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2.1 Product nature of lookback options

The payoff of a lookback option depends on the minimum or maxi-

mum price of the underlying asset attained during certain period of

the life of the option.

Let T denote the time of expiration of the option and [T0, T ] be the

lookback period. We denote the minimum value and maximum value

of the asset price realized from T0 to the current time t (T0 ≤ t ≤ T )

by

mt
T0

= min
T0≤ξ≤t

Sξ

and

M t
T0

= max
T0≤ξ≤t

Sξ
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• A floating strike lookback call gives the holder the right to buy

at the lowest realized price while a floating strike lookback put

allows the holder to sell at the highest realized price over the

lookback period.

• Since ST ≥ mT
T0

and MT
T0

≥ ST so that the holder of a floating

strike lookback option always exercise the option.

• Hence, the respective terminal payoff of the lookback call and

put are given by ST −mT
T0

and MT
T0

− ST .

• A fixed strike lookback call (put) is a call (put) option on the

maximum (minimum) realized price. The respective terminal

payoff of the fixed strike lookback call and put are max(MT
T0

−
X,0) and max(X −mT

T0
,0), where X is the strike price.
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• An interesting example is the Russian option, which is in fact a

perpetual American lookback option. The owner of a Russian

option on a stock receives the historical maximum value of the

asset price when the option is exercised and the option has no

pre-set expiration date.

Under the risk neutral measure, the stochastic price process of the

underlying asset is governed by

dSt

St
= r dt+ σ dZt or d

(
ln
St

S0

)
= dUt =

(
r −

σ2

2

)
dt+ σ dZt,

where Ut = ln
St

S0
and µ = r −

σ2

2
.
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2.2 Pricing formulas of European lookback options

We define the following stochastic variables

yT = ln
mT
t

S
= min{Uξ, ξ ∈ [t, T ]}

YT = ln
MT
t

S
= max{Uξ, ξ ∈ [t, T ]},

and write τ = T − t. Here, S is the asset price at the current time t

(dropping the subscript t for brevity).

Downstream barrier

For y ≤ 0 and y ≤ u, we can deduce the following joint distribution

function of UT and yT from the transition density function of the

Brownian motion with the presence of a downstream barrier

P [UT ≥ u, yT ≥ y] = N

(
−u+ µτ

σ
√
τ

)
− e

2µy
σ2 N

(
−u+2y+ µτ

σ
√
τ

)
.
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Illustration of [UT ≥ u, YT ≥ y]

Uξ = ln
Sξ

S0
is visualized as the restricted Brownian motion with

constant drift rate µ and downstream absorbing barrier y.

y yT≥
downstream

barrier
T U uT≥

uyTy U ξ

ξ
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Upstream barrier

For y ≥ 0 and y ≥ u, the corresponding joint distribution function

of UT and YT is given by

P [UT ≤ u, YT ≤ y] = N

(
u− µτ

σ
√
τ

)
− e

2µy
σ2 N

(
u− 2y − µτ

σ
√
τ

)
.

By taking y = u in the above two joint distribution functions, we

obtain the respective distribution function for yT and YT

P (yT ≥ y) = N

(
−y+ µτ

σ
√
τ

)
− e

2µy
σ2 N

(
y+ µτ

σ
√
τ

)
, y ≤ 0,

P (YT ≤ y) = N

(
y − µτ

σ
√
τ

)
− e

2µy
σ2 N

(
−y − µτ

σ
√
τ

)
, y ≥ 0.

The density function of yT and YT can be obtained by differentiating

the above distribution functions.
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Illustration of [UT ≤ u, YT ≤ y]

Y yT≤
Upstream

barrierTU uT≤

u YT
y U ξ

ξ

Time frame

S t
ST

T0 t T

MT0

t MT0

T

mT0

t mT0

T

For convenience, we write
S = St, M =M t

T0
and m = mt

T0
.
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European fixed strike lookback options

Consider a European fixed strike lookback call option whose terminal

payoff is max(MT
T0

−X,0). The value of this lookback call option at

the current time t is given by

cfix(S,M, t) = e−rτE
[
max(max(M,MT

t )−X,0)
]
,

where St = S,M t
T0

= M and τ = T − t, and the expectation is

taken under the risk neutral measure. The payoff function can be

simplified into the following forms, depending on M ≤ X or M > X:

(i) M ≤ X

max(max(M,MT
t )−X,0) = max(MT

t −X,0)

(ii) M > X

max(max(M,MT
t )−X,0) = (M −X) +max(MT

t −M,0).
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Define the function H by

H(S, τ ;K) = e−rτE[max(MT
t −K,0)],

where K is a positive constant. Once H(S, τ ;K) is determined, then

cfix(S,M, τ) =

{
H(S, τ ;X) if M ≤ X
e−rτ(M −X) +H(S, τ ;M) if M > X

= e−rτ max(M −X,0) +H(S, τ ;max(M,X)).

• cfix(S,M, τ) is independent of M when M ≤ X because the

terminal payoff is independent of M when M ≤ X.

• When M > X, the terminal payoff is guaranteed to have the

floor value M − X. If we subtract the present value of this

guaranteed floor value, then the remaining value of the fixed

strike call option is equal to a new fixed strike call but with the

strike being increased from X to M .
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Recall that when X is a non-negative random variable, we have

E[X] =
∫ ∞

0
[1− FX(t)] dt, if X is continuous.

Since max(MT
t − K,0) is a non-negative random variable, its ex-

pected value is given by the integral of the tail probabilities where

H(S, τ ;K)

= e−rτE[max(MT
t −K,0)]

= e−rτ
∫ ∞

0
P [MT

t −K ≥ x] dx

= e−rτ
∫ ∞

K
P

[
ln
MT
t

S
≥ ln

z

S

]
dz, z = x+K

= e−rτ
∫ ∞

ln K
S

SeyP [YT ≥ y] dy, y = ln
z

S

[
dy =

1

z
dz, z = Sey

]
= e−rτ

∫ ∞

ln K
S

Sey
[
N

(
−y+ µτ

σ
√
τ

)
+ e

2µy
σ2 N

(
−y − µτ

σ
√
τ

)]
dy
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= SN(d)− e−rτKN(d− σ
√
τ)

+ e−rτ
σ2

2r
S

erτN(d)−
(
S

K

)−2r
σ2
N

(
d−

2r

σ

√
τ

) ,
where

d =
ln S
K +

(
r+ σ2

2

)
τ

σ
√
τ

.

The European fixed strike lookback put option with terminal payoff

max(X −mT
T0
,0) can be priced in a similar manner. Write m = mt

T0
and define the function

h(S, τ ;K) = e−rτE[max(K −mT
t ,0)].
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The value of this lookback put can be expressed as

pfix(S,m, τ) = e−rτ max(X −m,0) + h(S, τ ;min(m,X)),

where

h(S, τ ;K) = e−rτ
∫ ∞

0
P [max(K −mT

t ,0) ≥ x] dx

= e−rτ
∫ K
0

P [K −mT
t ≥ x] dx 0 ≤ max(K −mT

t ,0) ≤ K

= e−rτ
∫ K
0

P [mT
t ≤ z] dz, z = K − x

= e−rτ
∫ ln K

S

0
SeyP [yT ≤ y] dy, y = ln

z

S

= e−rτ
∫ ln K

S

0
Sey

[
N

(
y − µτ

σ
√
τ

)
+ e

2µy
σ2 N

(
y+ µτ

σ
√
τ

)]
dy

= e−rτKN(−d+ σ
√
τ)− SN(−d) + e−rτ

σ2

2r
S(S

K

)−2r/σ2

N

(
−d+

2r

σ

√
τ

)
− erτN(−d)

 .
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European floating strike lookback options

By exploring the pricing relations between the fixed and floating

lookback options, we can deduce the price functions of floating

strike lookback options from those of fixed strike options. Consider a

European floating strike lookback call option whose terminal payoff

is ST −mT
T0
, the present value of this call option is given by

cfℓ(S,m, τ) = e−rτE[ST −min(m,mT
t )]

= e−rτE[(ST −m) +max(m−mT
t ,0)]

= S −me−rτ + h(S, τ ;m)

= SN(dm)− e−rτmN(dm − σ
√
τ) + e−rτ

σ2

2r
S(S

m

)−2r
σ2
N

(
−dm+

2r

σ

√
τ

)
− erτN(−dm)

 ,
where

dm =
ln S
m +

(
r+ σ2

2

)
τ

σ
√
τ

.
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Consider a European floating strike lookback put option whose ter-

minal payoff is MT
T0

−ST , the present value of this put option is given

by

pfℓ(S,M, τ) = e−rτE[max(M,MT
t )− ST ]

= e−rτE[max(MT
t −M,0)− (ST −M)]

= H(S, τ ;M)− (S −Me−rτ)

= e−rτMN(−dM + σ
√
τ)− SN(−dM) + e−rτ

σ2

2r
SerτN(dM)−

(
S

M

)−2r
σ2
N

(
dM −

2r

σ

√
τ

) ,
where

dM =
ln S
M +

(
r+ σ2

2

)
τ

σ
√
τ

.

Remark

Through H(S, τ ;M) and H(S, τ ;X), we can deduce the fixed-floating

relation between lookback call and put; the form of which is depen-

dent on either M ≤ X or M > X.

15



Boundary condition at S = m

Consider the scenario when S = m, that is, the current asset price

happens to be at the minimum value realized so far. The probability

that the current minimum value remains to be the realized minimum

value at expiration is seen to be zero. In other words, the probability

that St touches the minimum value m once (one-touch) and remains

above m at all subsequent times is zero.

Recall the distribution formula for mT
t :

P [mT
t ≥ m] = N

(
− ln m

S + µτ

σ
√
t

)
−
(
S

m

)1−2r
σ2
N

(
ln m

S + µτ

σ
√
t

)

so that P [mT
t ≥ m] = 0 when S = m.

