−
µ2t

2σ2

)
exp

(
−
[2n(u− ℓ) + u]2

2σ2t

)}
.
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Exit time to a barrier

The density function of the exit time to the respective lower barrier

and upper barrier are defined by

q−(t; ℓ, u) dt = P (τℓ ∈ dt, τℓ < τu)

q+(t; ℓ, u) dt = P (τu ∈ dt, τu < τℓ).

Since {τℓ ∈ dt, τℓ < τu} ∪ {τu ∈ dt, τu < τℓ} = {min(τℓ, τu) ∈ dt}, we

deduce that

q(t; ℓ, u) = q−(t; ℓ, u) + q+(t; ℓ, u).
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A judicious decomposition of q(t; ℓ, u) into its two components would

suggest

q−(t; ℓ, u) =
1√

2πσ2t3

∞∑
n=−∞

[2n(u− ℓ)− ℓ]

exp

(
µℓ

σ2
−
µ2t

2σ2

)
exp

(
−
[2n(u− ℓ)− ℓ]2

2σ2t

)

q+(t; ℓ, u) =
1√

2πσ2t3

∞∑
n=−∞

[2n(u− ℓ) + u]

exp

(
µu

σ2
−
µ2t

2σ2

)
exp

(
−
[2n(u− ℓ) + u]2

2σ2t

)
.
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To show the claim, we define the probability flow by

J(x, t) = µg(x, t)−
σ2

2

∂g

∂x
(x, t),

where the negative sign is chosen for the diffusion term since the

probability flow is in the negative direction when
∂g

∂x
> 0 (diffusion

tends to make probability concentration to spread evenly). Also,

recall that

q(t; ℓ, u) = −
∂

∂t

∫ u
ℓ
g(x, t) dx =

∫ u
ℓ

−
∂g

∂t
dx.

Since g satisfies the forward Fokker-Planck equation, we have

q(t; ℓ, u) =
∫ u
ℓ

(
µ
∂g

∂x
−
σ2

2

∂2g

∂x2

)
dx = J(u, t)− J(ℓ, t).

One may visualize the probability flow across x = ℓ and x = u as

−J(ℓ, t) = P (τℓ ∈ dt, τℓ < τu)

J(u, t) = P (τu ∈ dt, τu < τℓ).
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Note that J(ℓ, t) is negative since the probability flow is outward from

the interval (ℓ, u) through x = ℓ along the negative x-direction.

The exit time densities q−(t; ℓ, u) and q+(t; ℓ, u) are seen to satisfy

q−(t; ℓ, u) = −J(ℓ, t) = −
[
µg(x, t)−

σ2

2

∂g

∂x
(x, t)

] ∣∣∣∣∣
x=ℓ

q+(t; ℓ, u) = J(u, t) = µg(x, t)−
σ2

2

∂g

∂x
(x, t)

∣∣∣∣∣
x=u

.

Rebate payment

Suppose a rebate R−(t) [R+(t)] is paid when the lower (upper) bar-

rier is first breached during the life of the option, 0 < t < T , the

value of the rebate portion of the double-barrier option is then given

by

rebate value =
∫ T
0

e−rξ[R−(ξ)q−(ξ; ℓ, u) +R+(ξ)q+(ξ; ℓ, u)] dξ.
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1.4 Approximation of probabilities of hitting time dependent

barriers

Let r(t) and σ2(t) be time dependent interest rate and exogenous

volatility process. Under the risk neutral measure Q, the dynamics

of St is governed by

dSt

St
= r(t) dt+ σ(t) dWt.

• The time dependence on σ(t) can be resolved by applying the

standard time-changed argument for Brownian motions. Instead

of following the calendar time, we adopt the time frame where

the physical time is shortened when the volatility level is high so

that the volatility adjusted time is kept constant.

• At the end, the resulting barrier option price formulas can be de-

duced from those of “constant volatility σ” to “time dependent

σ(t), 0 ≤ t ≤ T ,” by simply swapping σ
√
T with

√∫ T
0 σ2(t) dt,

which is the total variance over [0, T ].
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Assuming constant volatility σ, we obtain

ln
St

S0
= σWt −

σ2t

2
+R(t),

where Wt is the standard Brownian motion with W0 = 0 and

R(t) =
∫ t
0
r(u) du.

Let H(t) be the time dependent upstream barrier. We assume S0 <

H(t) and define

f(t) =
ln H(t)

S0
+ σ2t

2 −R(t)

σ
,

then “St hitting H(t)” is equivalent to “Wt hitting f(t)”.

Reference “Pricing barrier options with time dependent coeffi-

cients,” G.O. Roberts and C.F. Shortland, Mathematical Finance,

vol.7 (1997) p.83-93.
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Let ψ(ST ) denote the terminal payoff of the derivative security at

time T . The value of the up-and-in barrier option is given by

V = e−R(T )
∫ ∞

−∞
ψ

(
S0e

σx+R(T )−σ2T
2

)
Q
[
τWf < T

∣∣∣WT = x
]
n

(
x√
T

)
1√
T
dx,

where n(x) is the density of the standard normal variable and τWf
is the first passage time that the Brownian motion W hits the up-

stream barrier f from below. Here, Q is a risk neutral measure.

Note that Q[τWf < T |WT = x] = 1 when x > H ′, where H ′ = f(T )

[equivalently, the terminal value of stock price is above f(T )].

We decompose V into two parts:

V1 = e−R(T )
∫ H ′

−∞
ψ

(
S0e

σx+R(T )−σ2T
2

)
Q
[
τWf < T

∣∣∣WT = x
]
n

(
x√
T

)
1√
T
dx;

V2 = e−R(T )
∫ ∞

H ′
ψ

(
S0e

σx+R(T )−σ2T
2

)
n

(
x√
T

)
1√
T
dx.

For x < H ′, we use the Brownian bridge to compute Q
[
τWf < T

∣∣∣WT = x
]
.
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Brownian bridge technique

The Brownian bridge Xt from (0, x0) to (T, xT ) can be visualized as

a time-changed Brownian motion (see Appendix):

Xt = x0 +
xT − x0

T
t+ (T − t)W ∗

t
T (T−t)

, where W ∗
0 = 0.

Note that X0 = x0 and XT = xT , while W ∗
t

T (T−t)
is the time-changed

Brownian motion with variance rate equals
t

T (T − t)
.
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In terms of the Brownian bridge X from (0,0) to (T, x), we observe

Q[τWf < T
∣∣∣WT = x] = Q[τXf < T ].

The adjusted time s is related to the calendar time t via

s =
t

T (T − t)
⇐⇒ t =

sT2

1+ sT
.

Also, T − t =
T

1+ sT
. Given x0 = 0, when Xt hits f(t), we relate

W ∗
s with f via Xt = f(t) =

x

T
t+

T

1+ sT
W ∗
s .

Note that
t

T

/
T

1+ sT
= s, so that Xt hits f(t) when the unit-variance

time changed Brownian motion hits the value

1 + sT

T
f

(
sT2

1+ sT

)
− xs.
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Also, as t evolves from 0 to T , s evolves from 0 to ∞. Hence,

{Xt hitting f(t) in (0, T )} ⇔ {W ∗
s ever hitting g(s)},

where

g(s) =
1+ sT

T
f

(
sT2

1+ sT

)
− xs.

We then have

Q[τWf < T |WT = x] = Q[τW
∗

g <∞].

Except for a few examples of g(t) will the exact value of Q[τWg <∞]

be available, so approximation techniques are required.
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Hazard rate of the first exit time across an arbitrary boundary

λ(t)

Define hλ(t) by

hλ(t) = lim
ε→0+

Q[τWλ ≤ t+ ε|τWλ > t]

ε
,

where

τWλ = inf
t>0

{t :Wt ≥ λ(t)}.

In other words, εhλ(t) gives the probability that W hits λ(t) during

the time interval (t, t+ ε], conditional on no hitting up to time t.
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Survival function and hazard rate

Let S(t) be the probability that there is no hitting of the barrier up

to time t, that is, S(t) = Q[τWg > t]. we then have

S(t)− S(t+∆t)

S(t)
= hλ(t)∆t.

Taking the limit ∆t→ 0, we obtain

dS(t)

S(t)
= −hλ(t) dt with S(0) = 1.

Solving the differential equation, we have

S(t) = exp
(
−
∫ t
0
hλ(u) du

)
.
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Recall that the probability of ever hitting the boundary g from below

is given by

Q[τWg <∞] = 1− exp
(
−
∫ ∞

0
hg(s) ds

)
.

Let g be a C2 boundary, {ℓt(·), t ≥ 0} and {ut(·), t ≥ 0} be collections

of C2 functions, where ℓt and ut observe

ℓt(s) ≤ g(s) ≤ ut(s) for all s ≤ t,

while ℓt(t) = g(t) = ut(t). It is obvious that

Q[τWu <∞] < Q[τWg <∞] < Q[τWℓ <∞].

Normally, we choose ℓt and ut such that the exit distribution prop-

erties are known. A convenient choice is given by

m1
t = inf

s<t

g(t)− g(s)

t− s
, m2

t = sup
s<t

g(t)− g(s)

t− s
,

c1t = g(t)−m1
t t, c2t = g(t)−m2

t t,

ut(s) = m1
t s+ c1t , lt(s) = m2

t s+ c2t .
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g(s) lies within the envelope of straight lines bounded by ut(s) and

ℓt(s). The line ℓt(s) [ut(s)] has intercept c2t (c1t ) at s = 0.
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With the above choices of ut and ℓt, we obtain

hlt(t) =
max(0, c2t )n

(
g(t)√
t

)
t

[
N

(
g(t)√
t

)
− e−2c2tm

2
tN

(
g(t)−2c2t√

t

)]
and

hut(t) =
max(0, c1t )n

(
g(t)√
t

)
t

[
N

(
g(t)√
t

)
− e−2c1tm

1
tN

(
g(t)−2c1t√

t

)].

Note that if c1t or c2t are negative, the straight lines used for com-

parison are negative at t = 0, so the first exit time is 0 by definition.

Thus, the hazard rate at time tmust be zero. The factors max(0, c2t )

and max(0, c1t ) incorporate these considerations. As a remark, the

choice of a bounding line that has negative intercept would lead to

meaningless approximation, where Q[τWℓ <∞] = 1 for sure.
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Proof of the formula for hℓt(t) for c2t > 0

Recall the unconditional first passage time density function of the

Brownian motion with up-barrier B and drift µ:

Q(t;B) =
B√

2πσt3/2
exp

(
−
(B − µt)2

2σ2t

)
.
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The probability of reaching the time dependent barrier w = m2
t s+c2t

under zero-drift Brownian motion is equivalent to that of reaching

the fixed barrier c2t under the Brownian motion with drift −m2
t .

In the present problem, we have

B = c2t and B − µt = c2t +m2
t t = g(t).

The probability for the Brownian motion with drift µ not hitting B

is given by

P
[
MT

0 < B
]
= N

(
B − µT

σ
√
T

)
− e

2µB
σ2 N

(
−
B+ µT

σ
√
T

)
.

In the current problem, we set B = c2t , µ = −m2
t and σ = 1.
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The probability that the up-stream barrier is not hit from below up

to time t is given by

Q
[
τW

∗
g < t

]
= N

(
c2t +m2

t t√
t

)
− e−2m2

t c
2
tN

(
−
c2t −m2

t t√
t

)

= N

(
g(t)√
t

)
− e−2m2

t c
2
tN

(
g(t)− 2c2t√

t

)
.

Recall that Q[τWg < t]hℓt(t) is the unconditional first passage time

density to the barrier g. Lastly, we put all the results together to

give

hℓt(t) =
c2t n

(
g(t)√
t

)
tQ

[
τW

∗
g < t

] = c2t n

(
g(t)√
t

)
t

[
N

(
g(t)√
t

)
− e−2c2tm

2
tN

(
g(t)−2c2t√

t

)].
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Bound on V1

e−R(T )
∫ H ′

−∞
ψ

(
S0e

σx+R(T )−σ2T
2

)
[
1− exp

(
−
∫ ∞

0
hlt(t) dt

)]
n

(
x√
T

)
1√
T
dx

≥ V1 ≥ e−R(T )
∫ H ′

−∞
ψ

(
S0e

σx+R(T )−σ2T
2

)
[
1− exp

(
−
∫ ∞

0
hut(t) dt

)]
n

(
x√
T

)
1√
T
dx.

Note that both hlt and hut depend on the value of x through g(t)

and cannot be factored out of the integrals.
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Hazard rate tangent approximation

We adopt the approximation

hg(t) ≈ hTt(t),

where Tt(s) = [g(t) − tg′(t)] + g′(t)s is the tangent to g(s) at s = t.

By setting ct = g(t)−tg′(t) and mt = g′(t), the corresponding hazard

rate is

hTt(t) =
max(0, g(t)− sg′(t))n

(
g(t)√
t

)
t

[
N

(
g(t)√
t

)
− e

−2g′(t)[g(t)−tg′(t)]N
(
2tg′(t)−g(t)√

t

)].

The analytic approximation of V1 according to the hazard rate tan-
gent approximation is given by

e−R(T )

∫ H ′

−∞
ψ
(
S0e

σx+R(T )−σ2T

2

) [
1− exp

(
−
∫ ∞

0
hTt(t) dt

)]
n

(
x√
T

)
1√
T
dx.
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Illustrative example

We model the stock price by

dSt = r(t)St dt+ σSt dWt,

with S0 = 10, σ = 0.1, and r(t) = r0 + ae−t, with r0 = 0.1 and

a = 0.05. This represents the case where the risk-free interest

rate has been perturbed and will return to its equilibrium rate in an

exponential decay. We consider the analytic approximation to the

value of an European up-and-in call option.

We set the strike price c = 11, maturity date T = 1 and knock-in

upstream boundary at level H = 12.
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We note that

R(t) =
∫ t
0
r(s) ds = rt+ a(1− e−t),

so that

f(t;H) =
ln(H/S0) + σ2t/2− rt− a(1− e−t)

σ
.

For T = 1, we obtain

g(t) =
(1+ t) ln(H/S0) + σ2t/2− rt− a(1 + t)(1− e−t/(1+t))

σ
− xt.

The lower and upper bounds lt and ut both have particularly simple

forms due to mild upward concavity of g(t):

lt(s) = [g(t)− tg′(t)] + g′(t)s,

ut(s) = g(0) +
g(t)− g(0)

t
s;

where lt(s) is the tangent line through (t, g(t)); and ut(s) is the line

joining (0, g(0)) and (t, g(t)).
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Finally, we define

c′ = f(1; c) =
ln c
S0

−R(1) + σ2

2

σ
and H ′ = f(1;H) =

ln H
S0

−R(1) + σ2

2

σ
.

It is necessary to evaluate

V = e−R(1)
∫ H ′

c′
(S0e

σx+R(1)−σ2/2 − c′)Q[τW
∗

g <∞]n(x) dx

+ e−R(1)
∫ ∞

H ′
(S0e

σx+R(1)−σ2/2 − c′)n(x) dx

= e−R(1)
∫ H ′

c′
(S0e

σx+R(1)−σ2/2 − c′)Q[τW
∗

g <∞]n(x) dx

+ e−R(1)
∫ ∞

H ′
(S0e

σx+R(1)−σ2/2 − c′)n(x) dx.

Using the bounding technique for the first integral and evaluating

the second integral analytically, we obtain

0.516758 ≤ V ≤ 0.517968.
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Mathematical Appendices – Brownian bridge

Gaussian processes

• A Gaussian process X(t), t ≥ 0, is a stochastic process that for

arbitrary set of times: 0 < t1 < t2 < ..., tn, the random variables

X(t1), X(t2),..., X(tn) are jointly normally distributed.

• Let ∆(t) be a non-random function of time, and define the

integral

I(t) =
∫ t
0
∆(s) dW (s),

where W (t) is a Brownian motion. It can be shown that I(t) is

a Gaussian process.
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Brownian bridge as a Gaussian process

Let W (t) be a Brownian motion. Fix T > 0, we define the Brownian

bridge from 0 to 0 over [0, T ] to be the conditional Brownian motion

X(t) =W (t)−
t

T
W (T ), 0 ≤ t ≤ T.