16



Insensitivity of lookback option price to m when S = m

We can argue that the value of the floating strike lookback call

should be insensitive to infinitesimal changes in m since the change

in option value with respect to marginal changes in m is proportional

to the probability that m will be the realized minimum at expiry

∂cfℓ

∂m
(S,m, τ)

∣∣∣∣∣∣
S=m

= 0.

Alternatively, we may argue that the future updating of the realized

minimum value does not require the current realized minimum value

m. Hence, the floating strike lookback call is insensitive to m when

S = m.
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Lookback options for market entry

• Suppose an investor has a view that the asset price will rise

substantially in the next 12 months and he buys a call option

on the asset with the strike price set equal to the current asset

price.

• Suppose the asset price drops a few percent within a few weeks

after the purchase, though it does rise up strongly to a high

level at expiration, the investor should have a better return if he

had bought the option a few weeks later.

• Timing for market entry is always difficult to be decided. The

investor could have avoided the above difficulty if he has pur-

chased a “limited period” floating strike lookback call option

whose lookback period only covers the early part of the option’s

life.

• It would cause the investor too much if a full period floating

strike lookback call were purchased instead.
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Let [T0, T1] denote the lookback period where T1 < T , T is the

expiration time, and let the current time t ∈ [T0, T1]. The terminal

payoff function of the “limited period” lookback call is max(ST −
m
T1
T0
,0).

We write St = S,mt
T0

= m and τ = T − t. The value of this lookback

call is given by

c(S,m, τ) = e−rτEQ[max(ST −m
T1
T0
,0)]

= e−rτEQ[max(ST −m,0)1
{m≤mT1

t }
]

+ e−rτEQ[max(ST −m
T1
t ,0)1{m>mT1

t }
]

= e−rτEQ[ST1{ST>m,m≤mT1
t }

]

− e−rτmEQ

[
1

{ST>m,m≤mT1
t }

]
+ e−rτEQ[ST1{ST>m

T1
t ,m>m

T1
t }

]

− e−rτEQ[m
T1
t 1{ST>m

T1
t ,m>m

T1
t }

], t < T1,

where the expectation is taken under the risk neutral measure Q.
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For the first term, the expectation can be expressed as

EQ[ST1{ST>m,m≤mT1
t }

=
∫ ∞

ln m
S

∫ ∞

y

∫ ∞

ln m
S−x

Sexzk(z)h(x, y) dz dx dy,

where k(z) is the density function for z = ln ST
ST1

and h(x, y) is the

bivariate density function for x = ln
ST1
S and y = ln

m
T1
t
S .

The third and fourth terms can be expressed as

EQ[ST1{ST>m
T1
t ,m>m

T1
t }

=
∫ ln m

S

−∞

∫ ∞

y

∫ ∞

y−x
Sexzk(z)h(x, y) dz dx dy

and

EQ[m
T1
t 1{ST>m

T1
t ,m>m

T1
t }

] =
∫ ln m

S

−∞

∫ ∞

y

∫ ∞

y−x
Seyk(z)h(x, y) dz dx dy.
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The price formula of the “limited-period” lookback call is found to

be

c(S,m, τ)

= SN(d1)−me−rτN(d2) + SN2

−d1, e1;−
√
T − T1
T − t


+ e−rτmN2

−f2, d2;−
√
T1 − t

T − t


+ e−rτ

σ2

2r
S

(S
m

)−2r
σ2
N2

−f1 +
2r

σ

√
T1 − t,−d1 +

2r

σ

√
τ ;

√
T1 − t

T − t


− erτN2

−d1, e1;−
√
T − T1
T − t


+ e−r(T−T1)

(
1+

σ2

2r

)
SN(e2)N(−f1), t < T1,
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where

d1 =
ln S
m+

(
r+σ2

2

)
τ

σ
√
τ

, d2 = d1 − σ
√
τ ,

e1 =

(
r+σ2

2

)
(T−T1)

σ
√
T−T1

, e2 = e1 − σ
√
T − T1,

f1 =
ln S
m+

(
r+σ2

2

)
(T1−t)

σ
√
T1−t

, f2 = f1 − σ
√
T1 − t.

One can check easily that when T1 = T (full lookback period), the

above price formula reduces to standard floating strike lookback call

price formula.

Suppose the current time passes beyond the lookback period, t > T1,

the realized minimum value m
T1
T0

is now a known quantity. This

“limited period” lookback call option then becomes a European

vanilla call option with the known strike price mT1
T0
.
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2.3 Rollover strategy and strike bonus premium

• The sum of the first two terms in cfℓ can be seen as the price

function of a European vanilla call with strike price m, while the

third term can be interpreted as the strike bonus premium.

Rollover strategy

At any time, we hold a European vanilla call with the strike price set

at the current realized minimum asset value. In order to replicate

the payoff of the floating strike lookback call at expiry, whenever a

new realized minimum value of the asset price is established at a

later time, one should sell the original call option and buy a new call

with the same expiration date but with the strike price set equal to

the newly established minimum value.
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Strike bonus premium

Since the call with a lower strike is always more expensive, an extra

premium is required to adopt the rollover strategy. The sum of these

expected costs of rollover is termed the strike bonus premium.

The strike bonus premium can be shown to be obtained by inte-

grating a joint probability distribution function involving mT
t and

ST . Firstly, we observe

strike bonus premium = h(S, τ ;m) + S −me−rτ − cE(S, τ ;m)

= h(S, τ ;m)− pE(S, τ ;m),

where cE(S, τ,m) and pE(S, τ ;m) are the price functions of European

vanilla call and put, respectively. The last result is due to put-call

parity relation.
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Recall

h(S, τ ;m) = e−rτ
∫ m
0
P [mT

t ≤ ξ] dξ

and

pE(S, τ ;m) = e−rτ
∫ ∞

0
P [max(m− ST ,0) ≥ x] dx

= e−rτ
∫ m
0
P [ST ≤ ξ] dξ.

Since the two stochastic state variables satisfies 0 ≤ mT
t ≤ ST , we

have

P [mT
t ≤ ξ]− P [ST ≤ ξ] = P [mT

t ≤ ξ < ST ]

so that

strike bonus premium = e−rτ
∫ m
0
P [mT

t ≤ ξ < ST ] dξ.
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Sub-replication and replenishing premium

Replenishing premium of a European put option

put value = e−rτ
∫ K
0

P [ST ≤ ξ] dξ

We divide the interval [0,K] into n subintervals, each of equal width

∆ξ so that n∆ξ = K. The put can be decomposed into the sum

of n portfolios, the jth portfolio consists of long holding a put with

strike j∆ξ and short selling a put with strike (j−1)∆ξ, j = 1,2, · · · , n,
where all puts have the same maturity date T .

Potential liabilities occur when ST falls within [0,K] (the put expires

in-the-money). Hedge the exposure over successive n intervals:

n∆ξ = K and ξj = j∆ξ
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For the jth portfolio:

hold one put with strike j∆ξ (more expensive)
short one put with strike (j − 1)∆ξ (less expensive)

Present value of this jth portfolio

= e−rτ{E[(j∆ξ − ST )1{ST≤ξj}]− E[((j − 1)∆ξ − ST )1{ST≤ξj−1}]}

≈ e−rτ∆ξP [ST ≤ ξj] (to leading order in ∆ξ).

In the limit n→ ∞, we obtain

put value = e−rτ lim
n→∞

n∑
j=1

P [ST ≤ ξj]∆ξ

= e−rτ
∫ K
0

P [ST ≤ ξ] dξ.

These n portfolios can be visualized as the appropriate replenishment

to the sub-replicating portfolio in order that the writer of the put

option is immunized from possible loss at the maturity of the option.

The sub-replicating portfolio is taken to be the null portfolio in the

current example.
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• With the addition of the nth portfolio [long a put with strike K

and short a put with strike (K − ∆ξ)] into the sub-replicating

portfolio, the writer faces a loss only when ST falls below K−∆ξ.

• Deductively, the protection over the interval [(j − 1)∆ξ, j∆ξ]

in the out-of-the-money region of the put is secured with the

addition of the jth portfolio.

• One then proceeds one by one from the nth portfolio down to

the 1st portfolio so that the protection over the whole interval

[0,K] is achieved.

• With the acquisition of all these replenishing portfolios, the

writer of the put option is immunized from any possible loss at

option’s maturity even the put expires out-of-the-money. The

cost of acquiring all these n portfolios is the replenishing pre-

mium.
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Replenishing premium of a European call option

Potential liabilities occur when ST falls within [K,∞) (the call expires

in-the-money). Hedge the exposure over successive n intervals:

jth
interval

(j-1)Δζ jΔζ
K

)[
K+ K+

∞

For the jth portfolio:

hold one call with strike K + (j − 1)∆ξ (more expensive)
short one call with strike K + j∆ξ (less expensive)
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Present value of this jth portfolio

= e−rτ{E[{ST − [K + (j − 1)∆ξ]}1{ST≥K+(j−1)∆ξ}]

− E[[ST − (K + j∆ξ)]1{ST≥K+j∆ξ}]}
≈ e−rτ∆ξP [ST ≥ K + j∆ξ] (to leading order in ∆ξ).

In the limit n→ ∞, we obtain

call value = e−rτ lim
n→∞

n∑
j=1

P [ST ≥ K + j∆ξ]∆ξ

= e−rτ
∫ ∞

K
P [ST ≥ ξ] dξ.

Since the sub-replicating portfolio has been chosen to be the null

portfolio, the call value is then equal to the replenishing premium.

The above result is distribution free.
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Put-call parity relations of continuously monitored floating

strike and fixed strike lookback options

We let [T0, T ] be the continuously monitored period for the mini-

mum value of the asset price process. The current time t is within

the monitoring period so that T0 < t < T , and that the period of

monitoring ends with the maturity of the lookback call option.

The terminal payoff of the continuously monitored floating strike

lookback call option is given by

cfℓ(ST , T ) = ST −mT
T0

= ST −min(m,mT
t ).

Here, mT
t is a stochastic state variable with dependence on Su, u ∈

[t, T ].
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(i) forward as the sub-replicating instrument

Suppose we choose the sub-replicating instrument to be a forward

with the same maturity and delivery price m. The terminal payoff

of the sub-replicating instrument is below that of the forward only

when mT
t < m; otherwise, their terminal payoffs are equal. Here,

mT
t is the random variable that determines the occurrence of under

replication.

Potential liabilities occur when mT
t falls within [0,m] with payoff

m−mT
t . Similar to the put with payoff m− ST when ST falls within

[0,m], the replenishing premium is (replacing ST in put by mT
t )

e−rτ
∫ m
0
P [mT

t ≤ ξ] dξ.

The replenishing premium can be visualized as the value of a Euro-

pean fixed strike lookback put option with fixed strike m and whose

terminal payoff is(
m−mT

t

)+
=
(
m−min(m,mT

t )
)+

=
(
m−mT

T0

)+
.
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Let pfix(S, t;K) denote the value of a fixed strike lookback put with

strike K, whose terminal payoff is max(K − m,0). This gives the

following put-call parity relation for lookback options:

cfℓ(S, t;m) = S − e−rτm+ e−rτ
∫ m
0
P [mT

t ≤ ξ] dξ

= S − e−rτm+ pfix(S, t;m),

where S is the current asset price and S−e−rτm is the present value

of the forward with delivery price m and maturity date T .

The probability distribution P [mT
t ≤ ξ] is given by the distribution

function for the restricted asset price process with the down barrier

ξ over the interval [t, T ].
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(ii) European call option as the sub-replicating instrument

Suppose we change the sub-replication portfolio to be a European

call option whose terminal payoff is (ST −m)+. Comparing ST −mT
t

with (ST−m)+, there are two sources of risks. One is the realization

of lower minimum value while the other is that ST may stay below

m. The terminal payoff cfℓ(ST , T ) is decomposed as

ST −mT
t = (m−mT

t )︸ ︷︷ ︸− (m− ST )︸ ︷︷ ︸
fixed strike vanilla put
lookback with strike m
put with
strike m

When ST ≤ m and mT
t ≤ m, both of the above puts are in-the-money.

Replenishing premium

= e−rτ
∫ m
0

{
P [mT

t ≤ ξ]− P [ST ≤ ξ]
}
dξ

= e−rτ
∫ m
0
P [mT

t ≤ ξ < ST ] dξ

= strike bonus premium = h(S,m, t)− pE(S, t;m).
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Remarks

There are 3 other possible cases of the relative position of mT
t and

ST with respect to m.

1. Since mT
t ≤ ST , we rule out ST < m and mT

t > m.

2. The full replication is achieved when ST > m and mT
t > m.

3. When ST > m and mT
t < m, the amount of sub-replication is

m−mT
t . The corresponding replenishing premium is reduced to

e−rτ
∫ m
0
P [mT

t ≤ ξ] dξ

since P [ST ≤ ξ] = 0 for ξ ∈ [0,m].

The integral formulation of the replenishing premium on the last

page covers all these 4 cases.
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2.4 Partial differential equation formulation

We would like to illustrate how to derive the governing partial dif-

ferential equation and the associated auxiliary conditions for the

European floating strike lookback put option. First, we define the

quantity

Mn =

[∫ t
T0
(Sξ)

ndξ

]1/n
, t > T0,

the derivative of which is given by

dMn =
1

n

Sn

(Mn)n−1
dt

so that dMn is deterministic. Taking the limit n→ ∞, we obtain

M = lim
n→∞Mn = max

T0≤ξ≤t
Sξ,

giving the realized maximum value of the asset price process over

the lookback period [T0, t].
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• We attempt to construct a hedged portfolio which contains one

unit of a put option whose payoff depends onMn and −△ units of

the underlying asset. Again, we choose △ so that the stochastic

components associated with the option and the underlying asset

cancel.

• Let p(S,Mn, t) denote the value of the lookback put option and

let Π denote the value of the above portfolio. We then have

Π = p(S,Mn, t)−△S.

• The dynamics of the portfolio value is given by

dΠ =
∂p

∂t
dt+

1

n

Sn

(Mn)n−1

∂p

∂Mn
dt+

∂p

∂S
dS +

σ2

2
S2 ∂

2p

∂S2
dt−△dS

by virtue of Ito’s lemma. Again, we choose △ =
∂p

∂S
so that the

stochastic terms cancel.
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• Using the usual no-arbitrage argument, the non-stochastic port-

folio should earn the riskless interest rate so that

dΠ = rΠ dt,

where r is the riskless interest rate. Putting all equations to-

gether, we have

∂p

∂t
+

1

n

Sn

(Mn)n−1

∂p

∂Mn
+
σ2

2
S2 ∂

2p

∂S2
+ rS

∂p

∂S
− rp = 0.

• Next, we take the limit n → ∞ and note that S ≤ M . When

S < M , lim
n→∞

1

n

Sn

(Mn)n−1
= 0; and when S = M,

∂p

∂M
= 0. Hence,

the second term becomes zero as n→ ∞.

• The governing equation for the floating strike lookback put is

given by

∂p

∂t
+
σ2

2
S2 ∂

2p

∂S2
+ rS

∂p

∂S
− rp = 0, 0 < S < M, t > T0.
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The domain of the pricing model has an upper bound M on S. The

variable M does not appear in the equation, though M appears as

a parameter in the auxiliary conditions. The final condition is

p(S,M, T ) =M − S.

In this European floating strike lookback put option, the boundary

conditions are applied at S = 0 and S =M . Once S becomes zero,

it stays at the zero value at all subsequent times and the payoff at

expiry is certain to be M .

Discounting at the riskless interest rate, the lookback put value at

the current time t is

p(0,M, t) = e−r(T−t)M.

The boundary condition at the other end S =M is given by

∂p

∂M
= 0 at S =M.
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Partial differential equation formulation of the lookback option price

function

Let S denote the stock price variable and M denote the realized

maximum of the stock price recorded from the initial time of the

lookback period to the current time. Let t denote the calendar time

variable, T be the maturity date of the lookback option and τ = T−t
be the time to expiry.

The formulation for the price function V (S,M, τ) of the one-asset

European lookback option model with terminal payoff VT (S,M) is

given by

∂V

∂τ
=
σ2

2
S2∂

2V

∂S2
+ rS

∂V

∂S
− rV, 0 < S < M, τ > 0,

∂V

∂M

∣∣∣∣∣
S=M

= 0, τ > 0,

V (S,M,0) = VT (S,M), (1)

where r is the riskless interest rate and σ is the volatility of the

stock price.
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• The price function is essentially two-dimensional with state vari-

ables S and M . However, the differential equation exhibits the

degenerate nature in the sense that it does not involve the look-

back variable M .

• M only occurs in the Neumann boundary condition
∂V

∂M

∣∣∣∣∣
S=M

= 0

and the terminal payoff function. The Neumann boundary con-

dition signifies that if the current stock price equals the value of

the current realized maximum then the option price is insensitive

to M .

• We reformulate the pricing model (1) using the following new

set of variables:

x = ln
M

S
, y = lnM.

Note that
∂V

∂M
=

1

M

(
∂V

∂x
+
∂V

∂y

)
since both x and y have depen-

dence on M .
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The lookback pricing model formulation can be rewritten as

∂V

∂τ
=
σ2

2

∂2V

∂x2
−
(
r −

σ2

2

)
∂V

∂x
− rV, x > 0,−∞ < y <∞, τ > 0,(

∂V

∂x
+
∂V

∂y

) ∣∣∣∣∣
x=0

= 0, τ > 0,

V (x, y,0) = VT (e
y−x, ey). (2)

The triangular wedge shape of the original domain of definition

D = {(S,M) : 0 < S < M} is now transformed into a new domain

which is the semi-infinite two-dimensional plane

D̃ = {(x, y) : x > 0 and −∞ < y <∞}.
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However, the boundary condition along x = 0 involves the function
∂V

∂x
+
∂V

∂y
.

M

S

∂V

∂M
=0

∂V

∂x
=0

y

x

+
∂V

∂y
x=0
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Floating strike lookback options

We consider the valuation of lookback options with payoff of the

form Sf

(
M

S

)
, which includes the floating strike payoff as a special

example. By taking VT (S,M) = Sf

(
M

S

)
and applying the trans-

formations of variables: x = ln
M

S
and U(x, τ) =

V (S,M, τ)

S
to the

pricing formulation (1), we obtain

∂U

∂τ
=
σ2

2

∂2U

∂x2
−
(
r+

σ2

2

)
∂U

∂x
, x > 0, τ > 0,

∂U

∂x

∣∣∣∣∣
x=0

= 0, τ > 0

U(x,0) = f(ex).

Once the terminal condition is free of y (namely, lnM), the depen-

dence on y of the price function disappears.
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The Neumann boundary condition at x = 0 indicates that x = 0

is a reflecting barrier for the system particle hitting the reflecting

barrier will be reflected, unlike an absorbing barrier which removes

the particle from the system.

• To resolve the difficulty of dealing with the Neumann boundary

condition along x = 0, we extend the domain of definition from

the semi-infinite domain to the full infinite domain.

• This is achieved by performing continuation of the initial condi-

tion to the domain x < 0 such that the price function can satisfy

the Neumann boundary condition.
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Due to the presence of the drift term in the differential equation, the

simple odd-even extension is not applicable. For the floating strike

payoff M − S, we have U(x,0) = ex − 1, x > 0. The continuation of

the initial condition to the domain x < 0 is found to be

U(x,0) =
1− e(2α̃−1)x

2α̃− 1
, x < 0, where α̃ =

r

σ2
+

1

2
.