• Note that X(0) = X(T ) = 0, and
t

T
W (T ) as a function of t is

the line from (0,0) to (T,W (T )).

• Since W (T ) enters into X(t) for 0 ≤ t ≤ T , so the Brownian

bridge X(t) is not adapted to the filtration F(t) generated by

W (t).

• For 0 < t1 < t2 < ... < tn < T , the random variables

X(t1) =W (t1)−
t1
T
W (T ), ..., X(tn) =W (tn)−

tn

T
W (T ),

are jointly normal since W (t1), ...,W (tn),W (T ) are jointly nor-

mal. Therefore, the Brownian bridge from 0 to 0 is a Gaussian

process.
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• The Brownian bridge is a Gaussian process whose increments

are not independent.

The mean of X(t) is easily seen to be

m(t) = E[X(t)] = E

[
W (t)−

t

T
W (T )

]
= 0.

For t1, t2 ∈ (0, T ), the covariance function of X(t) is given by

c(t1, t2) = E

[(
W (t1)−

t1
T
W (T )

)(
W (t2)−

t2
T
W (T )

)]
= E[W (t1)W (t2)]−

t1
T
E[W (t2)W (T )]

−
t2
T
E[W (t1)W (T )] +

t1t2
T2

E[W (T )2]

= min(t1, t2)−
2t1t2
T

+
t1t2
T

= min(t1, t2)−
t1t2
T
.

94



It is not necessary to fix the starting point and ending point to be

both at 0. More generally, we consider a Brownian bridge that starts

at a at time 0 and ends at b at time T . The Brownian bridge from

a to b on (0, T ) is the process

Xa→b(t) = a+
(b− a)t

T
+X(t), 0 ≤ t ≤ T,

where X(t) = X0→0(t).

Adding a non-random function to a Gaussian process gives another

Gaussian process. The mean function becomes

ma→b(t) = a+
(b− a)t

T
,

while the covariance function is not affected.
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Brownian bridge as a scaled stochastic integral (time-changed

Brownian motion)

Consider

Y (t) =

(T − t)
∫ t
0

1

T − u
dW (u) 0 ≤ t ≤ T

0 t = T
,

we would like to show that Y (t) is a continuous Gaussian process

on [0, T ] and has the same distribution as the Brownian bridge from

0 to 0 over [0, T ].

The process Y (t) is adapted to the filtration generated by the Brow-

nian motion W (t). Also, the stochastic differential of Y (t) is given

by

dY (t) = −
Y (t)

T − t
dt+ dW (t).
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Effect of the drift term

• Suppose Y is positive as t approaches T , the drift term −Y (t)
T−tdt

becomes infinitely large in absolute value and is negative. This

drives Y (t) toward zero almost instantaneously.

• Similarly, suppose Y is negative, the drift term becomes infinitely

large and positive, and this again drives Y (t) toward zero.

• One can show rigorously that as t → T−, the process Y (t) con-

verges to zero almost surely.
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Proof [Y (t) and X(t) are equal in distribution]

The integral

I(t) =
∫ t
0

1

T − u
dW (u), t < T,

is a Gaussian process. For 0 < t1 < t2 < ... < tn < T , the random

variables:

Y (t1) = (T−t1)I(t1), Y (t2) = (T−t2)I(t2), ..., Y (tn) = (T−tn)I(tn),

are jointly normal. Hence, Y (t) is a Gaussian process.

The mean and covariance functions of I are

mI(t) = 0

CI(t1, t2) =
∫ min(t1,t2)

0

1

(T − u)2
du

=
1

T −min(t1, t2)
−

1

T
, for t1, t2 ∈ [0, T ].

Hence, var(I(t)) =
t

T (T − t)
, 0 ≤ t ≤ T .
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Similarly, the covariance function of Y is

CY (t1, t2) = (T − t1)(T − t2)

[
1

T −min(t1, t2)
−

1

T

]

= (T − t1)(T − t2)
min(t1, t2)

T [T −min(t1, t2)]

=


(T − t2)t1

T
= t1 −

t1t2
T

if t1 ≤ t2

(T − t1)t2
T

= t2 −
t1t2
T

if t1 > t2

= min(t1, t2)−
t1t2
T
, t1, t2 ∈ [0, T ).

Remark

Now, variance of X(t) is t−
t2

T
=
t(T − t)

T
. In terms of time-changed

Brownian motion, we may write

X(t) = (T − t)W ∗
t

T (T−t)
, W ∗

0 = 0.
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1.5 Barrier-type derivatives under stochastic interest rates

Up-and-in call option under stochastic interest rates

Let Smax be the realized maximum of the stock price over [0, T ] and

H be the upstream barrier. Consider

cui = P (0, T )EQT

[
(ST −K)+1{Smax>H}

]
,

where QT is the forward measure with riskfree unit par discount

bond price P (t, T ) as the numeraire. By the martingale property,

the time-t price of the contingent claim Xt is given by

Xt

P (t, T )
= EtQT

[
XT

P (T, T )

]
= EtQT [XT ].

We write

A = EQT

[
ST1{ST>K}1{Smax>H}

]
, B = QT [ST > K,Smax > H].

Let γ denote the first passage time that the stock price hits the

up-barrier H from below. Note that {Smax > H} and {γ ≤ T} are

equivalent events.
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We let ℓt = lnSt and observe that the distribution of ST would

depend on the level of interest rate at the first passage time, so

A = EQT

[
ST1{lnST>lnK}1{γ≤T}

]
= EQT

[
eℓT1{ℓT>lnK}1{γ≤T}

]
=
∫ T
0

∫ ∞

−∞
EQT

[
eℓT1{ℓT>lnK}1{γ≤T}|rγ = r, γ = s

]
QT [rγ ∈ dr, γ ∈ ds] ,

B =
∫ T
0

∫ ∞

−∞
QT [ℓT > lnK|rγ = r, γ = s]QT [rγ ∈ dr, γ ∈ ds] .

We integrate the first passage time s over [0, T ] and rγ over (−∞,∞).

Joint distribution of γ and rγ at time t under QT

The explicit expression of the joint distribution of (γ, rγ) is not

known. We approximate it by discretizing along the time and in-

terest rate dimensions using the extended Fortet method (to be

discussed later).

We assume the short rate process rt to follow the Vasicek interest

rate model so that lnSt and rt form a joint Gaussian process.
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One-factor short rate models and bond prices

Assume that the short rate rt under Q is governed by

drt = µ(rt, t) dt+ σr(rt, t) dZt.

The unit-par discount bond price function P (t, T ) is given by

P (t, T ) = EtQ[e
−
∫ T
t ru du],

where EtQ is the expectation under Q conditional on the filtration

Ft.

Recall the Ito lemma, which gives the dynamics of P (t, T ) as follows:

dP (t, T ) =

(
∂P

∂t
+ µ

∂P

∂r
+
σ2r
2

∂2P

∂r2

)
dt+ σr

∂P

∂r
dZt.
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Suppose we write formally

dP

P
= µP (r, t) dt+ σP (r, t) dZt,

then

µP (r, t) =
1

P

(
∂P

∂t
+ µ

∂P

∂r
+
σ2r
2

∂2P

∂r2

)

σP (r, t) =
σr

P

∂P

∂r
= σr

∂

∂r
lnP.

For short rate models of the affine class, P (t, T ) admits solution of

the affine form:

P (t, T ) = e−B(t,T )r−η(t,T ),

then
∂

∂r
lnP = −B(t, T ) so that σP (t, T ) = −σrB(t, T ).
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Note that B(t, T ) is a positive function [consistent with P (t, T ) being

decreasing in r]. It is desirable to take the volatility of P (t, T ) to be

σrB(t, T ), a positive quantity.

Accordingly, we adopt the convention that the dynamics of P (t, T )

is specified as

dP

P
= µP (t, T ) dt− σP (t, T ) dZt

with σP (t, T ) = σrB(t, T ). The sign does not matter since Zt is

symmetric with respect to the value zero.

Furthermore, since the discounted price of the riskfree discount bond

is Q-martingale, so µP (t, T ) = rt. This gives the following governing

equation for P (t, T ):

∂P

∂t
+ µ

∂P

∂r
+
σ2r
2

∂2P

∂r2
− rP = 0, P (T, T ) = 1.
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Joint dynamics of the interest rate process and stock price

process

Under the equivalent martingale pricing measure Q, the dynamics

of P (t, T ) can be characterized by

dP (t, T )

P (t, T )
= rt dt− σP (t, T ) dZ1(t),

where σP (t, T ) is the volatility structure of P (t, T ) and rt is the short

rate process. Let St denote the price process of the underlying stock,

and ρ be the correlation coefficient between St and rt. The dynamics

of St is given by

dSt

St
= rt dt+ σ

[
ρ dZ1(t) +

√
1− ρ2 dZ2(t)

]
,

where Z1 and Z2 are a pair of uncorrelated Q-Brownian motions.
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Ornstein-Uhlenbeck (OU) process

The dynamics of an OU process Xt is governed by

dXt = a(θ −Xt) dt+ σ dWt,

where a > 0, σ > 0 and θ are parameters, and Wt denotes the

standard Brownian motion.

The parameter θ represents the mean value (or equilibrium) sup-

ported by fundamentals, σ is the degree of volatility around the

mean value caused by shocks, and a is the rate by which these

shocks dissipate and the variable Xt reverts towards the mean.

The OU process is an example of a Gaussian process that has a

bounded variance and admits a stationary probability distribution.
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Analytic formulas of the OU process

Consider f(xt, t) = eatxt so that

df(xt, t) = axte
at dt+ eat dxt = aeatθ dt+ σeat dWt.

Integrating from 0 to t gives

xte
at = x0 +

∫ t
0
aeasθ ds+

∫ t
0
σeas dWs

so that

xt = x0e
−at+ θ(1− e−at) +

∫ t
0
σea(s−t) dWs.
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Mean

E[xt] = x0e
−at+ θ(1− e−at)

Covariance

cov(xs, xt) = E[σ2e−a(s+t)
∫ s
0
eaudWu

∫ t
0
eavdWv]

=
σ2

2a
e−a(s+t)[e2amin(t,s) − 1].

Variance

var(xt) =
σ2

2a
e−2at(e2at − 1) =

σ2(1− e−2at)

2a
.

For a fixed value of t, xt is a Gaussian distribution, where

Xt ∼ N

(
x0e

−at+ θ(1− e−at),
σ2

2a
(1− e−2at)

)
.
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Density function of Xt is

P [Xt ∈ dx] =

√
a

πσ2(1− e−2at)
exp

−x− [xθe
−at+ θ(1− e−at)]

σ2
a (1− e−2at)

 .
Remark

The CKLS (Chan-Karolyi-Longstaff-Sanders) process with the volatil-

ity term replaces by σxγ dWt can be solved in closed form for γ =
1

2
,

1, as well as γ = 0.
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Vasicek short rate model

Under Q, the dynamics of rt is given by

drt = a(θ − rt) dt+ σr dZ1(t).

The governing equation of P (t, T ) is given by

∂P

∂t
+ a(θ − r)

∂P

∂r
+
σ2r
2

∂2P

∂r2
− rP = 0.

The bond price function admits P (t, T ) = e−B(T−t;a)rt−η(T−t). Sub-

stituting the assumed affine solution into the above differential equa-

tion, we obtain a coupled system of ordinary differential equations

for B(T − t) and η(T − t). The auxiliary conditions are

B(0) = η(0) = 0 (since bond price equals one at maturity).

Closed form solution to B(T − t) and η(T − t) can be obtained since

the drift term µ(rt, t) in the Vasicek model is linear in rt. [See p.395

in Kwok’s text for details]. We obtain

B(u; a) =
1− e−au

a
, η(u) =

(
θ −

σ2r
2a2

)
[u−B(u; a)] +

σ2r
4a
B(u; a)2.
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Under the Vasicek short rate model, the corresponding volatility

structure σP (t, T ) is found to be

σP (t, T ) = σrB(T − t; a) =
σr

a
[1− e−a(T−t)].

The risk neutral dynamics of St and P (t, T ) can be expressed as

St = S0 exp

(∫ t
0
ru du−

σ2t

2
+
∫ t
0
ρσ dZ1(u) +

∫ t
0
σ
√
1− ρ2 dZ2(u)

)
and

P (t, T ) = P (0, T ) exp

(∫ t
0
ru du−

∫ t
0

σ2P (u, T )

2
du−

∫ t
0
σP (u, T ) dZ1(u)

)
.

Setting T = t, we can deduce

P (t, t)

P (0, t)
=

1

P (0, t)
= exp

(∫ t
0
ru du−

∫ t
0

σ2P (u, t)

2
du−

∫ t
0
σP (u, t) dZ1(u)

)
.

The last equation is useful in relating exp
(∫ t

0
ru du

)
to the initial

price and volatility term structure of the t-maturity discount bond.
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T -forward measure

Let QT denote the T -forward measure, where P (t, T ) is used as the

numeraire. Under QT , we observe the martingale property of the

relative price St/P (t, T ):

St

P (t, T )
=

S0
P (0, T )

exp

( ∫ t
0
[σP (u, T )+ρσ] dZ

T
1 (u)+

∫ t
0
σ
√
1− ρ2 dZT2 (u)

)
,

dZT1 (t) = dZ1(t) + σP (t, T ) dt and dZT2 (t) = dZ2(t),

where ZT1 (t) and ZT2 (t) are a pair of uncorrelated QT -Brownian mo-

tions.

The following proof is adopted from Section 8.1 in Kwok’s text.
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Proof of the formula for affecting change of measure from Q

to QT

We would like to illustrate how to effect the change of measure

from the risk neutral measure Q to the T -forward measure QT . Let

the dynamics of the T -maturity discount bond price P (t, T ) under

Q be governed by

dP (t, T )

P (t, T )
= r(t) dt− σP (t, T ) dZ(t),

where Z(t) is Q-Brownian.

By integrating the above equation and observing
M(t)

M(0)
=
∫ t
0
r(u) du,

where M(t) is the time-t value of the money market account, we

obtain

P (t, T )

M(t)
=
P (0, T )

M(0)
exp

(
−
∫ t
0
σP (u, T ) dZ(u)−

1

2

∫ t
0
σP (u, T )

2 du

)
.
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The Radon-Nikodym derivative
dQT
dQ

conditional on FT is found to

be

dQT
dQ

=
P (T, T )

P (0, T )

/
M(T )

M(0)

= exp

(
−
∫ T
0
σP (u, T ) dZ(u)−

1

2

∫ T
0
σP (u, T )

2 du

)
.

For a fixed T , we define the process

ξTt = EQ

[
dQT
dQ

∣∣∣∣∣Ft
]

and since M(0) = 1 and P (0, T ) is known at time t, we obtain

ξTt =
1

P (0, T )
EQ

[
P (T, T )

M(T )

∣∣∣∣∣Ft
]
=

P (t, T )

P (0, T )M(t)

= exp
(
−
∫ t
0
σP (u, T ) dZ(u)−

1

2

∫ t
0
σP (u, T )

2 du

)
.
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By virtue of the Girsanov Theorem and observing the above result,

we deduce that the process

ZT (t) = Z(t) +
∫ t
0
σP (u, T ) du

is QT -Brownian.

As an example, consider the Vasicek model where the short rate is

modeled by

dr(t) = α[γ − r(t)]dt+ σr dZ(t),

where Z(t) is Q-Brownian. The corresponding volatility function

σP (t, T ) of the discount bond price process is known to be

σP (t, T ) =
σr

α
[1− e−α(T−t)].
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Under the T -forward measure QT , the dynamics of r(t) is given by

dr(t) = α

{
γ −

σ2r
α2

[1− e−α(T−t)]− r(t)

}
dt+ σr dZ

T (t),

where ZT (t) is QT -Brownian. We integrate the above equation to

obtain

r(t) = r(s)e−α(t−s) +

(
γ −

σ2r
α2

)
[1− e−α(t−s)]

+
σ2r
2α2

[
e−α(T−t) − e−α(T+t−2s)

]
+ σr

∫ t
s
e−α(t−u)dZT (u).