To show the claim, we set

U(x, τ) = Ũ(x, τ)eα̃x+β̃τ ,

where α̃ =
r

σ2
+

1

2
and β̃ = −

1

2σ2

(
r+

σ2

2

)2
. The transformation

on U is equivalent to applying the change of measure to make the

underlying price process to be drift free.
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Now Ũ(x, τ) is governed by

∂Ũ

∂τ
=
σ2

2

∂2Ũ

∂x2
, x > 0, τ > 0(

∂Ũ

∂x
+ α̃Ũ

) ∣∣∣∣∣
x=0

= 0, τ > 0, (Robin condition)

Ũ(x,0) = e−α̃xf(ex) = h+(x), x > 0.

The fundamental solution is the free space Green function:

ψ(x, τ ; ξ) =
1√

2πσ2τ
exp

(
−
(x− ξ)2

2σ2τ

)
, −∞ < x <∞, τ > 0.
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Let h−(x) denote the continuation of the initial condition for x < 0,

Ũ(x, τ) can then be formally represented by

Ũ(x, τ) =
∫ 0

−∞
ψ(x− ξ, τ)h−(ξ) dξ+

∫ ∞

0
ψ(x− ξ, τ)h+(ξ) dξ.

The function h−(x) is determined by enforcing the satisfaction of

the Robin boundary condition by the solution Ũ(x, τ).

We then obtain the following ordinary differential equation for h−(x):

h′−(x) + α̃h−(x) + h′+(−x) + α̃h+(−x) = 0,

with matching condition:

h+(0) = h−(0).

For example, suppose f(ex) = ex − 1, then h+(x) = e−α̃x(ex − 1).
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By solving the above equation, we obtain

h−(x) =
e−α̃x − e(α̃−1)x

2α̃− 1
.

In general, the solution is found to be

h−(x) = h+(−x) + 2α̃e−α̃x
∫ x
0
eα̃ξh(−ξ) dξ.

We obtain the integral price formula of lookback option with payoff

Sf

(
M

S

)
as follows:

V (S,M, τ) = S

(
M

S

)α̃
eβ̃τ
∫ ∞

1

[
ψ

(
ln
M

S
+ ln ξ, τ

)
+ ψ

(
ln
M

S
− ln ξ, τ

)

+2α

∫ ∞

ξ

ψ

(
ln
M

S
+ ln η, τ

)(
η

ξ

)α̃−1

dη

 f(ξ)
ξα̃+2

dξ,

where β̃ = −
1

2σ2

(
r+

σ2

2

)2
.
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For the floating strike lookback option, we have f(ξ) = ξ − 1. The

corresponding price function is found to be

Vfℓ(S,M, τ) = Me−rτ
N(−d+

√
τ)−

σ2

2r

(
M

S

)2r/σ2
N

(
d−

2r

σ

√
τ

)
− S

[
N(−d)−

σ2

2r
N(d)

]
,

where

d =
lnM

S −
(
r − σ2

2

)
τ

σ
√
τ

.
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2.5 Multistate lookback options

Two-asset semi-lookback option

The terminal payoff of a semi-lookback option depends on the ex-

treme value of the price of one asset and the terminal values of

the prices of other assets. Let V 2
semi(S1, S2, t;S2[T0, t]) denote the

value of the two-asset semi-lookback option whose terminal payoff

is given by (S2[T0, T ] − S1,T − K)+. We write S2[T0, t] = M2 and

S2[t, T ] = (M2)
T
t , and let the terminal payoff be expressed as

(max(M2 −K, (M2)
T
t −K)− S1,T )

+.

We choose the sub-replicating instrument to be the put option on

S1 with strike M2 −K, where the corresponding terminal payoff is

((M2 −K)− S1,T )
+.
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Similarly, there are two sources of risks: (i) realization of higher

maximum asset value, where (M2)
T
t > M2, (ii) S1,T > M2 −K and

(M2)
T
t −K > S1,T ⇔M2 < S1,T +K < (M2)

T
t .

• The first scenario leads to an increase in the strike of the semi-

lookback option from M2 −K to (M2)
T
t −K.

• The second scenario leads to positive terminal payoff in the semi-

lookback option but zero terminal payoff in the vanilla put.

The two cases can be combined into M2 < S1,T+K < (M2)
T
t . When

such scenario occurs, the under replication at maturity is

(M2)
T
t −K − S1,T = [(M2)

T
t −M2]− [(S1,T +K)−M2].
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The above terminal payoff is equivalent to the sum of those of the

fixed strike lookback call on (M2)
T
t and vanilla call on S1,T+K, both

with the same strike M2.

The required replenishing premium is given by

e−rτ
{∫ ∞

M2

P [(M2)
T
t > ξ] dξ −

∫ ∞

M2

P [S1,T +K > ξ] dξ

}

= e−rτ
∫ ∞

M2

P [(M2)
T
t > ξ ≥ S1,T +K] dξ.

The value of the two-asset semi-lookback option is given by

V 2
semi(S1, S2, t;S2[T0, t]) = p(S1, t;M2 −K)

+ e−rτ
∫ ∞

M2

P [(M2)
T
t > ξ ≥ S1,T +K] dξ.
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Discretely monitored floating strike lookback call options

Suppose the monitoring of the minimum value of the asset price

takes place only at discrete time instant tj, j = 1,2, · · · , n, where

tn is on or before the maturity date of the lookback call option.

Suppose the current time is taken to be within [tk, tk+1). The

terminal payoff of the discretely monitored floating strike lookback

call option is given by

cdisfℓ (ST , T ) = ST −min(St1, St2, · · · , Stn).

We use the notation S[i, j] to denote min(Sti, Sti+1, · · · , Stj), j > i.

At the current time, S[1, k] = min(St1, St2, · · · , Stk) is already known.

Similar to the continuously monitored case, we choose the sub-

replicating instrument to be a forward with the same maturity date

T and delivery price S[1, k].
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Potential liabilities occur when S[k + 1, n] falls below S[1, k]. This

is similar to a put with the stochastic state variable S[k+1, n] and

strike S[1, k].

The replenishing premium required to compensate for under repli-

cation is given by

replenishing premium = e−rτ
∫ S[1,k]
0

P [S[k+1, n] ≤ ξ] dξ.

The present value of the discretely monitored European floating

strike lookback call option is then given by

cdisfℓ (S, t;S[1, k]) = S − e−rτS[1, k] + e−rτ
∫ S[1,k]
0

P [S[k+1, n] ≤ ξ] dξ.

Remark Following the strike bonus approach, we can also obtain

cdisfℓ (S, t;S[1, k]) = cE(S, t;S[1, k])+e
−rτ

∫ S[1,k]
0

P [S[k+1, n] ≤ ξ < ST ] dξ.
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The distribution function P [S[k+1, n] ≤ ξ] can be expressed as

P [S[k+1, n] ≤ ξ] =
n∑

j=k+1

E1{Stj≤ξ,Stj/Sti≤1 for all i̸=j,k+1≤i≤n},

where the indicator function in the jth term corresponds to the

event that Stj is taken be the minima among Stk+1, · · · , Stn; and j

runs from k+1 to n.

Suppose the asset price follows the Geometric Brownian motion,

then Stj and Stj/Sti, i ̸= j, k + 1 ≤ i ≤ n, are all lognormally dis-

tributed. The expectation values in above equation can be expressed

in terms of multi-variate cumulative normal distribution functions.
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One-asset lookback spread option

The terminal payoff of an one-asset lookback spread option is given

by

csp(ST , T ;K) =
(
MT
T0

−mT
T0

−K
)+

.

Choice of sub-replicating portfolio:

• long holding of one unit of European lookback call and one unit

of lookback put, both of floating strike;

• short holding of a riskless bond of par value K.

All these instruments have the same maturity as that of the lookback

spread option.

Terminal payoff of this sub-replicating portfolio

= (MT
T0

− ST ) + (ST −mT
T0
)−K =MT

T0
−mT

T0
−K.
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Note that

MT
T0

−mT
T0

−K =max(M,MT
t )−min(m,mT

t )−K

≥ M −m−K,

so if the lookback spread is currently in-the-money, then it will expire

in-the-money. The sub-replication is a full replication when the

lookback spread option is currently in-the-money.

On the other hand, if the lookback spread option is currently out-of-

the-money, the terminal payoff of the sub-replicating portfolio would

be less than that of the lookback spread option if the lookback

spread option expires out-of-the-money. That is,

max(M,MT
t )−min(m,mT

t )−K < 0.

The sources of risks include (i) MT
t > M and mT

t < m, (ii) MT
t −

mT
t −K < 0 ⇔ mT

t +K > MT
t . These cases can be combined into

M < MT
t < mT

t +K < m+K.
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We hedge the exposure over successive subintervals within [M,m+

K]: (M + (j − 1)∆ξ,M + j∆ξ) and write ξj =M + j∆ξ.

The potential liability of ∆ξ has to be replenished when both of the

following 2 events occur together:

MT
t < ξj and mT

t +K > ξj.

The expected replenishing premium over the jth interval is

e−rτ∆ξ P [MT
t < ξj < mT

t +K].

Summing over all intervals, we obtain

e−rτ
∫ m+K

M
P [MT

t < ξ < mT
t +K] dξ.
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In summary

(i) M −m−K ≥ 0 (currently in-the-money or at-the-money)

csp(S, t;M,m) = cfℓ(S, t;m) + pfℓ(S, t;M)−Ke−rτ ;

(ii) M −m−K < 0 (currently out-of-the-money)

csp(S, t;M,m)

= cfℓ(S, t;m) + pfℓ(S, t;M)−Ke−rτ

+ e−rτ
∫ m+K

M
P [MT

t < ξ < mT
t +K] dξ.
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The distribution function P [M < ξ ≤ m+K] can be deduced from

P [X ≥ x,X ≤ y]

=
∞∑

n=−∞
e[2nα(y−x)]/σ

2
{[
N

(
y − αt− 2n(y − x)

σ
√
t

)

−N

(
x− αt− 2n(y − x)

σ1
√
t

)]

− e2αx/σ
2
[
N

(
y − αt− 2n(y − x)− 2x

σ
√
t

)

−N

(
x− αt− 2n(y − x)− 2x

σ
√
t

)]}
.
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Two-asset lookback spread option

Let S1,u and S2,u denote the price process of asset 1 and asset

2, respectively. Similarly, we write S1[t1, t2] and S2[t1, t2] as the

realized maximum value of S1,u and realized minimum value of S2,u
over the period [t1, t2], respectively. The terminal payoff of a two-

asset lookback spread option is given by

csp(S1,T , S2,T , T ;K) = (S1[T0, T ]− S2[T0, T ]−K)+,

where K is the strike price.
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Replicating portfolio

Since we can express S1[T0, T ]− S2[T0, T ]−K as

(S1[T0, T ]− S1,T ) + (S2,T − S2[T0, T ]) + S1,T − S2,T −K,

a natural choice of the sub-replicating portfolio would consist of

long holding of one European floating strike lookback put on asset

1, one European floating strike lookback call on asset 2, one unit

of asset 1 and short holding of one unit of asset 2 and a riskless

bond of par value K. All instruments in the portfolio have the same

maturity as that of the two-asset lookback spread option.

Similar to the one-asset counterpart, the two-asset lookback spread

option is guaranteed to expire in-the-money if it is currently in-the-

money.

The sub-replicating portfolio will expire with a terminal payoff below

that of the lookback spread option if the lookback spread option

expires ont-of-the-money.
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The current value of the two-asset European lookback spread option

is given by

(i) S1[T0, t]− S2[T0, t]−K ≥ 0

csp(S1, S2, t;S1[T0, t], S2[T0, t]) = pfℓ(S1, t;S1[T0, t]) + cfℓ(S2, t;S2[T0, t])

+ S1 − S2 −Ke−rτ ;

(ii) S1[T0, t]− S2[T0, t]−K < 0

csp(S1, S2, t;S1[T0, t], S2[T0, t]) = pfℓ(S1, t;S1[T0, t]) + cfℓ(S2, t;S2[T0, t])

+ S1 − S2 −Ke−rτ

+ e−rτ
∫ S2[T0,t]+K

S1[T0,t]
P (S1[t, T ] < ξ ≤ S2[t, T ] +K) dξ.

• The joint distribution of maximum of one asset and minimum of

another asset cannot be deduced using the method of images.

One has to resort to eigenfunction expansion technique, and the

resulting expression involves the modified Bessel functions.
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Lookbacks on two assets

• Double Maxima: call or put on the difference between the max-

imum of S1 and the maximum of S2:

max[0, (aS1(T )− bS2(T ))−K]

max[0,K − (aS1(T )− bS2(T ))]

where a > 0 and b > 0 are parameters to be chosen by investors.

In practice, it may make sense to pick a and b such that aS1(0) =

bS2(0). For example, a = 1/S1(0) and b = 1/S2(0).

With a and b chosen in this way, the double maxima represents

an option on the difference between the maximum returns of

the two stocks over a given period. When K = 0, the double

maxima call is equivlent to an option to buy the maximum of

S1 at the maximum of S2.
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• Double Minima: call or put on the difference between the mini-

mum of S1 and the minimum of S2:

max[0, (aS1(T )− bS2(T ))−K]

max[0,K − (aS1(T )− bS2(T ))].

When K = 0, the double minima call is equivalent to an option

to sell the minimum of S1 for the minimum of S2.

• Double Lookback Spread: call or put on the spread between the

maximum S1 and the minimum of S2:

max[0, (aS1(T )− bS2(T ))−K]

max[0,K − (aS1(T )− bS2(T ))].
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Uses of these double-asset lookback options

• Double maxima/minima represent options on the difference be-

tween the maximum/ minimum returns of two stocks over a

given period. They provide investors with a special vehicle to

take a view on how these two stocks will perform relative to

each other.

• Similarly, double lookback spreads capture the difference be-

tween the maximum upside of one stock and the maximum

downside of another stock. This type of options can be an

aggressive play on the volatilities of the two stocks as well as

on the correlation of the two stocks.

VDmax(x1, x2) = max
[
0, aS1(0)e

max(M1,x1) − bS2(0)e
max(M2,x2) −K

]
VDmin(x1, x2) = max

[
0, aS1(0)e

min(m1,x1) − bS2(0)e
min(m2,x2) −K

]
VDLS(x1, x2) = max

[
0, aS1(0)e

max(M1,x1) − bS2(0)e
min(m1,x2) −K

]
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Recall

Xi(t) = αit+σiZi(t), i = 1,2; cov(Z1(t), Z2(t)) = ρt; ρ is a constant.

Xi(t) = min
0≤s≤t

Xi(s), Xi(t) = max
0≤s≤t

Xi(t).

The call prices CDmax, CDmin, and CDLS, respectively, for double

maxima, double minima, and double lookback spread options are

determined as follows:

CDmax(x1, x2) = e−rT
∫ ∞

0
dx1

∫ ∞

0
dx2VDmax(x1, x2)

∂2P (X1(t) ≤ x1, X2(t) ≤ x2)

∂x1∂x2

CDmin(x1, x2) = e−rT
∫ 0

−∞
dx1

∫ 0

−∞
dx2VDmin(x1, x2)

∂2P (X1(t) ≥ x1, X2(t) ≥ x2)

∂x1∂x2

CDLS(x1, x2) = e−rT
∫ 0

−∞
dx1

∫ ∞

0
dx2VDLS(x1, x2)

−∂2P (X1(t) ≥ x1, X2(t) ≤ x2)

∂x1∂x2
.
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Probability density / distribution functions of the extreme values of

two correlated Brownian motions.

P (X1(t) ∈ dx1, X2(t) ∈ dx2, X1(t) ≥ m1, X2 ≥ m2)

= p(x1, x2, t;m1,m2, α1, α2, σ1, σ2, ρ) dx1dx2

(i) For x1 ≥ m1, x2 ≥ m2, where m1 ≤ 0, m2 ≤ 0,

p(x1, x2, t;m1,m2, α1, α2, σ1, σ2, ρ)

=
ea1x1+a2x2+bt

σ1σ2

√
1− ρ2

h(x1, x2, t;m1,m2, α1, α2, σ1, σ2, ρ),

where

h(x1, x2, t;m1,m2, α1, α2, σ1, σ2, ρ)

=
2

βt

∞∑
n=1

e−(r2+r20)/2t sin
nπθ0
β

sin
nπθ

β
I(nπ)/β

(
rr0
t

)
.
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The parameter values are given by

a1 =
α1σ2 − ρα2σ1

(1− ρ2)σ21σ2
, a2 =

α2σ1 − ρα1σ2

(1− ρ2)σ1σ
2
2
,

b =− α1a1 − α2a2 +
1

2
σ21a

2
1 + ρσ1σ2a1a2 +

1

2
σ22a

2
2,

tanβ =−

√
1− ρ2

ρ
, β ∈ [0, π],

z1 =
1√

1− ρ2

[(
x1 −m1

σ1

)
− ρ

(
x2 −m2

σ2

)]
, z2 =

(
x2 −m2

σ2

)
,

z10 =
1√

1− ρ2

(
−
m1

σ1
+
ρm2

σ2

)
, z20 = −

m2

σ2
,

r =
√
z21 + z22, tan θ =

z2
z1
, θ = [0, β],

r0 =
√
z210 + z220, tan θ0 =

z20
z10

, θ0 ∈ [0, β].
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The distribution function p satisfies the Fokker-Planck equation

∂p

∂t
= −α1

∂p

∂x1
− α2

∂p

∂x2
+

1

2
σ21
∂2p

∂x21
+ ρσ1σ2

∂2p

∂x1∂x2
+

1

2
σ22
∂2p

∂x22
,

t > 0, m1 < x1 <∞, m2 < x2 <∞;

with the following initial condition:

p(x1, x2, t = 0) = δ(x1)δ(x2)

and absorbing boundary conditions

p(x1 = m1, x2, t) = 0

p(x1, x2 = m2, t) = 0.