Under QT , the distribution of r(t) conditional on Fs is normal with

the following mean and variance

EQT [r(t)| Fs] = r(s)e−α(t−s) +

(
γ −

σ2r
α2

)
[1− e−α(t−s)]

+
σ2r
2α2

[
e−α(T−t) − e−α(T+t−2s)

]
varQT (r(t)| Fs) = σ2r

∫ t
s
e−2α(t−u)du =

σ2r
2α

[1− e2α(t−s)], s ≤ t ≤ T.
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Bond price process

We would like to express P (t, T ) in terms of ZT1 and bond prices

P (0, t) and P (0, T ) (initial bond prices with maturity dates t and T ).

Recall

P (t, T ) = P (0, T ) exp

(∫ t
0
ru du−

∫ t
0

σ2P (u, T )

2
du−

∫ t
0
σP (u, T ) dZ1(u)

)
1

P (0, t)
= exp

(∫ t
0
ru du−

∫ t
0

σ2P (u, t)

2
du−

∫ t
0
σP (u, t) dZ1(u)

)

and dZ1(u) = dZT1 (u)− σP (u, T ) du.

Putting these results together, we obtain

P (t, T ) =
P (0, T )

P (0, t)
exp

( ∫ t
0
[σP (u, t)− σP (u, T )] dZ

T
1 (u)

+
1

2

∫ t
0
[(σP (u, T )− σP (u, t)]

2 du

)
.

117



Stock price process

Recall the formulas:

St = S0 exp

(∫ t
0
ru du−

σ2t

2
+
∫ t
0
ρσ dZ1(u) +

∫ t
0
σ
√
1− ρ2 dZ2(u)

)
1

P (0, t)
= exp

(∫ t
0
ru du−

∫ t
0

σ2P (u, t)

2
du−

∫ t
0
σP (u, t) dZ1(u)

)
dZ1(u) = dZT1 (u)− σP (u, T ) du,

we obtain

St =
S0

P (0, t)
exp

(∫ t
0

σ2P (u, t)− σ2

2
du

+
∫ t
0
[σP (u, t) + ρσ][dZT1 (u)− σP (u, T ) du]

+
∫ t
0
σ
√
1− ρ2 dZT2 (u)

)
.

The short rate rt has been eliminated and it does not appear in the

above expression.
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The forward risk neutral solution of St is given by

St =
S0

P (0, t)
exp

( ∫ t
0

(
−σP (u, T )[σP (u, t) + ρσ] +

σ2P (u, t)− σ2

2

)
du

+
∫ t
0
[σP (u, t) + ρσ] dZT1 (u) +

∫ t
0
σ
√
1− ρ2 dZT2 (u)

)
or equivalently

ℓt =lnSt

=ln
S0

P (0, t)
+
∫ t
0

(
−σP (u, T )[σP (u, t) + ρσ] +

σ2P (u, t)− σ2

2

)
du

+
∫ t
0
[σP (u, t) + ρσ] dZT1 (u) +

∫ t
0
σ
√
1− ρ2 dZT2 (u).
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Moments and conditional moments of ℓt under QT

Using the closed form expression of ℓt [in terms of S0/P (0, t)] and

volatility functions of the bond price, we obtain

mean =M(t) = ln

(
S0

P (0, t)

)
+
∫ t
0

(
−σP (u, T )[σP (u, t) + ρσ] +

σ2P (u, t)− σ2

2

)
du;

cov(s, t) = cov(ℓs, ℓt)

=
∫ s
0
[[σP (u, t) + ρσ][σP (u, s) + ρσ] + σ2(1− ρ2)] du

=
∫ s
0

{
σ2 + ρσ[σP (u, t) + σP (u, s)] + σP (u, s)σP (u, t)

}
du, s < t;

var(ℓt) = V (t) =
∫ t
0
[σ2 + σ2P (u, t) + 2σρσP (u, t)] du.
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Explicit expressions of the moments and conditional moments of

ℓt can be found, given an exponential structure of volatility which

corresponds to the Vasicek model.

Conditional moments for the process ℓt [in terms of ru instead of

P (u, t)]

EQT
[ℓt|Fu] = ℓu −

(
ru +

σ2

2
+
σρσr

a
− θ+

σ2
r

a2

)
(t− u)−

σ2
r

a2
e−a(T−t)B(t− u; 2a)

+

(
ru − θ+

σ2
r

a2
+
σ2
r

a2
e−a(T−t) +

σρσr

a
e−a(T−t)

)
B(t− u; a)

varQT
(ℓt|Fu) =

(
σ2 +2

σρσr

a
+
σ2
r

a2

)
(t− u)− 2

(
σ2
r

a2
+
σρσr

a

)
B(t− u; a)

+
σ2
r

a2
B(t− u; 2a),

covQT
(ℓs, ℓt|Fu) =

σ2
r

a2
e−a(t−s)B(s− u; 2a) +

(
σ2 +2

σρσr

a
+
σ2
r

a2

)
(s− u)

−
(
σ2
r

a2
+
σρσr

a

)
[e−a(t−s) +1]B(s− u; a), s < t.

Recall: P (u, t) = e−B(t−u)ru−η(t−u), σP (u, t) =
σr

a
[1 − e−a(t−u)],

t > u.
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Covariance between ℓt and rt = σr

∫ t
u
eas[σP (s, t) + ρs] ds

covQT (ℓt, rt|Fu) =

(
σ2r
a

+ ρσσr

)
B(t− u; a)−

σ2r
a
B(t− u; 2a).

Replacing u by 0 in the above expressions of the conditional mo-
ments of ℓt, we obtain the following formulas:

M(t) = ln
S0

P (0, t)
+

σ2
r

4a3
−
(
σ2
r

2a2
+
ρσσr

a
+
σ2

2

)
t−

σ2
r

4a3
e−2at

+

(
σ2
r

2a3
+
ρσσr

a2

)
e−a(T−t) −

(
σ2
r

a3
+
ρσσr

a2

)
e−aT +

σ2
r

2a3
e−a(T+t),

V (t) =

(
σ2 +

σ2
r

a2
+

2ρσσr
a

)
t−

3σ2
r

2a3
−

2ρσσr
a2

+
2σr(σr + aρσ)

a3
e−at −

σ2
r

2a3
e−2at,

cov(u, t) =−
(
ρσσr

a2
+
σ2
r

a3

)
+

(
σ2 +

2ρσσr
a

+
σ2
r

a2

)
σr −

σ2
r

2a3
e−a(t+u)

+

(
ρσσr

a2
+
σ2
r

a3

)
(e−au + e−at)−

(
ρσσr

a2
+

σ2
r

2a3

)
e−a(t−u).
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Projection Theorem

When X and Y is a bivariate normal distribution, their joint density

is given by

fX,Y (x, y) =
1

2πσxσy
√
1− ρ2

exp

(
−

1

2(1− ρ2)

[(
x− µx

σx

)2

−
2ρ(x− µx)(y − µy)

σxσy
+

(
y − µy

σy

)2 .
The conditional density of Y , given X = x, is given by

fY (y|x) =
fX,Y (x, y)

fX(x)

=
1

√
2πσy

√
1− ρ2

exp

(
−

1

2σ2y(1− ρ2)

[
y − µy −

ρσy

σx
(x− µx)

]2)
.
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The Projection Theorem gives

E[Y |X = x] = µY +
ρσXσY
σ2X

(x− µX)

var[Y |X = x] = σ2Y −
ρ2σ2Xσ

2
Y

σ2X
.

The conditional law of lnSt given lnSs = lnH, where lnH is an

arbitrary given level, is normal and possesses the following mean M̂

and variance V̂ :

M̂(s, t) =Mt+
cov(s, t)

Vs
(lnH −Ms),

V̂ (s, t) = Vt −
cov2(s, t)

Vs
.
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One-dimensional Fortet method

For a one-factor continuous Markov process ℓt, we define π(ℓt, t|ℓs, s)
as the free transition density. Further, define g(ℓs = ℓ, s|ℓ0,0) as the

probability density that the first passage time through a constant

boundary ℓ occurs at date-s. An implicit formula for g(·) in terms

of π(·) is given by

π(ℓt, t|ℓ0,0) =
∫ t
0
g(ℓs = ℓ, s|ℓ0,0)π(ℓt, t|ℓs = ℓ, s) ds, where ℓt > ℓ > ℓ0.

Note that ℓt and ℓ0 are on the opposite sides of the boundary ℓ = ℓ.

When the process ℓt is one-factor Markov, the above equation has

a very intuitive interpretation: The only way that the process can

start below the boundary (ℓ0 < ℓ) and end up above the boundary

(ℓt > ℓ) is that the process at some intermediate time s must pass

through the boundary for the first time.
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More rigorously, we can write for arbitrary {ℓt, ℓ, ℓ0}, where τ̃ is the

first passage time to ℓ:

π(ℓt, t|ℓ0,0) =
∫ t
0
π(ℓt, t; τ̃ = s|ℓ0,0) ds+ π(ℓt, t; τ̃ > t|ℓ0,0)

=
∫ t
0
π(ℓt, t|τ̃ = s; ℓ0,0)π(τ̃ = s|ℓ0,0) ds

+ π(ℓt, t; τ̃ > t|ℓ0,0)

=
∫ t
0
π(ℓt, t|ℓs = ℓ, s)g(ℓs = ℓ, s|ℓ0,0) ds

+ π(ℓt, t; τ̃ > t|ℓ0,0).

• We have used the strong Markov property in the last line, where

the path history of ℓt prior to the stopping time τ̃ is irrelevant

to the distribution of ℓt, t > τ̃ .

• When ℓt > ℓ > ℓ0, the last term vanishes.
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Extended Fortet method

Reference: “Pricing derivatives with barriers in a stochastic interest

rate environment,” C. Bernard et al., Journal of Economic Dynamics

and Control, vol.32 (2008) P.2903-2938.

The interval [0, T ] is subdivided into nT subintervals of length δt =

T/nT , and the interest rate is subdivided between rmin and rmax into

nr intervals of length δr = (rmax − rmin)/nr. We write

tj = jδt and ri = rmin + iδr

as the discretized values of time and interest rate. Write

q(i, j) ≈ QT (rγ ∈ [ri, ri+1], γ ∈ [tj, tj+1])

as the discretized approximation of the joint distribution of the first

passage time γ and rγ.

We would like to find a numerical procedure to compute q(i, j).
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Let the conditional mean and variance of ℓT be defined by µ̂s,T =

EQT [ℓT |Fs] and
∑̂
s,T = varQT (ℓT |Fs).

Suppose X ∼ N(m,σ2), then

E[eX1{X>ln a}] = k(m,σ, a) = exp

(
m+

σ2

2

)
N

(
m+ σ2 − ln a

σ

)
,

E[1{X>ln a}] = N

(
m− ln a

σ

)
.

Recall

A =
∫ T
0

∫ ∞

−∞
EQT

[
eℓT1{ℓT>lnK}1{γ≤T}

∣∣∣ rγ = r, γ = s
]
QT [rγ ∈ dr, γ ∈ ds]

≈
nT∑
j=0

nr∑
i=0

k(µ̂(i)tj,T ,
∑̂(i)

tj,T
,K)q(i, j).

B =
∫ T
0

∫ ∞

−∞
QT [ℓT > lnK| rγ = r, γ = s]QT [rγ ∈ dr, γ ∈ ds]

≈
nT∑
j=0

nr∑
i=0

N

µ̂
(i)
tj,T

− lnK√∑̂(i)
tj,T

 q(i, j).
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We assume a down-barrier, where one observes initially ℓ0 > lnH =

h. Suppose at time t, the process ℓt = ℓ < h, so the down-barrier

must have been hit earlier. Also, we assume ℓt to be continuous.
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Assuming ℓ0 > h and ℓt < h, the two-dimensional Fortet integral

equation is given by

QT [ℓt ∈ [ℓ, ℓ+ dℓt), rt ∈ [r, r+ dr)|ℓ0, r0]

=
∫ t
0

∫ ∞

−∞
QT [ℓt ∈ [ℓ, ℓ+ dℓ), rt ∈ [r, r+ dr)|ℓs = h, rs = r′]

QT [rγ ∈ [r′, r′ + dr′), γ ∈ [s, s+ ds)].

Next, we integrate with respect to ℓ from −∞ to h and obtain

QT [ℓt ≤ h, rt ∈ [r, r+ dr)|ℓ0, r0]

=
∫ t
0

∫ ∞

−∞
QT [ℓt ≤ h, rt ∈ [r, r+ dr)|ℓs = h, rs = r′]

QT [rγ ∈ [r′, r′ + dr′), γ ∈ [s, s+ ds)].

Write

Φ(r, t) dr = QT [ℓt ≤ h, rt ∈ [r, r+ dr]|ℓ0, r0]
Ψ(r, t, r′, s) dr = QT [ℓt ≤ h, rt ∈ [r, r+ dr]|ℓs = h, rs = r′].

When t = s, we have Ψ(r, t, r′, s) dr =1{r′∈[r,r+dr]} and Ψ(r, s) dr =

QT (rs ∈ [r, r+ dr], r = s).
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Note that X = (ℓ, r) is a Gaussian process whose joint dynamics

under QT is given by

dXt = d

(
ℓt
rt

)
=

 rt − σ2

2 − σρσP (t, T )

a
[
θ − σr

a σP (t, T )− rt
] +( σρ σ

√
1− ρ2

σr 0

)(
dZT1
dZT2

)
.

We use fℓt,rt to denote the density function of (ℓt, rt) under QT .

Thanks to the conditional results, one obtains

fℓt,rt(ℓ, r) = frt(r)fℓt|rt(ℓ).

Let F0 and Fs represent the available information at time 0 and s,

respectively.

Using the strong Markov property of (ℓt, rt), conditioning on Fs is

like conditioning on (ℓs, rs), where s is the Fs-stopping time. One

then obtain Ψ and Φ:

Φ(r, t) = frt(r|F0)
∫ h
−∞ fℓt|rt(ℓ|F0) dℓ,

Ψ(r, t, r′, s) = frt(r|Fs)
∫ h
−∞ fℓt|rt(ℓ|Fs) dℓ.
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Since the process (ℓt, rt) is Gaussian, the conditional law of ℓt|rt
knowing the available information at time s is Gaussian. We de-

note EQT [ℓt|rt = r, ℓs, rs] and varQT [ℓt|rt = r, ℓs, rs] by µ(r, ℓs, rs) and∑2(r, ℓs, rs), where rt = r. By the projection Theorem:

µ(r, ℓs, rs) = EQT [ℓt|Fs] +
cov(ℓt,rt|Fs)
var[rt|Fs]

(r − EQT [rt|Fs]),∑2(r, ℓs, rs) = var[ℓt|Fs]− cov(ℓt,rt|Fs)2
var[rt|Fs]

.

The above moments have been computed. We then obtain

Φ(r, t) = frt(r|r0)N

 h−µ(r,ℓ0,r0)√∑2(r,ℓ0,r0)

 ,
Ψ(r, t, r′, s) = frt(r|rs = r′)N

 h−µ(r,ℓs=h,r′)√∑2(r,ℓs=h,r′)

 ,
where frt is the transition density of rt.
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Recall

Φ(r, t) dr = QT [ℓt ≤ h, rt ∈ [r, r+ dr)|ℓ0, r0],
Ψ(r, t, r′, s) dr = QT [ℓt ≤ h, rt ∈ [r, r+ dr)|ℓs = h, rs = r′];

they observe the following integral equation for QT [rγ ∈ dr′, γ ∈ ds]

Φ(r, t) =
∫
s∈[0,t]

∫
r′∈R

Ψ(r, t, r′, s)QT [rγ ∈ [r′, r′ + dr′), γ ∈ [s, s+ ds)].

We start with ℓ0 > h so that the first passage time cannot be zero.

In discretized form, at t = tj and r = ri, we have

Φ(ri, tj) =
j∑

v=1

nr∑
u=0

Ψ(ri, tj, ru, tv)q(u, v).

In particular, when j = 1, the previous expression becomes

Φ(ri, t1) =
nr∑
u=1

Ψ(ri, t0, ru, t0)q(u,0).
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We then obtain the following expression:

q(i,1) = QT (rγ ∈ [ri, ri+1], γ ∈ [t0, t1]).

Note that Ψ(ri, t1, ru, t1) =1{ri=ru}, one readily has q(i,1) = Φ(ri, t1).