71



To get rid of the drift terms, we define

p(x1, x2, t) = ea1x1+a2x2+btq(x1, x2, t),

where a1, a2, and b are defined as above. Then q(x1, x2, t) satisfies

∂q

∂t
=

1

2
σ21
∂2q

∂x21
+ ρσ1σ2

∂2q

∂x1∂x2
+

1

2
σ22
∂2p

∂x22

with auxiliary conditions:

q(x1, x2, t = 0) = δ(x1)δ(x2)

q(x1 = m1, x2, t) = 0

q(x1, x2 = m2, t) = 0.
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This PDE can be simplified by a suitable transformation of coordi-

nates, eliminate the cross-partial derivative and normalize the Brow-

nian motions. Explicitly, if we define the set of new coordinates z1
and z2, where

z1 =
1√

1− ρ2

(
x1 −m1

σ1
− ρ

x2 −m2

σ2

)
and z2 =

x2 −m2

σ2
, and write

q(x1, x2, t) =
h(z1, z2, t)

σ1σ2

√
1− ρ2

.
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This procedure is similar to define two uncorrelated Brownian mo-

tions from two given correlated Brownian motions. Here, h(z1, z2, t)

satisfies the following standard diffusion equation (without the cross-

derivative term):

∂h

∂t
=

1

2

(
∂2h

∂z21
+
∂2h

∂z22

)
with boundary condition:

h(z1, z2, t) = δ(z1 − z10)δ(z2 − z20)

h(L1, t) = h(L2, t) = 0,

where z10 =
1√

1− ρ2

(
−
m1

σ1
+
ρm2

σ2

)
and z20 = −

m2

σ2
; and

L1 = {(z1, z2) : z2 = 0}, L2 =

(z1, z2) : z2 = −

√
1− ρ2

ρ
z1

 .
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x
1

x
2

m1

m2

L :x =m2 1 1

L :x =m1 2 2

.

z
2

z
1

β
.(z ,z )

10 20

L ':z =0
1 2

0 ≤ r <∞, 0 ≤ θ ≤ β;

tanβ = −
√

1−ρ2
ρ .
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These boundary conditions along L1 and L2 are more conveniently

expressed in polar coordinates. Introducing polar coordinates (r, θ)

corresponding to (z1, z2) as defined above, we obtain

∂h

∂t
=

1

2

(
∂2h

∂r2
+

1

r

∂h

∂r
+

1

r2
∂2h

∂θ2

)
, r2 = z21 + z22 and tan θ =

z2
z1

;

with boundary conditions: h(r, θ, t = 0) =
1

r0
δ(r − r0)δ(θ − θ0),

h(r, θ = 0, t) = 0, h(r, θ = β, t) = 0.

Note that
1

r0
arises from the Jacobian of transformation from (z1, z2)

to (r, θ).
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To solve this PDE for h(r, θ, t), we look for separable solutions of

the form R(r)Θ(θ)T (t). Plugging this into the PDE, we find

T ′

T
=

1

2

(
R′′

R
+

1

r

R′

R
+

1

r2
Θ′′

Θ

)
= −λ2/2,

where the separation constant is negative because the solutions

must decay as t→ ∞.

Hence, we have the eigenfunction for T (t) to be an exponential

function:

T (t) ∼ e−λ
2t/2

and

k2 − k2︷ ︸︸ ︷(
r2
R′′

R
+ r

R′

R
+ λ2r2

)
+

︷ ︸︸ ︷(
Θ′′

Θ

)
= 0.

Defining Θ′′/Θ = −k2, we obtain

Θ(θ) ∼ A sin kθ+B cos kθ.
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The boundary conditions require that Θ(0) = Θ(β) = 0, and hence

k must be real, B = 0, and sin kβ = 0.

This last requirement restricts k to discrete values of the form:

kn =
nπ

β
, n = 1,2, . . ..

Thus the most general angular solution consistent with the boundary

conditions is

Θ(θ) ∼ sin
nπθ

β
, n = 1,2, . . . .
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Finally, the radial part of the solution is

r2R′′ + rR′ + (λ2r2 − k2n)R = 0.

Defining y = λr, we can rewrite this in the standard form

y2
d2R

dy2
+ y

dR

dy
+ (y2 − k2n)R = 0.

This is the Bessel equation, with the well known fundamental solu-

tions Jkn(y) and Ikn(y). Since Ikn(0) diverges and we require R(0)

to be well-behaved, the Ikn(x) solution is not permitted. Hence the

general radial solution is R(r) ∼ Jkn(λr).
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In summary, the most general solution to the PDE for h(r, θ, t) con-

sistent with the absorbing boundary conditions:

h(r,0, t) = h(r, β, t) = 0,

is given by

h(r, θ, t) =
∫ ∞

0

∞∑
n=1

cn(λ)e
−λ2t/2 sin

(
nπθ

β

)
Jnπ/β( λr) dλ.

Note that Tn(t) has a continuum of eigenvalues λ.

The next step is to find the coefficients cn(λ) which fit the initial

condition:

h(r, θ,0) = r−1
0 δ(r − r0)δ(θ − θ0).
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Setting t = 0, we have

1

r0
δ(r − r0)δ(θ − θ0) = h(r, θ,0) =

∫ ∞

0

∞∑
n=1

cn(λ) sin
nπθ

β
Jnπ
β
(λr) dλ.

Next, we multiply the previous equation at t = 0 by sin(mπθ/β)

and integrate over the interval [0, β] in θ. From the orthogonality

relation, we obtain

r−1
0 δ(r − r0) sin

(
mπθ0
β

)
=
β

2

∫ ∞

0
cm(λ)Jmπ/β(λr) dλ.

Using the following relation:∫ ∞

0
xJv(ax)Jv(bx)dx = a−1δ(a− b),

and comparing the equations, we ontain

cm(λ′) =
2λ′

β
sin

(
mπθ0
β

)
Jmπ/β( λ

′r0).
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Putting all the results together, we finally obtain

h(r, θ, t) =

∫ ∞

0

(
2λ

β

) ∞∑
n=1

e−λ
2t/2 sin

(
nπθ0

β

)
sin

(
nπθ

β

)
Jnπ/β(λr0)Jnπ/β(λr) dλ.

The integration with respect to λ can be performed explicitly using

the relation:∫ ∞

0
xe−c

2x2Jv(ax)Jv(bx) dx =
1

2c2
e−(a2+b2)/4c2Iv

(
ab

2c2

)
.

We then obtain the final expression, where

h(r, θ, t) =
2

βt

∞∑
n=1

e−(r2+r20)/2t sin

(
nπθ0
β

)
sin

(
nπθ

β

)
Inπ/β

(
rr0
t

)
.
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Based on the symmetry relations, we obtain

(ii) For x1 ≥ m1, x2 ≤M2, where m1 ≤ 0, M2 ≥ 0, we have

P (X1(t) ∈ dx1, X2(t) ∈ dx2, X1(t) ≥ m1, X2 ≤ m2)

= p(x1,−x2, t;m1,−M2, α1,−α2, σ1, σ2,−ρ) dx1dx2.

(iii) For x1 ≤M1, x2 ≤M2, where M1 ≥ 0, M2 ≥ 0, we have

P (X1(t) ∈ dx1, X2(t) ∈ dx2, X1(t) ≤ m1, X2 ≤ m2)

= p(−x1,−x2, t;−M1,−M2,−α1,−α2, σ1, σ2, ρ) dx1dx2.
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From the joint density function of correlated restricted Brownian

motions, we derive the distribution function of joint maximum of

the two-dimensional correlated Brownian motions as follows:

Integrating over the density functions and applying a change of

polar-coordinates, we obtain the distribution function:

P (X1(t) ≤ x1, X2(t) ≤ x2) = ea1x1+a2x2+btf(r′, θ′, t),

where

f(r′, θ′, t) =
2

α′t

∞∑
n=1

sin

(
nπθ′

α′

)
e−r

′2/2t
∫ α′
0

sin
(
nπθ

α′

)
gn(θ) dθ,
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with

gn(θ) =
∫ ∞

0
re−r

2/2te−b1r cos(θ−α)−b2r sin(θ−α)Inπ/α

(
rr′

t

)
dr,

r′ =
1√

1− ρ2

(
x21
σ21

−
2ρx1x2
σ1σ2

+
x22
σ22

)1/2

θ′ = θ+ α, with cos θ =
x1
σ1r′

tanα =
ρ√

1− ρ2
, α′ = α+

π

2
,

b1 = a1σ1 + a2σ2ρ and b2 = a2σ2

√
1− ρ2.

Similar expressions can be derived for

P (X1(T ) ≥ x1, X2(t) ≤ x2) and P (X1(t) ≥ x1, X2(t) ≥ x2).
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Corollary

When the correlation ρ can take on only the special values

ρπ = − cos
π

n
, n = 1,2, . . . ,

then tanβ = −

√
1− cos2 πn
− cos πn

= tan
π

n
so that β =

π

n
. In this case, the

density function p has the special form

p(x1, x2, t) =
ea1x1+a2x2+bt

σ1σ2

√
1− ρ2n

h(z1, z2, t),

where h is a finite sum of bivariate normal densities

h(z1, z2, t) =
n−1∑
k=0

[g+k (z1, z2, t) + g−k (z1, z2, t)]

g±k (z1, z2, t) = ±
1

2π
exp

(
−
1

2

[(
z1 − r0 cos

(
2kπ

n
± θ0

))2
+
(
z2 − r0 sin

(
2kπ

n
± θ0

))2])
.
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π/3

A method of images solution for the two-dimensional case.
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When ρn = − cos(π/n), the angles between the lines L1 and L2 take

the special values

βn = π/n, n = 1,2, . . . .

For these angles, a method of images solution to the PDE is pos-

sible. Note that

g±(z1, z2, t; a1, a2) = ±
1

2πt
exp

(
−
1

2
[(z1 − a1)

2 + (z2 − a2)
2]
)

satisfies the PDE with the initial condition

g±(z1, z2,0; a1, a2) = ±δ(z1 − a1)δ(z2 − a2).
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2.6 Dynamic fund protection

Provides an investor with a floor level of protection during the in-

vestment period.

• This feature generalizes the concept of a put option, which

provides only a floor value at a particular time.

• The dynamic fund protection ensures that the fund value is

upgraded if it ever falls below a certain threshold level.
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Typical sample path of the fund unit values

upgraded

fund

primary fund
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1. F̃ (0) = F (0)

2. F̃ (t) = F (t)max

{
1, max

0≤s≤t
K

F (s)

}

• Whenever F̃ (t) drops below K, just enough money will be added

so that the upgraded fund unit value does not fall below K.

• Write M(t) = max

{
1,

K

min0≤s≤t F (s)

}
, then

F̃ (T ) = F (T )max

{
M(t),

K

mint≤s≤T F (s)

}
.