Recursive scheme for the computation of q(i, j)

First, we compute q(i,1). For j > 1, we use the relation:

Φ(ri, tj) =
nr∑
u=0

q(u, j)Ψ(ri, tj, ru, tj) +
j−1∑
v=1

nr∑
u=0

q(u, v)Ψ(ri, tj, ru, tv).

Thanks to Ψ(ri, tj, ru, tj) =1{ri=ru}, we deduce that

q(i, j) = Φ(ri, tj)−
j−1∑
v=1

nr∑
n=0

q(u, v)Ψ(ri, tj; ru, tv).

134



Up-barrier case: summary of formulas

Starting with q(i,1) = Φ(ri, t1), we compute q(i, j) recursively as

follows:

q(i, j) = Φ(ri, tj)−
j−1∑
k=1

nr∑
l=0

q(l, k)Ψ(ri, tj; rl, tk),

where

Φ(r, t) = frt(r|r0)N

µ(r, ℓ0, r0)− h√∑2(r, ℓ0, r0)

 ,
Ψ(r, t, r′, s) = frt(r|rs = r′)N

µ(r, h, r′)− h√∑2(r, h, r′)

 .
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Review of the key results

• With regard to the knock-in condition, one has to find the joint

distribution of ℓT and γ [note that {Smax > H} and {γ ≤ T}
are equivalent events]. More specifically, we need to compute

QT [rγ ∈ dr, γ ∈ ds]. Goal: obtain an integral equation.

• We limit ourselves to the Vasicek interest rate process and Ge-

ometric Brownian motion for the stock price process. The joint

process {ℓt, rt} is two-dimensional Gaussian. The bond price

process has exponential volatility structure, where

σP (t, T ) =
σr

a
[1− e−a(T−t)].
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The relation between the bond price P (t, T ) and the short rate rt is

given by

lnP (t, T ) = −B(T − t; a)rt − η(T − t),

where

B(u; a) =
1− e−au

a
, η(u) =

(
θ −

σ2r
2a2

)
[u−B(u; a)] +

σ2r
4a
B(u; a)2.

Recall the change of measure from Q to QT :

dZT1 (t) = σP (t, T ) dt+ dZ1(t), where ZT1 (t) is QT -Brownian.

Under QT , we have

drt = a

[
θ −

σ2r
a
B(T − t; a)− rt

]
dt+ σr dZ

T
1 (t)

rt = e−at
[
rue

au+ a
∫ t
u
θ̂se

as ds+ σr

∫ t
u
eas dZT1 (s)

]
.
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• Bond price process

P (t, T ) =
P (0, T )

P (0, t)
exp

(∫ t
0
[σP (u, t)− σP (u, T )] dZ

T
1 (u)

+
1

2

∫ t
0
[σP (u, T )− σP (u, t)]

2 du

)

• Stock price process

ℓt = lnSt

= ln
S0

P (0, t)
+
∫ t
0

{
−σP (u, T )[σP (u, t) + ρσ] +

σ2P (u, t)− σ2

2

}
du

+
∫ t
0
[σP (u, t) + ρσ] dZT1 (u) +

∫ t
0
σ
√
1− ρ2 dZT2 (u)

dℓt =

[
rt −

σ2

2
− ρσσP (t, T )

]
dt+ σρ dZT1 (t) + σ

√
1− ρ2 dZT2 (t)
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• To compute EQT [e
ℓT1{ℓT>lnK}|rγ = r, r = s], we use the for-

mula:

k(m,σ, a) = E[eX1{X>ln a}] = exp

(
m+

σ2

2

)
N

(
m+ σ2 − ln a

σ

)
,

where X ∼ N(m,σ2). At γ = s, we have ℓs = H. By the

strong Markov property of (ℓt, rt), conditioning on (ℓs, rs) is like

conditioning on Fs. Take the first passage time γ to be tj, we

obtain

EQT [e
ℓT1{ℓT>lnK}|Ftj] = k(µ̂tj,T ,

∑̂
tj,T

,K),

where

µ̂s,T = EQT [ℓT |Fs] and
∑̂

tj,T
= varQT (ℓT |Fs).

Similarly,

EQT [1{ℓT>lnK}|Ftj] = N

µ̂tj,T − lnK∑̂
tj,T

 .
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• EQT [ℓt|rt = r, ℓs, rs] = µ(r, ℓs, rs)

= EQT [ℓt|Fs] +
cov(ℓt, rt|Fs)
var(rt|Fs)

(r − EQT [rt|Fs])

varQT [ℓt|rt = r, ℓs, rs] = Σ2(r, ℓs, rs) = var(ℓt|Fs)−
cov(ℓt, rt|Fs)2

var(rt|Fs)
.

• Φ(r, t) dr = QT [ℓt ≤ h, rt ∈ [r, r+ dr)|ℓ0, r0], ℓ0 > h

Ψ(r, t, r′, s) dr = QT [ℓt ≤ h, rt ∈ [r, r+ dr)|ℓs = h, rs = r′]

The discretized form of the integral equation is

Φ(ri, tj) =
j∑

v=1

nr∑
u=0

Ψ(ri, tj, ru, tv)q(u, v),

where

q(i, j) ≈ QT [rγ ∈ [ri, ri+1), γ ∈ [tj, tj+1)].
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1.6 Occupation time derivatives

Define the occupation time below the barrier B over the period [0, T ]

by

τ−B =
∫ T
0

H(B − St) dt,

where H(x) is the Heavside step function. The following quantity

exp(−ρτ−B ) = exp

(
−ρ

∫ T
0

H(B − St) dt

)
is the knock-out discount factor with knock-out rate ρ.

1. Down-and-out proportional step call

terminal payoff = exp(−ρτ−B )max(ST −K,0).

2. Simple step call option with principal amortization

terminal payoff = max(1− ρτ−B ,0)max(ST −K,0).

3. Delayed barrier call (also called cumulative Parasian call)

terminal payoff =1{τ−B<αT}
max(ST −K,0).
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Other contingent claims with dependence on the occupation time

but no independence on the terminal stock price:

• Switch option

Pays off a dollar amount proportional to the fraction of the

contract life for which St lies above or below the barrier:

Aτ−B or Aτ+B , where A is a notional constant.

• Day-in/day-out option is the difference of 2 switch options

A(τ−B − τ+B ).

• Occupation time option

max(τ−B − αT,0) or max(αT − τ−B ,0).
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Quantile options

M(α, T ) = inf

{
B :

1

T

∫ T
0
1{St≤B}dt ≥ α

}
,

which is the lowest barrier level B such that the occupation time

τ−B is greater than or equal to a given fraction α of the option’s

life. Note that M(α, T ) becomes the realized maximum of the asset

price over [0, T ] when α = 1; that is, M(1, T ) = S
[0,T ]
max .

When B is taken to be below M(α, T ), τ−B ≥ αT will not be satisfied,

so {τ−B < αT} and {M(α, T ) > B} are equivalent events. We then

have

P (τ−B < αT,WT ∈ dz) = P (M(α, T ) > B,WT ∈ dz).

One can obtain the joint law of the pair (WT ,M(α, T )) by the known

law of (WT , τ
−
B ).
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Seasoned (in-progress) step option

Let t be the current time and recall

τ−B (0, T ) = τ−B (0, t) + τ−B (t, T ),

where τ−B (0, t) is already known at time t. We then deduce that

c−ρ (S, τ
−
B (0, t), t;T,K,B) = exp(−ρτ−B (0, t))c−ρ (S;T − t,K,B),

where K is the strike price and B is the barrier.

The asset price path over [0, t] determines how the terminal payoff

is affected by the factor exp(−ρτ−B (0, t)) while the terminal asset

price at T does not depend on the path history over [0, t]. At time

t, the time to expiry of the option is T − t.

Reference

“Step Options,” V. Linetsky, Mathematical Finance, vol.9(1) (1999),

P.55-96.
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Partial differential equation formulation

We consider a contingent claim written at time t = 0 that pays

F (ST , τ
−
B ) at time T . Let f(S, I, t) denote its value at time t, t ∈

[0, T ], where I is the path dependent state variable. The occupation

time τ−B (t, T ) follows the process

dτ−B (t, T ) = H(B − St) dt.

The function f solves the following terminal value problem:

σ2

2
S2∂

2f

∂S2
+ (r − q)S

∂f

∂S
+H(B − S)

∂f

∂τ−B
− rf = −

∂f

∂t

subject to the terminal condition: f(S, I, T ) = F (S, I). Here, we

assume St under Q follows the dynamics:

dSt

St
= (r − q) dt+ σ dZt.
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Special case: separable terminal payoff

Suppose the terminal payoff is separable, where

F (S, I) = e−ρIΦ(S),

so that the solution f is also separable:

f(S, I, t) = e−ρIg(S, t).

For It = τ−B (t) =
∫ t
0
H(B − Su)du, we have

∂f

∂I

dI

dt
= −ρ

dI

dt
f = −ρH(B − S)f.

The governing equation for g is given by

σ2

2
S2∂

2g

∂S2
+ (r − q)S

∂g

∂S
− [r+ ρH(B − S)]g = −

∂g

∂t

subject to the terminal condition:

g(S, T ) = Φ(S).
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The discount rate becomes r + ρ when S ≤ B and it is equal to

r when S > B. The quantity r + ρH(B − S) can be interpreted

as the adjusted discount rate with killing rate ρ in the down-barrier

region. Once g(S, t) is obtained, f(S, I, t) = e−ρτ
−
B (0,t)g(S, t) (see the

in-progress step option formula).

Remarks

• Consistency in the “separability” assumption is observed in the

governing equation for g(S, t).

• Numerical scheme can be constructed easily by adopting the

adjusted discount rate r+ ρ in the “barrier” region.

• The discontinuity in the damping term leads to jump in
∂2g

∂S2
.
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Perpetual step options

Consider the price function f(S) of a perpetual step option, whose

governing equation reduces to the Euler equation

σ2

2
S2d

2f

dS2
+ (r − q)S

df

dS
− [r+ ρH(B − S)]f = 0

with the boundary conditions:

f(S) → Sλ++1 as S → ∞ and f(S) = 0 as S → 0.

When S > B, the auxiliary equation is
σ2

2
x(x− 1)+ (r − q)x− r = 0

and whose roots are λ± +1, where

λ± = −λ±
√
λ2 +

2q

σ2
, λ =

r − q

σ2
+

1

2
.
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When S ≤ B, the auxiliary equation is

σ2

2
x(x− 1) + (r − q)x− (r+ ρ) = 0,

and whose roots are ±λρ+1, where

λρ = −λ+

√
λ2 +

2(q+ ρ)

σ2
.

The continuity boundary conditions at the barrier are

lim
ε→0+

f(B+ ε) = lim
ε→0+

f(B − ε), lim
ε→0+

df

dS
(B+ ε) = lim

ε→0+

df

dS
(B − ε).

Solution

The general solution takes the form:

f = A1S
λ++1 +A2S

1−λ−, S > B;

f = B1S
λρ+1 +B2S

1−λρ, S < B.
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The time-independent solution for the perpetual down-and-out step

option is given by

f(S) =


Sλ++1

[
1− λρ−λ+

λρ−λ−

(
B
S

)λ+−λ−
]

S > B

λ+−λ−
λρ−λ− S

λ++1
(
B
S

)λ+−λρ
S ≤ B

.

We consider the two asymptotic limits:

(i) ρ→ 0

lim
ρ→0

f(S) = Sλ++1

which is the stationary solution of the Black-Scholes formulation

with continuous dividend yield q.

(ii) ρ → ∞ (standard perpetual barrier option when the knock-out

rate is infinite)

lim
ρ→∞ f(S) = Sλ++1

[
1−

(
B

S

)λ+−λ−
]
, S > B.
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Proportional step options

C−
ρ (S;T,K,B) = e−rTES[e

−ρτ−B max(ST −K,0)],

where ES is the conditional expectation operator associated with a

geometric Brownian motion St, t ∈ [0, T ], started at S at time t = 0.

The governing dynamics is

dSt = (r − q)St dt+ σSt dZt.

Introduce the following notation

v =
1

σ

(
r − q −

σ2

2

)
, γ = r+

v2

2
,

x =
1

σ
ln
(
S

B

)
, k =

1

σ
ln
(
K

B

)
.
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The process St can be represented as

St = Se

(
r−q−σ2

2

)
t+σZt

= Beσ(Zt+x)eσvt = Beσ(vt+Wt), Wt = Zt+ x,

where Wt is a Brownian motion started at x at time t = 0. By virtue

of the Girsanov Theorem, we have

C−
ρ (S;T,K,B) = e−rTEx[ev(WT−x)−v2

2 T−ρΓ
−
T (BeσWT −K)1{WT≥k}]

= e−γT−vx[BΨρ(v+ σ; k, x, T )−KΨρ(v; k, x, T )].

The factor ev(WT−x)−v2
2 T is the associated Radon-Nikodym deriva-

tive. The change of measure is effected by

evZT−
v2
2 T = ev(WT−x)−v2

2 T .

When Zt (Wt) is Brownian under the original measure, Z̃t = Zt +

vt (W̃t = Wt + vt) is Brownian under the new measure. We then

drop “tilde” for notational convenience.
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The event St = Beσ(vt+Wt) ≥ B ⇔Wt+vt ≥ 0 in the original measure

⇔ Wt ≥ 0 in the new measure. Similarly, ST = Beσ(WT+vT ) ≥ K in

the original measure is equivalent to BeσWT − K ≥ 0 ⇔ WT ≥ k in

the new measure.

Here, Γ−
T is the occupation time of (−∞,0] until time T , and

Γ−
T =

∫ T
0
1{Wt≤0} dt.

The occupation time of St ≤ B in the original measure is equivalent

to the occupation time of Wt staying in (−∞,0) in the new measure.

The function Ψρ(v; k, x, T ) is defined by

Ψρ(v; k, x, T ) = Ex[e
vWT−ρΓ−

T1{WT≥k}] =
∫ ∞

k
evzEx[e

−ρΓ−
T ;WT ∈ dz].

Here, Ex is associated with the Brownian motion Wt started at x at

time 0.
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Transition probability density of a Brownian motion with killing

rate ρ

Ex[e
−ρΓ−

T ;WT ∈ dz] = Kρ(z, x;T )dz,

where Kρ is the transition probability density of a Brownian motion

started at x and killed at rate ρ below zero.
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• Region I. x ≥ 0, z ≥ 0, x+ z > 0: (initial stock price S is higher

than or equal to barrier B)

KIρ(z, x;T ) = K−(z, x;T )+
∫ T
0

[1− e−ρ(T−t)](z+ x)

2πρ(T − t)3/2t3/2
e−(z+x)2/2tdt,

where WT stays outside the barrier region or at the barrier. The

degenerate case x = z = 0 has a simpler form.

Here, K− is the transition probability density for a Brownian

motion with absorbing barrier at zero and started at x

K−(z, x;T ) =
1√
2πT

[
e−(z−x)2/2T − e−(z+x)2/2T

]
.
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• Region II. x ≤ 0, z > 0:

KIIρ (z, x;T )

=
∫ T
0

[1− e−ρ(T−t)][z(1− x2/(T − t)) + x(1− z2/t)]

2πρ(T − t)3/2t3/2

e−z
2/2t−x2/[2(T−t)] dt,
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Introduce a Brownian motion W̃t = −Wt so that

Kρ(z, x;T )dz = E−x[e
−ρΓ̃+

T ; W̃T ∈ −dz]

= e−ρTE−x[e
ρΓ̃−

T ; W̃T ∈ −dz]
= e−ρTK−ρ(−z,−x;T )dz.

• Region III. x ≥ 0, z < 0:

KIIIρ (z, x;T ) = e−ρTKII−ρ(−z,−x;T );

• Region IV. x ≤ 0, z ≤ 0, z+ x < 0:

KIVρ (z, x;T ) = e−ρTKI−ρ(−z,−x;T );

• z = x = 0:

Kρ(0,0;T ) =
1− e−ρT√
2πρT3/2

.
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Solution for Gρ

Recall the forward Fokker-Planck equation for the dissipative density

function Kρ:

∂Kρ
∂T

=
1

2

∂2Kρ
∂x2

− ρH(−x)Kρ

with terminal condition: Kρ(z, x;T ) = δ(z − x). Here, T is the

forward time variable and x is the diffusion state variable. The unit

variance Brownian motion ends at the point z for sure at time T

and dissipates at the rate ρ when x ≤ 0.

The above governing differential equation resembles the option pric-

ing equation with killing rate ρ in the downbarrier region. This is

not surprising since Kρ(z, x;T )dz gives the fair price of the contin-

gent claim with terminal payoff e−ρΓ
−
T dz1{WT∈(z,z+dz)} subject to

the amortization factor with killing rate ρ. We take the Laplace

transform of Kρ(z, x;T ) with s as the dummy Laplace variable:

Gρ(z, x; s) =
∫ ∞

0
e−sTKρ(z, x;T ) dT.
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When x tends to −∞ or ∞, the transition density should tend to

zero; so

lim
x→∞Kρ(z, x;T ) = lim

x→−∞
Kρ(z, x;T ) = 0.

The pde is reduced to an ODE when we take the Laplace transform.

Observe that the Laplace transform of
∂Kρ
∂T

gives sGρ−δ(z−x). We

then have

1

2

∂2Gρ

∂x2
− [s+ ρH(−x)]Gρ = −δ(z − x).

For the far field boundary conditions, by observing the corresponding

far field boundary conditions for Kρ(z, x;T ), we observe

lim
x→−∞

Gρ(z, x; s) = 0, lim
x→∞Gρ(z, x; s) = 0.

In the solution of the ODE in view of s+ ρH(−x) in the coefficient

of Gρ, we observe that

(i) when x ≤ 0, the fundamental solutions are e±x
√

2(s+ρ);

(ii) when x > 0, the fundamental solutions are e±x
√
2s.

159



Jump conditions for Gρ and
∂Gρ

∂x
at x = 0 and x = z

Due to the Heaviside term H(−x) in the ODE, it remains to have

continuity of Gρ and
∂Gρ

∂x
at x = 0. However, there is a jump in

∂Gρ

∂x
at x = z due to the Dirac term δ(z − x). We have

lim
ϵ→0+

[Gρ(z, ϵ; s)−Gρ(z,−ϵ; s)] = 0;

lim
ϵ→0+

[
∂Gρ

∂x
(z, ϵ; s)−

∂Gρ

∂x
(z,−ϵ; s)

]
= 0;

lim
ϵ→0+

[Gρ(z, z+ ϵ; s)−Gρ(z, z − ϵ; s)] = 0;

lim
ϵ→0+

1

2

[
∂Gρ

∂x
(z, z+ ϵ; s)−

∂Gρ

∂x
(z, z − ϵ; s)

]
= −1.
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It suffices to consider the case z > 0. The solution to Kρ with z < 0

can be deduced from Kρ obtained for z > 0 using the symmetry

relation: Kρ(z, x;T )dz = e−ρTKρ(−z,−x;T )dz. The special case z =

0 can be obtained in a separate (possibly simpler) procedure.

Solve the ODE for Gρ in 3 separate segments:

For the determination of the arbitrary constants, we apply the two

far field boundary conditions at x→ ±∞, and observe continuity of

G and
∂Gρ

∂x
at x = 0, continuity of Gρ at x = z and jump of

∂Gρ

∂x
of

amount 2 from x = z − ϵ to x = z+ ϵ.
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Region I. x > 0, z > 0:

GIρ(z, x; s) =
1√
2s

(e−|z−x|
√
2s −Rρ(s)e

−(z+x)
√
2s),

where the coefficient Rρ is given by

Rρ(s) =

√
s+ ρ−

√
s

√
s+ ρ+

√
s
.

The solution consists of the two exponential terms: A1e
−x

√
2s and

A2e
x
√
2s.

Note that e−|z−x|
√
2s becomes e−(x−z)

√
2s when x − z > 0, which is

consistent with the requirement that the exponential term A2e
x
√
2s

should be excluded when x− z > 0.

The coefficients A1 and A2 are determined by the continuity con-

ditions and jump conditions at x = 0 and x = z. This leads to the

solution for GIρ(z, x; s) in the above form.
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We rewrite

GIρ(z, x; s) = G−(z, x; s) +

√
2

√
s+ ρ+

√
s
e−(z+x)

√
2s,

where G− is the Laplace transform for the transition density of the

unit variance Brownian motion with an absorbing barrier at zero and

starting point at x (restricted Brownian motion). With both x > 0

and z > 0, we have

G−(z, x; s) =
1√
2s

(e−|z−x|
√
2s − e−(z+x)

√
2s).

Performing the Laplace inversion and noting that

L−1
t

{ √
2

√
s+ ρ+

√
s

}
=

1− e−ρt√
2πρt3/2

,

we obtain

KIρ(z, x;T ) =
1√
2πT

[
e−

(z−x)2
2T − e−

(z+x)2

2T

]

+
∫ T
0

1− e−ρ(T−t)√
2πρ(T − t)3/2

(z+ x)e−
(z+x)2

2t
√
2πt3/2

dt.
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Some useful Laplace transform formulas

L−1
T {e−a

√
s} =

a

2
√
πT3/2

e−a
2/4T , a > 0;

L−1
T

{
1
√
s
e−a

√
s

}
=
e−a

2/4T
√
πT

, a ≥ 0;

L−1
T

{
1√

s+ a+
√
s

}
= L−1

T

{√
s+ a−

√
s

a

}
=

1− e−aT

2a
√
πT3/2

, a ≥ 0,

convolution formula:

L
{∫ T

0
g(t)h(T − t) dt

}
= L{g(T )}L{h(T )}.

164



Note that GIρ(z, x;T ) remains to be continuous at x = 0. At z =

x = 0, GIρ(0,0; s) becomes

√
2

√
s+ ρ+

√
s
, so that

KIρ(0,0;T ) =
1− e−ρT√
2πρT3/2

.

As a remark, the last integral term in KIρ(z, x;T ) can be expressed

by

∫ T
0

KIρ(0,0;T − t)
(z+ x)e

(z+x)2

2t
√
2πt3/2

dt,

which is the convolution between KIρ(0,0; t) and the first passage

time density function of a standard Brownian motion that starts at

0 and travels downstream to −(z+ x).

More precisely, the dummy variable t is the sum of t1 and t2, where

t1 is the first passage time of Wt to barrier x = 0 with W0 = x and

t2 is the last passage time to the barrier x = 0 with WT = z.
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Under such scenario, Wt moves from position 0 and ends at position

0 over the remaining period T − t. The corresponding transition

density with killing rate ρ is KIρ(0,0;T − t).

1. When ρ→ ∞, we observe lim
ρ→∞

1− e−ρ(T−t)

ρ(T − t)
= 0 so that

lim
ρ→∞KIρ(z, x;T ) =

1√
2πT

[
e−

(z−x)2
2T − e−

(z+x)2

2T

]
.

This is the same as the density function of the restricted Brow-

nian motion with an absorbing barrier at x = 0.

2. When ρ→ 0, we observe lim
ρ→0

1− e−ρ(T−t)

ρ(T − t)
= 1 so that

lim
ρ→0

KIρ(z, x;T ) =
1√
2πT

[
e−

(z−x)2
2T − e−

(z+x)2

2T

]

+
∫ T
0

1√
2π(T − t)1/2

(z+ x)e−
(z+x)2

2t
√
2πt3/2

dt.
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By taking the Laplace transform of both functions and using the

convolution formula, one can show easily that

free space density function of a standard Brownian motion

starting at x and ending at −z

=
1√
2πT

e−
(z+x)2

2T

=
∫ T
0

1√
2π(T − t)1/2

(z+ x)e−
(z+x)2

2t
√
2πt3/2

dt.

Note that L−1
T

{
1√
2s

}
=

1√
2πT

, which is the density function of a

standard Brownian motion that starts at 0 and ends at 0 again at

T . Also,

L−1
T

{
e−(z+x)

√
2s
}
=

z+ x√
2πT3/2

exp

(
−(z+ x)2

2T

)
,

which gives the first passage time density to the barrier x = −z with

W0 = x.
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The integral can be expressed as the product of two terms; namely,

P [τW−z ∈ dt;W0 = x] =
(z+ x)e−

(z+x)2

2t
√
2πt3/2

dt

and

P [WT ∈ (−z,−z+ dz)|τW−z = t;W0 = x]

= P [WT ∈ (−z,−z+ dz)|Wt = −z] (strong Markov property)

=
1√

2π
√
T − t

.

We integrate over all first passage times over [0, T ] and obtain the

integral as∫ T
0
P [WT ∈ (−z,−z+ dz)|τW−z = t;W0 = x]P [τW−z ∈ dt;W0 = x]

=
∫ T
0
P [WT ∈ (−z,−z+ dz)|Wt = −z]P [τW−z ∈ dt;W0 = x].

This integral contributes to KIρ(z, x;T ) for ρ = 0 under the scenario

where the downside barrier x = 0 has been breached at some time

within [0, T ].
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• Region II. x ≤ 0, z ≥ 0:

GIIρ (z, x; s) =
1√
2s

Tρ(s)ex
√

2(s+ρ)−z
√
2s.

where

Tρ(s) = 1−Rρ(s) =
2
√
s

√
s+ ρ+

√
s
.

The solution consists of one exponential term: A3e
x
√

2(s+ρ).

• Region III. x ≥ 0, z ≤ 0:

GIIIρ (z, x; s) =
1√
2s

Tρ(s)ez
√

2(s+ρ)−x
√
2s.

• Region IV. x ≤ 0, z ≤ 0:

GIVρ (z, x; s) =
1√

2(s+ ρ)
{e−|z−x|

√
2(s+ρ) +Rρ(s)e

(z+x)
√

2(s+ρ)}.

This is obtained by swapping z → −z, x → −x, s → s+ ρ and

s+ ρ→ s in GIρ(z, x; s).

169



• Region I. k ≥ 0 (K ≥ B) and x ≥ 0 (S ≥ B) :

ΨI
ρ(v; k, x, T ) =

∫ ∞

k
evzKIρ(z, x;T ) dz

=
1√
2πT

∫ ∞

k
e[−(z−x)2/2T ]+vz dz

−
1√
2πT

∫ ∞

k
e[−(z+x)2/2T ]+vz dz

+
∫ T
0

1− e−ρ(T−t)√
2πρ(T − t)3/2(

1√
2πt3/2

∫ ∞

k
(z+ x)e[−(z+x)2/2t]+vzdz

)
dt

= evx+v
2T/2N(d1)− e−vx+v

2T/2N(d3)

+ e−vx
∫ T
0

[1− e−ρ(T−t)]ev
2t/2

√
2πρ(T − t)3/2

[vN(d5) + t−1/2N ′(d5)] dt;

where

d1 =
−k+ x+ vT√

T
, d3 =

−k − x+ vT√
T

,

d5 =
−k − x+ vt√

t
, d6 = d5 + σ

√
t.
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The function Ψρ(v; k, x, T ) is continuous for all k ∈ R and x ∈ R.

Price of a down-and-out proportional step call at t = 0

• K ≥ B and S ≥ B

C−
ρ (S;T,K,B) = e−γT−vx[BΨI

ρ(v+ σ; k, x, T )−KΨI
ρ(v; k, x, T )]

= DOC(S;T,K,B)

+
(
B

S

)2v/σ ∫ T
0

[1− e−ρ(T−t)]e−γ(T−t)√
2πρ(T − t)3/2[

(v+ σ)e−qt
(
B2

S

)
N(d6)− ve−rtKN(d5)

]
dt.
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DOC(S;T,K,B) = e−qTSN(d2)− e−rTKN(d1)

−
(
B

S

)2v/σ [
e−qT

(
B2

S

)
N(d4)− e−rTKN(d3)

]
,

d2 = d1 + σ
√
T , d4 = d3 + σ

√
T .

In the limit ρ→ ∞,

lim
ρ→∞C−

ρ (S;T,K,B) = DOC(S;T,K,B);

and in the limit ρ→ 0,

lim
ρ→0

C−
ρ (S;T,K,B) = C(S;T,K) (vanilla call option).
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• Region II. k ≥ 0 (K ≥ B) and x ≤ 0 (S ≤ B) :

ΨII
ρ (v; k, x, T ) =

∫ ∞

k
evzKIIρ (z, x;T ) dz

=
∫ T
0

1− e−ρ(T−t)√
2πρ(T − t)3/2

e−x
2/2(T−t)

(
1√

2πt3/2

∫ ∞

k
[z(1− x2/(T − t))

+ x(1− z2/t)]e−z
2/2t+vzdz

)
dt;

=
∫ T
0

[1− e−ρ(T−t)]ev
2t/2

√
2πρ(T − t)3/2

[vC1N(d7) + C2N
′(d7)]e

−x2/[2(T−t)] dt;
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C−
ρ (S;T,K,B) = e−γT−vx[BΨII

ρ (v+ σ; k, x, T )−KΨII
ρ (v; k, x, T )]

=
(
B

S

)v/σ ∫ T
0

[1− e−ρ(T−t)]e−γ(T−t)√
2πρ(T − t)3/2

[(v+ σ)C3e
−qtBN(d8)− vC1e

−rtKN(d7)

− σxt−1/2e−qtBN ′(d8)]e
−x2/[2(T−t)] dt;

d7 =
−k+ vt√

t
, d8 = d7 + σ

√
t;

C1 = 1−
x2

T − t
− vx, C2 =

C1√
t
−
xk

t
√
t
, C3 = C1 − 6x.

Continuity of value function and delta; jump in gamma

lim
ϵ→0+

[C−
ρ (B+ ϵ;T,K,B)− C−

ρ (B − ϵ;T,K,B)] = 0

lim
ϵ→0+

[∆−
ρ (B+ ϵ;T,K,B)−∆−

ρ (B − ϵ;T,K,B)] = 0

lim
ϵ→0+

[Γ−
ρ (B+ ϵ;T,K,B)− Γ−

ρ (B − ϵ;T,K,B)] =
2ρ

σ2B2
C−
ρ (B;T,K,B).
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• Region III. k ≤ 0 (K ≤ B) and x ≥ 0 (S ≥ B) :

ΨIII
ρ (v; k, x, T ) =

∫ ∞

0
evzKIρ(z, x;T ) dz+

∫ 0

k
evzKIIIρ (z, x;T ) dz

=
∫ ∞

0
evzKIρ(z, x;T ) dz+

∫ 0

−∞
evzKIIIρ (z, x;T ) dz

−
∫ k
−∞

evzKIIIρ (z, x;T ) dz;

= ΨI
ρ(v; 0, x, T )

+ e−ρT [ΨII
−ρ(−v; 0,−x, T )−ΨII

−ρ(−v;−k,−x, T )];

C−
ρ (S;T,K,B) = e−γT−vx[BΨIII

ρ (v+σ; k, x, T )−KΨIII
ρ (v; k, x, T )].
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We apply a useful symmetry property of the function Kρ(z, x;T ):

Kρ(z, x;T ) = e−ρTK−ρ(−z,−x;T ).

• Region IV. k ≤ 0 (K ≤ B) and x ≤ 0 (S ≤ B) :

ΨIV
ρ (v; k, x, T ) =

∫ ∞

0
evzKIIρ (z, x;T ) dz+

∫ 0

k
evzKIVρ (z, x;T ) dz

=
∫ ∞

0
evzKIIρ (z, x;T ) dz+

∫ 0

−∞
evzKIVρ (z, x;T ) dz

−
∫ k
−∞

evzKIVρ (z, x;T ) dz.

= ΨII
ρ (v; 0, x, T )

+ e−ρT [ΨI
−ρ(−v; 0,−x, T )−ΨI

−ρ(−v;−k,−x, T )]

C−
ρ (S;T,K,B) = e−γT−vx[BΨIV

ρ (v+σ; k, x, T )−KΨIV
ρ (v; k, x, T )].
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Vanilla, Down-and-Out Proportional Step, Simple Step, and Barrier Call

Values and Deltas as Functions of the Underlying Asset Price S

vanilla call proportional step simple step barrier

S C ∆ C
P,−
ρ ∆P,−

ρ C
s,−
ρ ∆s,−

ρ DOC ∆−

85 9.8517 0.4554 1.6062 0.2376 0.7200 0.1730 0 0

90 12.2641 0.5091 3.2951 0.4602 2.1528 0.4291 0 0

95 14.9373 0.5597 6.5008 0.8598 5.3548 0.8908 0 1.0058

96 15.5019 0.5694 7.3603 0.8591 6.2450 0.8895 1.0044 1.0029

97 16.0760 0.5790 8.2192 0.8587 7.1339 0.8884 2.0060 1.0003

102 19.0867 0.6247 12.5113 0.8589 11.5668 0.8855 6.9780 0.9892

105 20.9994 0.6503 15.0904 0.8607 14.2229 0.8855 9.9376 0.9841

Option parameters: K = 100, B = 95, σ = 0.6, r = 0.05, q = 0, T = 0.5 (six months).