Here, M(t) is the number of units of primary fund acquired

at time t. The lookback feature of the dynamic protection is

revealed by M(t).
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Protection with reference to a stock index under finite number

of resets

F (t): value of the primary fund

I(t): value of the reference stock index

F̃ (t): value of the protected fund

When the investor makes its reset decision, the sponsor of the pro-

tected fund has to purchase additional units of the primary fund so

that the protected fund value is upgraded to that of the reference

index.
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F as the numeraire

At the reset instant ξi, i = 1,2, . . ., we have

F̃ (ξi) = I(ξi) = n(ξi)F (ξi),

where n(ξi) = I(ξi)/F (ξi) > 1 is the new number of units of the

primary fund in the investment fund.

It is obvious that n(ξ1) < n(ξ2) < · · · . The normalized upgraded

fund value F̃ /F is related to I/F . This motivates us to use F as

the numeraire.
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Fund value dynamics

Under the risk neutral valuation framework, we assume that the

primary fund value F (t) and the reference index value I(t) follow

the Geometric Brownian motions:

dF

F
= (r − qp)dt+ σp dZp,

dI

I
= (r − qi)dt+ σi dZi,

where r is the riskless interest rate, qp and qi are the dividend yield

of the primary fund and stock index, respectively, σp and σi are

the volatility of the primary fund value and reference index value,

respectively, and dZpdZi = ρ dt. Here, ρ is the correlation coefficient

between the primary fund process and reference index process.
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Pricing formulation of the protected fund with n resets

Let Vn(F, I, t) denote the value of the investment fund with dy-

namic protection with respect to a reference stock index, where the

investor has n reset rights outstanding. We first consider the sim-

pler case, where there has been no prior reset. That is, the number

of units of the primary fund is equal to one at current time t.

The dimension of the pricing model can be reduced by one if F is

chosen as the numeraire. We define the stochastic state variable

x =
I

F

where F is the fund value at the grant date (same as the primary

fund value).
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Note that x follows the Geometric Brownian motion

dx

x
= (qp − qi)dt+ σ dZ,

where σ2 = σ2p −2ρσpσi+ σ2i . Accordingly, we define the normalized

fund value function with F as the numeraire by

Wn(x, t) =
Vn(F, I, t)

F
.

Whenever a reset has occurred, the upgraded fund value F̃ will be

used as the numeraire so that x =
I

F̃
. Note that F (t) and F̃ (t) have

the same dynamics equation since F̃ (t) is scalar multiple of F (t).

• The investor should never reset when F (t) stays above I(t).

• With only a finite number of reset rights, he does not reset

immediately when F (t) just hits the level of I(t).
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With reference to the variable x, the investor resets when x reaches

some sufficiently high threshold value (denoted by x∗n). The value

of x∗n is not known in advance, but has to be solved as part of the

solution to the pricing model.

Upon reset at x = x∗n, the sponsor has to increase the number of

units of the primary fund so that the new value of the investment

fund equals I.

The corresponding number of units should then be x∗n, which is the

ratio of the reference index value to the primary fund value right

before the reset moment.
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After the reset, we have

• the number of resets outstanding is reduced by one,

• the value of x becomes one since the ratio of the reference index

value to the newly upgraded fund value is one.

We then have

Wn(x
∗
n, t) = x∗nWn−1(1, t).

To show the claim, note that

Wn−1(1, t
+) =

Vn−1(F̃ , F̃ , t
+)

F̃ (t+)
=
Vn(F̃ (t−), x∗n(t

−)F̃ (t−), t−)

x∗n(t−)F̃ (t−)

=
1

x∗n(t−)
Wn(x, t

−).
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Smooth pasting condition

We should have the smooth pasting condition at x = x∗n, based on

optimality consideration:

W ′
n(x

∗
n, t) =Wn−1(1, t).

This extra smooth pasting condition determines the value of x∗n such

that the investment fund value is maximized.

The terminal payoff of the investment fund is simply equal to F , if

no reset has occurred throughout the life of the fund. This gives

Wn(x, T ) = 1.
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Governing equation

In the continuation region, inside which the investor chooses not to

exercise the reset right, the value function Vn(F, I, t) satisfies the

Black-Scholes equation with the two state variables, F and I.

In terms of x, the governing equation and the associated auxiliary

conditions for Wn(x, t) are given by

∂Wn

∂t
+
σ2

2
x2
∂2Wn

∂x2
+ (qp − qi)x

∂Wn

∂x
− qpWn = 0, t < T, x < x∗n(t),

Wn(x
∗
n, t) = x∗nWn−1(1, t) and W ′

n(x
∗
n, t) =Wn−1(1, t), Wn(x, T ) = 1,

where x∗n(t) is the time-dependent threshold value at which the

investor optimally exercises the reset right.
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Free boundary value problem

The pricing model leads to a free boundary value problem with the

free boundary x∗n(t) separating the continuation region {(x, t) : x <

x∗n(t), t < T} and the stopping region {(x, t) : x ≥ x∗n(t), t < T}. The

free boundary is not known in advance but has to be determined as

part of the solution of the pricing model. This is a multiple optimal

stopping problem.

At times close to expiry, the investor should choose to reset even

when F (t) is only slightly below I(t), so we deduce that x∗n(T
−) = 1.

• The free boundary x∗n(t) is a monotonically decreasing function

of t since the holder should reset at a lower threshold fund

value as time is approaching maturity. At fixed value of t, x∗n(t)
is a monotonically decreasing function of n since the investor

should become more conservative with less number of resets

outstanding.
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The exercise payoff is the value of the dynamic protected fund with

outstanding reset rights reduced by one. When n→ ∞, x∗n(∞) tends

to 1 since the investor chooses to reset whenever F̃ (t) falls to I(t).

As x∗n(∞) > x∗n(t) > 1, so x∗∞(t) = 1.

103



Simplified pricing model under limit of infinite number of re-

sets - automatic reset

With x∗∞(t) = 1 for all t < T . This gives W ′
∞(x∗∞, t) =W∞(1, t). For

convenience, we define

W∞(y, t) =
V∞(F̃ , I, t)

F̃
, where y = lnx = ln

I

F̃
, τ = T − t.

Note that the free boundary x∗n(t) becomes the fixed boundary y =

lnx∗∞(t) = ln1 = 0.

The governing equation and auxiliary conditions for W∞(y, τ) are

reduced to

∂W∞
∂τ

=
σ2

2

∂2W∞
∂y2

+ µ
∂W∞
∂y

− qpW∞, τ > 0, y < 0;

∂W∞
∂y

(0, τ) =W∞(0, τ), W∞(y,0) = 1,

where µ = qp − qi −
σ2

2
[Note that y < 0 ⇐⇒ F (t) > I(t)].
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The Robin boundary condition:
∂W∞
∂y

(0, τ) = W∞(0, τ) can be ex-

pressed as
∂V∞
∂F

(I, F̃ , t) = 0 at F̃ = I. If the index value is taken to

be the constant value K, then the Neumann boundary condition:
∂V∞
∂F

(F̃ , t)
∣∣∣∣
F̃=K

= 0 is equivalent to the reflecting boundary condi-

tion with respect to the upgraded fund F̃ placed at the guarantee

level K.

The Robin boundary condition at y = 0 leads to a slight complica-

tion in the solution procedure. The analytic representation of the

solution W∞(y, τ) admits different forms, depending on qp ̸= qi or

qp = qi.
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Let α = 2(qi − qp)/σ2 and µ̃ = µ+ σ2, the price function V∞(F, I, t)

is found to be

(i) qp ̸= qi

V∞(F, I, t)

= Ie−qiτ
(
1−

1

α

)
N

(
ln(I/F ) + µ̃τ

σ
√
τ

)
+
I

α

(
I

F

)α
e−qpτN

(
ln(I/F )− µτ

σ
√
τ

)
+ Fe−qpτN

(
− ln(I/F )− µτ

σ
√
τ

)
, F > I.

(ii) qp = qi (write the common dividend yield as q)

V∞(F, I, t)

= Ie−qτσ
√
τn

(
ln(I/F ) + (σ2τ/2)

σ
√
τ

)
+ Ie−qτ

(
ln
I

F
+1+

σ2τ

2

)
N

(
ln(I/F ) + (σ2τ/2)

σ
√
τ

)
+ Fe−qτN

(
− ln(I/F ) + (σ2τ/2)

σ
√
τ

)
, F > I.
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Derivation of W∞(y, τ)

We perform the continuation of the initial condition to the whole

domain (−∞,∞), where

W∞(y,0) =

{
1 if y < 0,
Ψ(y) if y ≥ 0.

y

no upgrading occurs
until maturity

ψ(y) to be determined
so as to satisfy the
Robin condition
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The function Ψ(y) is determined such that the Robin boundary

condition is satisfied. Let g(y, τ ; ξ) denote the fundamental solution

to the governing differential equation, where

g(y, τ ; ξ) =
e−qpτ√
2πσ2τ

exp

(
−
(ξ − y − µτ)2

2σ2τ

)
.

The following relations are useful in later derivation procedure.∫ 0

−∞
g(y, τ ; ξ) dξ = e−qpτ

[
1−N

(
y+ µτ

σ
√
τ

)]
and

∂

∂y

∫ 0

−∞
g(y, τ ; ξ) dξ = −e−qpτn

(
y+ µτ

σ
√
τ

)
= −g(y, τ ; 0).
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The solution to W∞(y, τ) can be formally expressed as

W∞(y, τ) =
∫ ∞

−∞
W∞(ξ,0)g(y, τ ; ξ) dξ

= e−qpτ
[
1−N

(
y+ µτ

σ
√
τ

)]
+
∫ ∞

0
Ψ(ξ)g(y, τ ; ξ) dξ.