Proportional step call parameters: β = 0.9 (ρ = 26.34, T−
B = 21.85 trading days).

Simple step call parameters: ρd = 0.1 (ρ = 25, T−
B = 10 trading days, β = 0.9).
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Vanilla, down-and-out proportional step, simple step, and barrier

call values as functions of the asset price S. Option parameters:

K = 100, B = 95, σ = 0.6, r = 0.05, q = 0, T = 0.5 (six months).

Proportional step call parameters: β = 0.9 (ρ = 26.34, T−
B = 21.85

trading days). Simple step call parameters: ρd = 0.1 (ρ = 25,

T−
B = 10 trading days, β = 0.9).
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Vanilla, down-and-out proportional step, simple step, and barrier call

values as functions of the current asset price S. Option parameters:

K = 100, B = 95, σ = 0.6, r = 0.05, q = 0, T = 0.5 (six months).

Proportional step call parameters: β = 0.9 (ρ = 26.34, T−
B = 21.85

trading days). Simple step call parameters: ρd = 0.1 (ρ = 25,

T−
B = 10 trading days, β = 0.9).
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Joint law of (WT ,Γ
−
T )

Define the joint density of terminal value of Brownian motion and

occupation time by

px(WT ∈ dz,Γ−
T ∈ dt) = px(z, t;T ) dzdt, −∞ < z <∞, t ≤ T.

We would like to show: px(z, t;T ) = L−1
t Kρ(z, x;T ). Consider

Ex[e
−ρΓ−

T ;WT ∈ dz]

= Kρ(z, x;T ) dz

=
∫ T
0
e−ρtpx(z, t;T ) dtdz

=
(∫ ∞

0
e−ρtpx(z, t;T ) dt

)
dz since px(z, t;T ) = 0 for t > T .

Since the last integral can be visualized as the Laplace transform of

px(z, t;T ) with the Laplace variable ρ, so

px(z, t;T ) = L−1
t [Kρ(z, x;T )].
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Region I. x ≥ 0, z ≥ 0, z+ x > 0:

pIx(z, t;T ) = L−1
t {KIρ(z, x;T )}

=
∫ T−t
0

(z+ x)

2π(T − u)3/2u3/2
exp

(
−
(z+ x)2

2u

)
du;

or rewrite it as

pIx(z, t;T ) dt =
∫ T−t
0

1√
2πu1/2

(z+ x)√
2π(T − u)3/2

e
−(z+x)2

2(T−u) dt

u
du,

where u is the time variable lapsed backward from T . Note that u

runs from 0 to T − t (since u > T − t means the calendar time is

less than t and should be ruled out). Contribution to pIx arises only

when the barrier x = 0 is breached.

Region II. x ≤ 0, z > 0:

pIIx (z, t;T ) = L−1
t {KIIρ (z, x;T )}

=
∫ T−t
0

{z[1− x2/(T − u)] + x(1− z2/u)}
2π(T − u)3/2u3/2

exp

(
−
z2

2u
−

x2

2(T − u)

)
du.
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• Region III. x ≥ 0, z < 0:

pIIIx (z, t;T ) = L−1
t {KIIIρ (z, x;T )} = pII−x(−z, T − t;T );

where the last equality is deduced from Kρ(z, x;T ) = e−ρTK−ρ(−z,−x;T ).

• Region IV. x ≤ 0, z ≤ 0, z+ x < 0:

pIVx (z, t;T ) = L−1
t {KIVρ (z, x;T )} = pI−x(−z, T − t;T );

• x = z = 0: p0(0, t;T ) = L−1
t {Kρ(0,0;T )} =

1√
2πT3/2

;

• t = 0, x ≥ 0, z ≥ 0: px(WT ∈ dz,Γ−
T = 0) = K−(z, x;T ) dz;

• t = T , x ≤ 0, z ≤ 0: px(WT ∈ dz,Γ−
T = T ) = K−(z, x;T ) dz.
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Pricing of contingent claims with payoff F (ST , τ
−
B )

The price at t = 0 of a claim with the payoff F (ST , τ
−
B ) at time T

and S ≥ B [corresponds to x ≥ 0] is given by

CF (S;T,B) = e−γT−vx
{∫ ∞

0
F (Beσz,0)evzK−(z, x;T ) dz

+
∫ T
0

∫ ∞

0
F (Beσz, t)evzpIx(z, t;T ) dzdt

+
∫ T
0

∫ 0

−∞
F (Beσz, t)evzpIIIx (z, t;T ) dzdt

}
.

Here, K−(z, x;T )dz gives the probability that WT ∈ (z, z+ dz) while

the stock price never crosses the downstream barrier (corresponds

to τ−B = 0).

For τ−B > 0, z can assume values from −∞ to ∞. When z ≥ 0,

pIx(z, t;T ) is used; while when z ≤ 0, we use pIIIx (z, t;T ).
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Delayed barrier options and simple step options

With separable payoff: f(τ−B )Φ(ST ), we have

Cf(S;T,K,B) = e−rTES[f(τ
−
B )Φ(ST )]

= e−rT
∫ T
0
f(t)

∫ ∞

−∞
Φ(δ)pS(δ, t;T ) dδdt.

Recall

Lρ{pS(δ, t;T )} = ES[e
−ρτ−B ;ST ∈ dδ]

so that

Cf(S;T,K,B) =
∫ T
0
f(u)L−1

u {e−rTES[e−ρτ
−
BΦ(ST )]} du

=
∫ T
0
f(u)L−1

u {C−
ρ (S;T,K,B)} du.

Note that Ψρ(v; k, x, T ) in the price function C−
ρ (S;T,K,B) invariably

contains the factor
1− e−ρ(T−t)

ρ
, which arises from the choice of

f(u) = e−ρu.
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A useful identity: Given L−1
u

{
e−ρu0

ρ

}
= H(u− u0), we have

∫ T
0
f(u)L−1

u

1− e−ρ(T−t)

ρ

 du
=

∫ T
0
f(u)[H(u)−H(u− (T − t))] du

=
∫ T−t
0

f(u) du = F (T − t).

By using the price function of the proportional step option with

down-barrier C−
ρ (S;T,K,B), we obtain

K ≥ B and S ≥ B:

Cf(S;T,K,B) = f(0)DOC(S;T,K,B)

+
(
B

S

)2v/σ ∫ T
0

F (T − t)e−γ(T−t)√
2π(T − t)3/2[

(v+ σ)e−qt
(
B2

S

)
N(d6)− ve−rtKN(d5)

]
dt,
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where the factor F (T − t) reveals the functional dependence of the

terminal payoff on τ−B of the occupation time derivative.

For proportional step options, delayed barrier options, and simple

step options we have

Fp(T − t) =
∫ T−t
0

e−ρu du =
1− e−ρ(T−t)

ρ
,

Fd(T − t) =
∫ T−t
0

1{u<αT} du =

{
αT, 0 ≤ t ≤ (1− α)T
T − t, (1− α)T < t ≤ T

,

Fs(T − t) =
∫ T−t
0

max(1− ρu,0) du

=


1
2ρ, 0 ≤ t ≤ T − 1

ρ

(T − t)[1− ρ
2(T − t)], T − 1

ρ < t ≤ T
.
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1.7 Discretely monitored barrier options

Discrete and continuous monitoring of the asset price process

• The asset price process is monitored over the life of the option

contract for breaching of a barrier level. In actual implemen-

tation, these monitoring procedures can only be performed at

discrete time instants rather than continuously at all times.

• When the asset price path is monitored at discrete time instants,

the analytic forms of the price formulas become quite daunting

since they involve multi-dimensional cumulative normal distri-

bution functions and the dimension is equal to the number of

monitoring instants.
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Correction formula for discretely monitored barrier options

Let V (B;m) be the price of a discretely monitored knock-in or

knock-out down call or up put option with constant barrier B and

m monitoring instants. Let V (B) be the price of the corresponding

continuously monitored barrier option. We have

V (B;m) = V (Be±βσ
√
∆t) + o

(
1

√
m

)
,

where β = −ξ
(
1

2

)/√
2π ≈ 0.5826, ξ is the Riemann zeta func-

tion, σ is the volatility, ∆t is the uniform time interval between two

successive monitoring instants.

The “+” sign is chosen when B > S, while the “−” sign is chosen

when B < S.

One observes that the correction shifts the barrier away from the

current underlying asset price by a factor of eβσ
√
∆t.
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Numerical comparison

Up-and-out call price (m = 50, roughly daily monitoring)

barrier

level

option price under

continuous barrier

option price using

correction formula

exact value

155 12.775 12.905 12.894
150 12.240 12.448 12.431
145 11.395 11.707 11.684
140 10.144 10.581 10.551
135 8.433 8.994 8.959
130 6.314 6.959 6.922
125 4.012 4.649 4.616
120 1.938 2.442 2.418
115 0.545 0.819 0.807

Option parameters: S(0) = 110, K = 100, σ = 0.30 per year,

r = 0.1, T = 0.2 year (roughly 50 trading days).

• The errors in adopting the continuous barrier price formula as

an approximation can be quite significant when the stock price

is close to the barrier.
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Formulation of discretely monitored barrier options

In the discretely monitoring case, at the nth monitoring point n∆t

with ∆t = T/m, the asset price under the risk neutral measure Q is

given by

Sn = S(0) exp

µn∆t+ σ
√
∆t

n∑
i=1

Zi

 = S(0) exp(Wnσ
√
∆t), n = 1, . . . ,m,

where the random walk Wn is defined by

Wn =
n∑
i=1

(
Zi+

µ

σ

√
∆t

)
.

Here, the drift is given by µ = r − σ2/2 and Zi’s are independent

standard normal random variables.

Intuition behind the continuity correction for random walk: Correc-

tions to normal approximation are made to adjust for the “over-

shoot” effects when a discrete random walk crosses a barrier.
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We rescale the breaching condition from the stock price process S

to the Wiener process W . Let H be the barrier, we consider

Sn ≥ H ⇔ exp(Wnσ
√
∆t) ≥

H

S(0)

⇔ Wn ≥
1

σ
√
∆t

ln
H

S(0)
=
a
√
m

σ
√
T
, where a = ln

H

S(0)
.

Let τ ′ (integer valued) be the (discrete) first passage time to the

barrier x. The barrier is not hit until maturity (mth time step) if

and only if

τ ′

 a

σ
√
T︸ ︷︷ ︸

x

,W

 > m⇔Wn <
a

σ
√
T︸ ︷︷ ︸

x

√
m for n = 1,2, . . . ,m.

In the present context, we consider a first passage problem for the

random walk Wn with small drift
[
µ

σ

√
∆t→ 0 as m→ ∞

]
to cross a

high barrier

[
a

σ
√
T

√
m→ ∞ as m→ ∞

]
.
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τ ′(H,S) = (discrete) first passage time (in units of monitoring

time intervals) that the stock price reaches H or above;

when τ ′(H,S) assumes k, the calendar time is k∆t.

I(τ ′(H,S) > m) is the indicator function that the barrier call option

survives up to the maturity date.

m = number of monitoring instants

Sm = stock price at the last monitoring instant (maturity date)

The price of the discrete up-and-out call option is given by

Vm(H) = E∗[e−rT (Sm −K)+I{τ ′(H,S) > m}]
= E∗[e−rT (Sm −K)+I{τ ′(

a

σ
√
T
,W ) > m}],

where a = ln
H

S(0)
> 0, τ ′(H,S) = inf{n ≥ 1: Sn ≥ H}, τ ′(x,W ) =

inf{n ≥ 1: Wn ≥ x
√
m}, where x =

a

σ
√
T
.
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We consider standardized quantities, where σ and T are set to be

unity so that ∆t =
1

m
, where m is the number of monitoring instants.

For unit variance U(t) and Um(n), we have U(t) = µt+ B(t) and

Um(n) is a random walk with a small drift (as m→ ∞),

Um(n) =
n∑
i=1

(
Zi+

µ
√
m

)
,

where Zi’s are independent standard normal random variables.

• n is the running index of the discrete random walk with m total

increments

• t is the running time of the continuous Brownian motion up to

time T = 1.
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Reflection principle (discrete version)

The random overshoot of Um(τ ′) over the barrier b
√
m is defined

by Rm = Um(τ ′) − b
√
m. The reflection principle for random walk

should be

P [Um < y
√
m, τ ′(b, Um) ≤ m] = P [Um ≥ 2(b

√
m+Rm)− y

√
m].

An illustration of the discrete reflection principle
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Discrete Girsanov Theorem

For any probability measure P , let P̂ be defined by

dP̂

dP
= exp

 m∑
i=1

aiZi −
1

2

m∑
i=1

a2i

 ,
where ai, i = 1, . . . , n, are arbitrary constants, and Zi’s are standard

normal random variables under the probability measure P . Then

under the probability measure P̂ , for every 1 ≤ i ≤ m, Ẑi := Zi − ai
is a standard normal random variable.
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Rescaling property

For Brownian motions with drifts αµ and µ, and unit standard de-

viation, we have

P [Wαµ(1) ≥ x, τ(c,Wαµ) > 1] = P [Wµ(α
2) ≥ αx, τ(αc,Wµ) > α2],

where Wµ(t) denotes the Brownian motion with drift µ and unit

standard deviation.

Proof

Suppose µ is increased by a factor of α, then Wαµ(t) = αµt+B(t).

Considering the increase of time by a factor of α2, we observe

Wµ(α
2t) = µ(α2t) +B(α2t) = α[αµt+B(t)] = αWαµ(t);

and

Wαµ(1) ≥ x⇔Wµ(α
2) ≥ αx.
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Main Theorem

For b ≥ y and b > 0, the discrete joint distribution for Um and τ ′(b, U)

and the continuous joint distribution for U(1) and τ(b+ β/
√
m,U)

are related by

P [Um < y
√
m, τ ′(b, U) ≤ m] = P [U(1) ≤ y, τ(b+β/

√
m,U) ≤ 1]+o(1/

√
m),

where β =
1√
2

1−
1
√
π

∞∑
n=1

[
1
√
n
−

√
π

(
−1

2
n

)
(−1)n

] = −
ξ
(
1
2

)
√
2π

, and

ξ is the Riemann-Zeta function.

Proof

Replacing the random overshoot Rm by its expectation E[Rm], whose

value can be shown to converge to β = −
ξ
(
1
2

)
√
2π

.
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We then have

P [Um < y
√
m, τ ′(b, U) ≤ m]

≈ P

[
Um ≥ 2

(
b+

β
√
m

)
√
m− y

√
m

]
(renewal theory plus reflection

principle)

≈ P

[
U(1) ≥ 2

(
b+

β
√
m

)
− y

]

= P

[
U(1) ≤ y, τ

(
b+

β
√
m
,U

)
≤ 1

]
(reflection principle)

where τ is the stopping time for the continuous counterpart.

Intuitive interpretation

The expectation of random overshoot is similar to the average of

residual life, which is defined as the interval from time t until the

next renewal event. For example, if we arrive at a bus stop at time

t and buses arrive according to a renewal process, then the residual

life is the time that we have to wait for a bus to arrive.
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Limiting expectation of overshoot

The constant β is the limiting expectation of the overshoot, which

can be viewed as an approximation to the average of the amount

by which the random walk Um exceeds the boundary b
√
m the first

time the random walk is above the boundary. By renewal theory,

we have

β =
E[A2

N ]

2E[AN ]
,

where the mean zero random walk An is defined as

An =
n∑
i=1

Zi

and N is the first ladder height associated with An,

N = min{n ≥ 1 : An > 0}.
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From Spitzer (1960), we have

E[AN ] =
1√
2
ew0, E[A2

N ] =

[
w2 +

E[Z3
1]

3
√
2

−
√
2w1

]
ew0,

where

w0 =
∞∑
n=1

1

n

[
P [An ≤ 0]−

1

2

]
, w1 =

∞∑
n=1

1
√
n

{
E

[(
An√
n

)]
−

1√
2π

}
,

w2 = 1−
1
√
π

∞∑
n=1

[
1
√
n
−

√
π

(
−1

2
n

)
(−1)n

]
,

and

(
x
n

)
=
x(x− 1) . . . (x− n+1)

n!
.

For normal random variables, we have w0 = 0, w1 = 0, E[Z3
1] = 0,

so

β =
E[A2

N ]

2E[AN ]
=

[
w2 +

E[Z3
1]

3
√
2

−
√
2w1

]
ew0

2 1√
2
ew0

=
w2√
2

=
1√
2

1−
1
√
π

∞∑
n=1

[
1
√
n
−

√
π

(
−1

2
n

)
(−1)n

] .
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From classical analysis, recall the property of the Riemann-Zeta

function ξ(s), where

ξ(s) = lim
x↑1

∞∑
n=1

{
xn

ns
− Γ(1− s)

(
ln

1

x

)s−1
}
,

where

Γ(1 + s) =
∫ ∞

0
e−tts dt.

Taking s = 1/2, and observing Γ
(
1

2

)
=

√
π, we have

lim
x↑1

∞∑
n=1

{
xn
√
n
−

√
π

[
ln

1

x

]−1/2
}
= ξ

(
1

2

)
.

After same tedious manipulation, we obtain

β = −
ξ
(
1
2

)
√
2π

.

For details, see the proof in Appendix B in Kou’s paper titled “Dis-

crete barrier and lookback options” (2008).
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Up-and-out call option

For valuation of up-and-out call, we need the following result:

For any constants b ≥ y and b > 0,

P (Um ≥ y
√
m, τ ′(b, U) > m) = P (U(1) ≥ y, τ(b+β/

√
m,U) > 1)+o(1/

√
m).

Simple algebra yields

P [Um ≥ y
√
m, τ ′(b, U) > m]

= P [τ ′(b, U) > m]− P [Um < y
√
m, τ ′(b, U) > m]

= P [Um < b
√
m, τ ′(b, U) > m]− P [Um < y

√
m, τ ′(b, U) > m]

= P [Um < b
√
m]− P [Um < b

√
m, τ ′(b, U) ≤ m]− P [Um < y

√
m]

+ P [Um < y
√
m, τ ′(b, U) ≤ m].
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We use the Theorem to relate the distribution functions of the

discrete random walks to those of the continuous Brownian motions

and obtain

P [Um < b
√
m, τ ′(b, U) ≤ m] = P [U(1) ≤ b, τ(b+ β/

√
m,U) ≤ 1] + o(1/

√
m),

P [Um < y
√
m, τ ′(b, U) ≤ m] = P [U(1) ≤ y, τ(b+ β/

√
m,U) ≤ 1] + o(1/

√
m),

we have

P [Um ≥ y
√
m, τ ′(b, U) > m]

= P [U(1) ≤ b]− P [U(1) ≤ b, τ(b+ β/
√
m,U) ≤ 1]− P [U(1) ≤ y]

+ P [U(1) ≤ y, τ(b+ β/
√
m,U) ≤ 1] + o(1/

√
m)

= P [τ(b+ β/
√
m,U) > 1]− P [U(1) ≤ y, τ(b+ β/

√
m,U) > 1] + o(1/

√
m)

= P [U(1) ≥ y, τ(b+ β/
√
m,U) > 1] + o(1/

√
m).
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Note that

E∗[e−rT (Sm −K)+I(τ ′(H,S) > m)]

= E∗[e−rT (Sm −K)I(Sm ≥ K, τ ′(H,S) > m)]

= E∗[e−rTSmI(Sm ≥ K, τ ′(H,S) > m)]−Ke−rTP ∗[Sm ≥ K, τ ′(H,S) > m]

= I −Ke−rT · II

Observing eµm∆t−rT = e

(
r−σ2

2

)
T−rT

= e−
σ2
2 T and using the discrete

Girsanov Theorem with ai = σ
√
∆t, the first term is given by

I = E∗
e−rTS(0) exp

µm∆t+ σ
√
∆t

m∑
i=1

Zi

 I(Sm ≥ K, τ ′(H,S) > m)


= S(0)E∗

exp
−1

2
σ2T + σ

√
∆t

m∑
i=1

Zi

 I(Sm ≥ K, τ ′(H,S) > m)


= S(0)Ê[I(Sm ≥ K, τ ′(H,S) > m)]

= S(0)P̂ [Sm ≥ K, τ ′(H,S) > m].
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Under P , logSm has mean µm∆t, where Zi is a standard normal vari-

able. Under P̂ , σ
√
∆tZi has mean σ

√
∆tai = σ2∆t; so

m∑
i=1

σ
√
∆tZi

has mean σ2
m∑
i=1

∆t = σ2T .

Under P̂ , logSm has a mean µm∆t+ σ
√
∆t ·mσ

√
∆t = (µ+ σ2)T

instead of µT under the measure P ∗. Therefore, the price of the

discrete up-and-out-call option is given by

Vm(H)

= S(0)P̂

[
Wm ≥

log(K/S(0))

σ
√
∆t

, τ ′(a/(σ
√
T ),W ) > m

]

−Ke−rTP ∗
[
Wm ≥

log(K/S(0))

σ
√
∆t

, τ ′(a/(σ
√
T ),W ) > m

]
, a = log

H

S(0)
,

where under P̂ , Wm =
∑m
i=1(Ẑi+ {{(µ+ σ2)/σ}

√
T/m}). Under P ∗,

Wm =
∑m
i=1(Zi + {(µ/σ)

√
T/m}), where Ẑi and Zi being standard

normal random variables under P̂ and P ∗, respectively.

205



Recall

y =
log(K/S(0))

σ
√
T

, b =
a

σ
√
T

=
log(H/S(0))

σ
√
T

≥ y,

as m→ ∞, we obtain

Vm(H) = S(0)P

[
W(µ+σ2)

√
T

σ

(1) ≥
log(K/S(0))

σ
√
T

, τ(b+ β/
√
m,W(µ+σ2)

√
T

σ

) > 1

]

−Ke−rTP
[
Wµ

√
T

σ

(1) ≥
log(K/S(0))

σ
√
T

, τ(b+ β/
√
m,Wµ

√
T

σ

) > 1

]
+ o(1/

√
m),

where Wc(t) denotes a Brownian motion with drift c and unit stan-

dard deviation. By the rescaling property, we obtain

Vm(H) = S(0)P

[
Wµ+σ2

σ

(T ) ≥
log(K/S(0))

σ
, τ(b

√
T + β

√
T/m,Wµ+σ2

σ

) > T

]

−Ke−rTP
[
Wµ

σ
(T ) ≥

log(K/S(0))

σ
, τ(b

√
T + β

√
T/m,Wµ

σ
) > T

]
+ o(1/

√
m).
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Lastly, we transform the barrier threshold and first passage time

from W to S.

Since τ(b
√
T+β

√
T/m,W ) = τ(a/σ+β

√
T/m,W ) = τ(Heβσ

√
T/m, S),

we have

Vm(H) = S(0)P
[
S(0)e(µ+σ

2)T+σB(T ) ≥ K, τ(Heβσ
√
T/m, S) > T

]
−Ke−rTP

[
S(0)eµT+σB(T ) ≥ K, τ(Heβσ

√
T/m, S) > T

]
+ o(1/

√
m).

Similarly, by using the continuous time Girsanov theorem, the con-

tinuous time price V (H) can be written as

V (H) = S(0)P
[
S(0)e(µ+σ

2)T+σB(T ) ≥ K, τ(H,S) > T

]
−Ke−rTP

[
S(0)eµT+σB(T ) ≥ K, τ(H,S) > T

]
.
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Double-exponential fast Gauss transform algorithm

We set up the Black-Scholes framework for pricing a European bar-

rier option with discrete monitoring dates. The risk neutral dynam-

ics of the stock price process St follows

dSt

St
= (r − q) dt+ σ dWt.

We consider a time horizon [0, T ] and n + 1 discrete time points

ti = i∆t, i = 0,1, ..., n, where ∆t = T
n , and denote Sti by Si. The dis-

cretely monitored down-and-out call option with maturity T , moni-

toring dates {ti}n−1
i=1 , barrier level H and strike price K has terminal

payoff (Sn −K)+ if Si > H, 1 ≤ i ≤ n− 1, and zero otherwise.

Reference

M. Broadie and Y. Yamamoto, “A double-exponential fast Gauss

transform algorithm for pricing discrete path-dependent options”,

Operations Research, vol.53(5) (2005) p.764-779.
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We define the set of risk neutral probability density {Pi(Si)}ni=1 such

that Pi(S) dS represents the probability that Sj > H, 1 ≤ j ≤ i, and

S ≤ Si ≤ S + dS.

The recursive relation for finding Pi(Si) is seen to be

P1(S1) =

p(S1|S0) if S1 > H

0 otherwise
;

Pi(Si) =


∫∞
H p(Si|Si−1)Pi−1(Si−1) dSi−1 if Si > H

0 otherwise
.

The price QDOC0 of the discretely monitored down-and-out call at

time 0 is given by

QDOC0 (S0;K,H) = e−rT
∫ ∞

K
Pn(Sn)(Sn −K) dSn.
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Discretely monitored down-and-out call option
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Define

xt = lnSt −
(
r − q −

σ2

2

)
t

so that xt evolves according to

dxt = σ dWt.

In terms of xi’s, the transition probability density function is given

by

p(xi|xi−1) = pG(xi − xi−1) =
1√

2π∆tσ
exp

(
−
(xi − xi−1)

2

2σ2∆t

)
,

which is a Gaussian density function. The option pricing formula

becomes

QDOC0 (S0;K,H) = e−rT
∫ ∞

k
Pn(xn)

[
exp

(
xn+

(
r − q −

σ2

2

)
T

)
−K

]
dxn,

where k = lnK −
(
r − q −

σ2

2

)
T .
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The recursive scheme for the density functions becomes

P1(S1) =

pG(x1 − lnS0) if x1 > h1
0 otherwise

;

Pi(Si) =


∫∞
hi−1

pG(xi − xi−1)Pi−1(xi−1) dxi−1 if xi > hi

0 otherwise
.

Here, hi = lnH −
(
r − q −

σ2

2

)
i∆t.

The price of the down-and-out call can be computed by a series of

convolution integrals of Pi(x) and the Gaussian density function.

Unlike the time marching scheme in finite difference calculations,

we can compute the density function at the next time step through

one-step integration over [ti−1, ti].
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Double-exponential integration formula

Consider the integral

I =
∫ ∞

c
f(x) dx

with semi-infinite integration domain, it can be transformed into

infinite domain by defining the following double exponential trans-

formation:

x = c+ exp
(
π

2
sinhu

)
.

The integral now becomes

I =
∫ ∞

−∞
f

(
c+ exp

(
π

2
sinhu

))
exp

(
π

2
sinhu

)
π

2
coshu du.

Applying the trapezoidal rule with step size h, we obtain

Ih = h
∞∑

j=−∞
f

(
c+ exp

(
π

2
sinh jh

))
exp

(
π

2
sinh ju

)
π

2
cosh jh.

The above trapezoidal sum can be truncated at a modest value of

|jh| without affecting too much on the accuracy.
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Error estimation

The integrand f(x) has to decrease faster than
1

|x|
as |x| → ∞ in

order that
∫ ∞

c
f(x) dx exists.

Suppose f(x) ∼ x−1−α as x → ∞, where α > 0. For u > 0, taking

u→ ∞, the integrand becomes(
c+ exp

(
π

2
sinhu

))−1−α
exp

(
π

2
sinhu

)
π

2
coshu

∼ exp
(
π

2
sinhu

)−α π
2
coshu

∼ exp
(
−
πα

4
expu

)
π

4
expu

=
π

4
exp

(
u−

πα

4
expu

)
.

which decays at the rate of double exponential.
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Similar result can be deduced for u < 0, u → −∞. Take α ∼ 1, the

above function becomes less than 10−16 at u = 4. Therefore, the

infinite trapezoidal sum can be safety truncated at |jh| ∼ 4 if double

precision arithmetric is used.

• When the number of sample points N is increased in the double-

exponential integration formula, its discretization error decreases

faster than any negative power of N .
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The fast Gauss transform (FGT)

We define the sample points aj and weights wj as follows:

INh =
N+∑
j=N−

wjf(aj),

aj = hi+ exp
(
π

2
sinh jh

)
, wj = h exp

(
π

2
sinh jh

)
π

2
cosh jh,

where N− and N+ are determined so that

N+h ∼ −N−h ∼ 4

and the total number of sample points is N = N+ − N− + 1. The

convolution between pG(xi − xi−1) and Pi−1(xi−1) can be approxi-

mated by

Pi(a
i
j) =

N+∑
j′=N−

wj′p
G(aij − ai−1

j′ )Pi−1(a
i−1
j′ ), j = N−, ..., N+.

• We do not include sample points in the region xi < hi since

Pi(xi) is always zero there.
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Write qk = Pi−1(a
i−1
k )wk and δ = 2σ2∆t.

• The evaluation of Pi(a
i
j) requires O(N2) computation for each

time step.

• Fast Fourier transform cannot be used to reduce the compu-

tational work since the sample points {aij} and {ai−1
j′ } are not

equally spaced.

• The FGT can compute the discrete convolution of a given func-

tion with a Gaussian function in O(N) work. We would like to

calculate the sums

G(xj) =
N∑
k=1

qk exp

(
−
(xj − yk)

2

δ

)
, j = 1,2, ...,M.

As a result, the double-exponential fast Gauss transform algorithm

has computational complexity of O(Nn), where n is the number of

monitoring dates and N is the number of sample points on each

date.

217



Hermite functions

The Hermite polynomials Hn(t) is defined by

Hn(t) = (−1)net
2
(
d

dt

)n
e−t

2
.

The generating function for the Hermite polynomials is given by

e2ts−s
2
=

∞∑
n=0

sn

n!
Hn(t).

Note that Hn(t) are just the Taylor series coefficients of e2ts−s
2
. To

verify the result, consider

∂n

∂sn
e2ts−s

2
∣∣∣∣∣
s=0

= et
2 ∂n

∂sn
e−(t−s)2

∣∣∣∣∣
s=0

(next, set u = t− s)

= (−1)net
2 ∂n

∂un
e−u

2
∣∣∣∣∣
u=t

= (−1)net
2
(
d

dt

)n
e−t

2
.

218



Multiplying each side by e−t
2
, we obtain

e−(t−s)2 =
∞∑
n=0

sn

n!
hn(t),

where the Hermite functions hn(t) are defined by

hn(t) = e−t
2
Hn(t).

Shifted and scaled version

e−(t−s)2/δ

= e−[(t−s0)−(s−s0)]2/δ

=
∞∑
n=0

1

n!

(
t0 − s0 − t+ s√

δ

)n
hn

(
t− s0√

δ

)

=
∞∑
n=0

1

n!

n∑
m=0

n!

m!(n−m)!

(
t0 − t√

δ

)m(
s− s0√

δ

)n−m
hn

(
t0 − s0√

δ

)

=
∞∑

m=0

∞∑
n=0

1

m!

1

n!

(
t0 − t√

δ

)m
hm+n

(
t0 − s0√

δ

)(
t0 − s0√

δ

)n
.
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Discrete Gauss transform

Consider

G(xi) =
N∑
j=1

qj exp

(
−
(xi − yj)

2

δ

)
, i = 1,2, . . . , N ′;

which is called the discrete Gauss transform of {qj}Nj=1 with respect

to the discrete exponential kernel with underlying point sets {xi}N
′

i=1
and {yj}Nj=1. Apparently, it needs O(NN ′) work to evaluate these

sums based on the above definition.

Recall the following formula:

e−(x−y)2 =
∞∑
α=0

yα

α!
hα(x), with hα(x) = (−1)α

(
d

dx

)α
e−x

2
.
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To compute the multiple sums efficiently, the FGT uses the fol-

lowing expansion of the Gaussian in terms of the Hermite functions

hα(x):

e−(xj−yk)2/δ =
∞∑
β=0

∞∑
α=0

1

β!

1

α!

(
yk − y0√

δ

)α
hα+β

(
x0 − y0√

δ

)(
xj − y0√

δ

)β
.

• This expansion converges very quickly and the double infinite

sum over α and β can be truncated at a reasonably small integer,

α = β = αmax. It is known that αmax = 8 is sufficient to

achieve a relative error of 10−8 when |(yk − y0)/
√
δ| < 1/2 and

|(xj − x0)/
√
δ| < 1/2.
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For each target point xj and source point yk, we choose an appro-

priate interval with length
√
δ and center x(j)0 and y

(k)
0 , respectively,

such that xj and yk fall within the intervals.

We can approximate G(xj) as

G(xj)

≈
N∑
k=1

qk

αmax∑
β=0

αmax∑
α=0

1

β!

1

α!

(
yk − y0√

δ

)α
hα+β

(
x0 − y0√

δ

)(
xj − x0√

δ

)β

=
αmax∑
β=0

1

β!

(
xj − x0√

δ

)β

αmax∑
α=0

hα+β

(
x0 − y0√

δ

) 1

α!

N∑
k=1

qk

(
yk − y0√

δ

)α
︸ ︷︷ ︸

independent of xj


.
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Illustration of the FGT algorithm

The target points xi and source points yj lie in intervals of length√
δ centered at x0 and y0, respectively.
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The computation of G(xj) can be divided into three steps:

Step 1: Compute Aα =
1

α!

N∑
k=1

qk

(
yk − y0√

δ

)α
for α = 0, ..., αmax.

Step 2: Compute Bβ =
αmax∑
α=0

Aαhα+β

(
x0 − y0√

δ

)
for β = 0, ..., αmax.

Step 3: Compute G(xj) =
αmax∑
β=0

Bβ
1

β!

(
xj − x0√

δ

)β
for j = 1, ..., N ′.

When αmax is fixed, Steps 1 and 3 require O(N) and O(N ′) compu-

tational effort, respectively, while Step 2 can be done in a constant

time that does not depend either on N or N ′.
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In the general case, we divide the space into intervals of length√
δ and apply the above method to each of the possible pairs of a

source interval and a target interval. Let K and J denote the source

interval and the target interval, respectively, and yK and xJ denote

their centers.

Step 1: Compute Aα,K =
1

α!

N∑
k=1

qk

(
yk − yK√

δ

)α
for α = 0, ..., αmax

and for each source interval K.

Step 2: Compute

Bβ,J =
αmax∑
α=0

Aα,Khα+β

(
xJ − yK√

δ

)
for β = 0, ..., αmax

and for each target interval J.
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Step 3: Compute G(xj) =
αmax∑
β=0

Bβ,J
1

β!

(
xj − xJ√

δ

)β
for j = 1, ..., N ′.

Here, J is the target interval where xj lies.

By applying the fast Gauss transform with source points {αi−1
j′ },

target points {aij}, and

qk = Pi−1(a
i−1
k )wk,

δ = 2σ2∆t,

we can compute the discrete convolution in O(N) work.
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There are other approaches to computing the discrete convolution

with computational effort less than O(N2). One possibility is to

use non-uniform FFTs or variants of the FFT for unequally spaced

grids, which needs O(N logN) work when the number of grid points

is N , as opposed to O(N) work required by the FGT. In addition,

non-uniform FFTs were seen to be about 10 times slower than FFTs

for equally spaced grids.

• It is more efficient to use problem-specific convolution methods

such as the FGT when they are available.

• Convolution based on non-uniform FFTs has a marked advan-

tage that it can deal with a much wider class of transition prob-

ability density functions.
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Down-and-out call option under the Black-Scholes model

We show results for European down-and-out call options under the

Balck-Scholes model.

The parameters are S0 = K = 100, T = 0.2, r = 0.1, q = 0, and

σ = 0.3. We varied the barrier level from H = 91 to H = 99 in

increments of 2 and set the number of monitoring dates to n = 5,

25, or 50.

n = 5 n = 25 n = 50 n = ∞
H = 91 6.187290 6.032026 5.977069 5.807771

H = 93 5.999755 5.687532 5.584340 5.276814

H = 95 5.671105 5.081415 4.906789 4.397503

H = 97 5.167245 4.115815 3.833978 3.059563

H = 99 4.489172 2.812439 2.336387 1.170793

228



European down-and-out call option price with n monitoring instants

under the Black-Scholes model.
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BGK: trinomial tree method with 5,000 time steps.

Reiner: FFT to compute the convolution integrals, use equally

spaced grid points to discretize the log asset price.

• Errors are root mean square errors of 5 options with different

barrier levels.

• Execution time is the time for computing one option price.

• The error of DE-FGT method decreases almost exponentially

with the number of sample points N . As N is incremented by a

constant, the position of the corresponding point in the graph

moves downward by a constant distance.
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Extension to Merton’s jump diffusion model

The asset price follows the dynamics

Si = Si−1 exp


(
r − q −

1

2
σ2 − νλ

)
∆t+ σ

√
∆tz0 +

NP
i (∆t)∑
l=1

(
δzl + γ −

1

2
δ2
) ,

where ∆t is the time interval between ti−1 and ti, N
P
i (∆t) is the

number of jumps during this interval, which follows a Poisson prcess

with intensity λ, and zl’s are independent and follow the standard

normal distribution N(0,1).

The constants γ and δ determine the mean and the standard devi-

ation of the jumps, respectively.

The compensator ν is given by E[J − 1] = eγ − 1, where J is the

jump ratio in each independent jump.
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• In this model, the market becomes incomplete due to the ex-

istence of jumps, and the standard argument for option pricing

based on the replicating portfolio no longer holds.

• Merton derives an option-pricing formula under the assumption

that jump risk is firm specific and uncorrelated with the mar-

ket. In this case, the beta value of the derivative is zero. The

expected rate of return of a zero-beta derivative is equal to the

riskless interest rate.

• Others derive option-pricing formulas in representative agent

general equilibrium models. The form of their pricing equations

are identical to the Merton formula, but with altered parameter

values that account for the market price of jump risk.
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The pricing problems in these models are therefore equivalent from

a computational viewpoint: One simply substitutes the appropriate

“risk-adjusted” parameters into the risk-neutral pricing formula.

We can apply the change of variable

xt = lnSt −
(
r − q −

1

2
σ2 − νλ

)
t

and obtain an equation for xi:

xi = xi−1 + σ
√
∆tz0 +

NP
t (∆t)∑
l=1

(
δzl + γ −

1

2
δ2
)
.

The Poisson probability can be written as

P [NP
t (∆t) = n] = e−λ∆t(λ∆t)n

n!
.
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When the number of jumps is n, xi− xi−1 follows a Gaussian distri-

bution with the variance and mean given by

σ2n = σ2∆t+ nδ2 and µn = n

(
γ −

1

2
δ2
)
,

respectively. We can then write

p(xi|xi−1) = pM(xi − xi−1)

=
∞∑
n=0

e−λ∆t(λ∆t)n

n!

1√
2πσn

exp

(
−
(xi − xi−1 − µn)2

2σ2n

)
.

The probability density pM(xi − xi−1) has the following expansion:

pM(xi − xi−1) =
αmax∑
β=0

αmax∑
α=0

1

β!

1

α!

(
xi − x′′√

2σ

)α
·

{ ∞∑
n=0

e−λ∆t(λ∆t)n

n!

1√
2πσn

(
σ

σn

)α+β
hα+β

(
x′ − x′′ + µn√

2σn

)}(
xi−1 − x′√

2σ

)β
,

where x′ and x′′ are the centers of intervals of length
√
2σ containing

xi−1 and xi, respectively.

234



We can construct an algorithm similar to the FGT by replacing

the Hermite function with a weighted sum of shifted and scaled

Hermite functions. Specifically, we have only to replace the formula

to compute Bβ with the following:

Bβ =
αmax∑
β=0

Aα


Njump∑
n=1

e−λ∆t(λ∆t)n

n!

1√
2πσn

(
σ

σn

)α+β
hα+β

(
x′ − x′′ + µn√

2σn

) ,
where we have truncated the sum over the number of jumps at

Njump. This algorithm enables us to compute the convolution of

pM(x) and a given function almost as easily as in the Gaussian

case.
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Mathematical Appendices

Compensator of a Poisson process

Let N(t) be a counting process with (possibly stochastic) intensity

λ(t). The probability of a jump in the next time interval ∆t is

proportional to ∆t. For constant λ, we have

P [N(t+∆t)−N(t) = 1] = λ∆t.

We assume jumps in disjoint time intervals happen independent and

jumps by more than once do not occur. Suppose we subdivide the

interval [t, T ] into n subintervals of length ∆t =
T − t

n
, the probability

of zero number of jump within [t, T ] is given by

p[N(T ) = N(t)] = (1− λ∆t)n −→ exp(−λ(T − t)).
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It is easy to see that

E[[N(s)− λs]− [N(t)− λt]|N(t)]

= E[[N(s)− λs]− [N(t)− λt]] (independent increment property)

= E[N(s)−N(t)]− λ(s− t) = 0

so N(t) − λt is a martingale. The term λt is usually called the

compensator of N(t).

More generally, for inhomogeneous Poisson process, the compen-

sator is
∫ t
0
λ(u) du, where

M(t) = N(t)−
∫ t
0
λ(u) du

is a martingale (with respect to its own filtration).

Counting processes may be characterized by

Nt =
∞∑
k=1

1[Tk,∞)(t), t ∈ R+; 1[Tk,∞)(k) =

{
1 if t ≥ Tk,
0 if 0 ≤ t < Tk

.

Here, (Tk)k≥1 is the increasing family of jump times of (Nt)t∈R+
.
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Renewal processes are counting processes in which the holding times

τk = Tk+1 − Tk, k ∈ N , is a sequence of independent and identically

distributed (iid) random variables.

• Poisson processes are renewal processes with exponential dis-

tributed holding times τk for all k.

Compound Poisson process

Let (Zk)k≥1 denote an iid sequence of random variables with prob-

ability distribution ν(dy) on R, independent of the Poisson process

(Nt)t∈R+
. We have

P [Zk ∈ [a, b]] = ν([a, b]) =
∫ b
a
v(dy), −∞ < a ≤ b <∞.

The process

Yt =
Nt∑
k=1

Zk, t ∈ R+,

is called a compound Poisson process.
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The mean of Yt is found to be

E[Yt] = E

E
 Nt∑
k=1

Zk

∣∣∣∣∣∣Nt


= e−λt
∞∑
n=0

λntn

n!
E

 n∑
k=1

Zk

∣∣∣∣∣∣Nt = n


= e−λt

∞∑
n=0

λntn

n!
nE[Z1]

= λte−λtE[Z1]
∞∑
n=1

(λt)n−1

(n− 1)!
= λtE[Z1].

Hence, the compensated compound Poisson process Mt = Yt −
λtE[Z1] is a martingale.

The compound Poisson processes only have a finite number of jumps

on any interval. They belong to the general gamily of Lévy process

which may have an infinite number of jumps on any finite time

interval.
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Characteristic function of the increment YT − Yt

The characteristic function of YT − Yt is defined to be the Fourier

transform of the density function of YT − Yt. For any t ∈ [0, T ], we

have

E[exp(iα(YT − Yt))]

= exp(λ(T − t)
∫ ∞

−∞
(eiαy − 1)ν(dy)), where α ∈ R.

Proof

Since Nt is a Poisson distribution that is independent of Zk, k ≥ 1;

by conditioning, for all values of α ∈ R, we have
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E[exp(iα(YT − Yt))]

=
∞∑
n=0

E

exp
iα n∑

k=1

Zk

P [NT −Nt = 0]

= e−λ(T−t)
∞∑
n=0

λn

n!
(T − t)nE

exp
iα n∑

k=1

Zk


= e−λ(T−t)

∞∑
n=0

λn

n!
(T − t)n (E [exp (iαZ1)])

n

= exp(λ(T − t)E[exp(iαZ1)]− 1)

= exp(λ(T − t)
∫ ∞

−∞
(eiαy − 1)ν(dy)) [note that

∫ ∞

−∞
ν(dy) = 1].
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Like the Poisson process Nt, t ∈ R+, the compound Poisson process

Yt, t ∈ R+, has independent increments. To show the claim, let

0 ≤ t0 ≤ t1 ≤ · · · ≤ tn and α1, α2, . . . , αn ∈ R and consider

E

 n∏
k=1

e
iαk(Ytk−Ytk−1

)


= exp

λ n∑
k=1

(tk − tk−1)
∫ ∞

−∞
(eiαky − 1)ν(dy)


=

n∏
k=1

exp
(
λ(tk − tk−1)

∫ ∞

−∞
(eiαky − 1)ν(dy)

)

=
n∏

k=1

E

[
e
iα(Ytk−Ytk−1

)
]
.
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Stochastic differential equation with jumps

Let η ∈ R be a constant coefficient and consider

dSt = ηSt− dNt.

When the Poisson process has a jump at time t, we have ∆Nt =

Nt −Nt = 1, so

dSt = St − St− = ηSt−, t > 0.

By performing integration, we obtain

St = (1+ η)St−, t > 0;

and deductively,

St = S0(1 + η)Nt, t ∈ R+.
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Extending to time-dependent ηt, we consider

dSTk = ηtSt− dNt.

At each jump time Tk, we obtain STk = (1+ ηTk)ST−
k
.

Deductively, taking k = 1,2, . . . , Nt, we obtain

St = S0

Nt∏
k=1

(1 + ηTk) = S0
∏

∆Ns = 1
0 ≤ s ≤ t

(1 + ηs), t ∈ R+.

For the more general case, suppose

dSt = µtSt dt+ ηtSt−(dNt − λ dt),

then the solution can be expressed as

St = S0 exp
(∫ t

0
µs ds− λ

∫ t
0
ηs ds

) Nt∏
k=1

(1 + ηTk), t ∈ R+.
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We randomize ηTk and let 1 + Zk denote the random jump ratio at

Tk, so

St = S0 exp
(∫ t

0
µs ds+

∫ t
0
dYs − λE[Z1] ds

) Nt∏
k=1

(1 + Zk), t ∈ R+,

which solves

dSt = µtSt dt+ St−(dYt − λE[Z1]dt).
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Risk neutral measures

Consider the asset price process modeled by

dSt = µtSt dt+ σSt dWt+ St− dYt,

where Yt, t ∈ R+, is a compound Poisson process. The solution is

given by

St = S0 exp

(
µt+ σWt −

σ2t

2

) Nt∏
k=1

(1 + Zk), t ∈ R+.

We would like to determine a risk neutral probability measure un-

der which the discounted process e−rtSt, t ∈ R+, is a martingale.

Cosider

d(e−rtSt) = −re−rtSt dt+ e−rt dSt
= (µ− r)e−rtSt dt+ σe−rtSt dWt+ e−rtSt− dYt

= (µ− r+ λEν[Z1])e
−rtSt dt+ σe−rtSt dWt

+ e−rtSt−(dYt − λEν[Z1] dt),

which yields a martingale provided that µ− r+ λEν[Z1] = 0.
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In order for the discounted process e−rtSt to be a martingale, we

choose u ∈ R, λ̃ > 0 and the measure ν̃ such that

µ− r = σu− λ̃Eν̃[Z1].

The Girsanov Theorem for jump processes shows that

dWt+ u du+ dYt − λ̃Eν̃[Z1]dt

is a martingale under P
u,λ̃,ν̃

. The discounted asset price process

becomes

d(e−rtSt) = (µ− r)e−rtSt dt+ σe−rtSt dWt+ e−rtSt− dYt

= σe−rtSt(dWt+ u dt) + e−rtSt−(dYt − λ̃Eν̃[Z1]dt),

so that e−rtSt is a martingale under P
u,λ̃,ν̃

.

The non-uniqueness of the risk neutral measure is apparent since

higher degrees of freedom are involved in the choices of u, λ and ν̃.

In the non-jump case, the choice of u =
µ− r

σ
is unique.
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