Performing the differentiation with respect to y on both sides of the

above equation and integration by parts, we have

∂W∞
∂y

(y, τ) = −g(y, τ ; 0)−
∫ ∞

0
Ψ(ξ)

∂g

∂ξ
(y, τ ; ξ) dξ

=
∫ ∞

0
Ψ′(ξ)g(y, τ ; ξ) dξ.
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Note that

W∞(0, τ) =
∫ ∞

0
Ψ(ξ)g(0, τ ; ξ) dξ+

∫ ∞

0
g(0, τ ;−ξ) dξ.

We apply the Robin boundary condition:
∂W∞
∂y

(0, τ) = W∞(0, τ) to

obtain ∫ ∞

0
{[Ψ′(ξ)−Ψ(ξ)]g(0, τ ; ξ)− g(0, τ ;−ξ)} dξ = 0

This relation works for any choice of g. In order that the Robin

boundary condition is satisfied, Ψ(ξ) and g(0, τ ; ξ) have to observe

the following relation:

Ψ′(ξ)−Ψ(ξ) =
g(0, τ ;−ξ)
g(0, τ ; ξ)

= e(α+1)ξ, where α =
2(qi − qp)

σ2
.

Interestingly, g(0, τ ;−ξ)/g(0, τ ; ξ) has no dependence on τ . If other-

wise, this procedure does not work.
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The auxiliary condition for Ψ(ξ) is obtained by observing continuity

of W (y,0) at y = 0, giving Ψ(0) = 1. The solution of Ψ(ξ) depends

on α ̸= 0 or α = 0, namely,

(i) when α ̸= 0,

Ψ(ξ) = eξ
(
eαξ

α
+1−

1

α

)
;

(ii) when α = 0, Ψ(ξ) = eξ
[
1+ lim

α→0

eαξ − 1

α

]
= (1+ ξ)eξ.
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By substituting the known solution of Ψ(ξ), we obtain

(i) when α ̸= 0,

W∞(y, τ) = ey−qiτ
(
1−

1

α

)
N

(
y+ µ̃τ

σ
√
τ

)
+

1

α
e(1+α)y−qpτN

(
y − µτ

σ
√
τ

)

+ e−qpτN

(
−y − µτ

σ
√
τ

)
, y < 0;

(ii) when α = 0 (write q as the common dividend yield),

W∞(y, τ) = e−qτN

(
−y+ (σ2τ/2)

σ
√
τ

)
+ ey−qτσ

√
τn

(
y+ (σ2τ/2)

σ
√
τ

)

+ ey−qτ
(
y+1+

σ2τ

2

)
N

(
y+ (σ2τ/2)

σ
√
τ

)
, y < 0.

Remark

When qp = 0, the primary fund does not pay dividend. The dynamic

protection has no value, so we expect

lim
F→∞

V∞(F, I, t) = F.
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Mid-contract valuation

Let M denote the path dependent state variable which represents

the realized maximum value of the state variable x from the grant-

date to the mid-contract time t, that is,

M = max
0≤u≤t

I(u)

F (u)
.

At any mid-contract time, the number of units of primary fund held

in the investment fund is given by

n(t) =

{
1 if M ≤ 1,
M if M > 1.

If the primary fund value has been staying above or at the reference

stock index so far (corresponding to M ≤ 1), then upgrade has never

occurred, so the number of units of primary fund remains at one.

Otherwise, the number of units is upgraded to M .
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Governing differential equation

Let Vmid(F, I,M, t) denote the mid-contract investment fund value

at time t, with dependence on the state variable M . Like the govern-

ing equation for the lookback option price function, M only enters

into the auxiliary conditions but not the governing differential equa-

tion. Both Vmid(F, I,M, t) and V∞(F, I, t) satisfy the same two-state

Black-Scholes equation, namely,(
∂

∂t
+ LF,I

)
Vmid(F, I,M, t) = 0 and

(
∂

∂t
+ LF,I

)
V∞(F, I, t) = 0.

(A.1)

where

LF,I =
σ2p

2
F2 ∂2

∂F2
+ρσpσiFI

∂2

∂F∂I
+
σ2i
2
I2

∂2

∂I2
+(r−qp)F

∂

∂F
+(r−qi)I

∂

∂I
−r.
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Terminal payoff

The terminal payoff of the investment fund value at maturity T

is given by F max(M,1), a payoff structure that involves both F

and M . The valuation of the mid-contract value may seem to be

quite involved, but economic intuition gives the mid-contract value

Vmid(F, I,M, t) in terms of the grant-date value V∞(F, I, t).

Relationship between Vmid(F, I,M, t) and V∞(F, I, t)

When M > 1, the number of units of primary fund is increased to

M so that the investment fund is equivalent to one unit of “new”

primary fund having fund valueMF . WhenM ≤ 1, Vmid is insensitive

to M since the terminal payoff value will not be dependent on the

current realized maximum value M . That is, Vmid remains constant

at different values of M , for all M ≤ 1. By continuity of the price

function with respect to the variable M , Vmid at M = 1 is equal to

the limiting value of Vmid (corresponding to the regime: M > 1) as

M → 1+.
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Mid-contract value function

Vmid(F, I,M, t) = V∞(max(M,1)F, I, t)

=

{
V∞(F, I, t) M ≤ 1,
V∞(MF, I, t) M > 1.

(A.2)

• For M ≤ 1, Vmid(F, I,M, t) = V∞(F, I, t) is obvious since there

has been no upgrading of fund value occurs. It is only necessary

to show

Vmid(F, I,M, t) = V∞(MF, I, t) for M > 1.
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Proof of the formula

When the current index value I equals MF , then Vmid is insensitive

toM . We impose the usual auxiliary condition for a lookback option:

∂Vmid

∂M

∣∣∣∣
M=I/F

= 0.

One can check that Vmid(F, I,M, t) given in Eq.(A.2) satisfies the

governing differential equation (A.1) since the multiplier M is can-

celed in the differential equation when F is multiplied by M . It

suffices to show that Vmid(F, I,M, t) satisfies the terminal payoff

condition and the above auxiliary condition.

Firstly, when M > 1, it is guaranteed that M at maturity must be

greater than one so the terminal payoff becomes F max(1,M) =

MF . Since V∞(F, I, T ) = F so that V∞(MF, I, T ) = MF , hence the

terminal payoff condition is satisfied.
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Recall: W∞
(
ln
I

F
, τ

)
=
V∞(F, I, t)

F
so that

V∞(MF, I, t) =MFW∞
(
ln

I

MF
, τ

)
.

We perform differentiation with respect to M to obtain

∂V∞
∂M

(MF, I, t) = F

[
W∞(y, τ)−

∂W∞
∂y

(y, τ)

]
,

where y = ln(I/MF ). When M = I/F , we have y = 0 so that

∂Vmid

∂M
(F, I,M, t)

∣∣∣∣
M=I/F

=
∂V∞
∂M

(MF, I, t)
∣∣∣∣
M=I/F

= F

[
W∞(0, τ)−

∂W∞
∂y

(0, τ)

]
= 0

by virtue of the Robin boundary condition.
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Cost to the sponsor

Ugrant(F, I, t) = cost to the sponsor at the grant date

Umid(F, I,M, t) = cost to the sponsor at mid-contract time

Note that the terminal payoff Umid(F, I,M, T ) is given by

Umid(F, I,M, T ) = Vmid(F, I,M, T )− F = max(M − 1,0)F.

Relation between Umid and Vmid

Umid(F, I,M, t) = Vmid(F, I,M, t)− Fe−qp(T−t)

since both Vmid(F, I,M, t) and Fe−qp(T−t) satisfy the Black-Scholes

equation and the terminal payoff condition.

The factor e−qp(T−t) appears in front of F since the holder of the

protected fund does not receive the dividends paid by the primary

fund.
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At the grant-date, we have F ≥ I so that M = I/F ≤ 1. We then

have

Ugrant(F, I, t) = Umid(F, I,M, t) = V∞(F, I, t)− Fe−qp(T−t).

The two cost functions Umid(F, I,M, t) and Ugrant(F, I, t) are related

by

Umid(F, I,M, t) = Ugrant(max(M,1)F, I, t)+max(M−1,0)Fe−qp(T−t).

The last term in the above equation gives the present value of

additional units of primary fund supplied by the sponsor due to the

protection clause. The sponsor has to add M − 1 units of primary

fund when M > 1, but supplements nothing when M ≤ 1.
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Integral representation of the price function Vmid(F, I,M, t)

Let M̂ t′
t = max

(
max
t≤u≤t′

I(u)

F (u)
,1

)

and at the current time t, the following quantity

M̂ t
0 = max

(
max
0≤u≤t

I(u)

F (u)
,1

)
= max(M,1)

is known. The terminal payoff of the protected fund can be ex-

pressed as max(M̂ t
0, M̂

T
t )FT , and F is the current value of the primary

fund.
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Rollover hedging strategy

We increase the number of units of fund to M̂u
t e

−qp(T−u) whenever

a higher realized maximum value of M̂u
t occurs at time u, where

t ≤ u ≤ T . This rollover strategy would guarantee that the number

of units of fund at maturity T is max(M̂ t
0, M̂

T
t ). The corresponding

present value of the replenishment premium is

e−qp(T−t)FE[max(M̂T
t − M̂ t

0,0)] = e−qp(T−t)F
∫ ∞

M̂ t
0

P [M̂T
t ≥ ξ] dξ.

The value of the protected fund is the sum of the value of the sub-

replicating portfolio and the replenishment premium. An alternative

analytic representation of the mid-contract price function is given

by

Vmid(F, I,M, t) = max(M,1)e−qp(T−t)F

+ e−qp(T−t)F
∫ ∞

max(M,1)
P [M̂T

t ≥ ξ] dξ.
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Note that max(M,1) is the number of units of primary fund to be

held at time t, given the current value of M . In the remaining life

of the contract, the holder is not entitled to receive the dividend

yield, so the discount factor e−qp(T−t) should be appended.

Distribution function

For ξ ≥ 1, we have the following distribution function under the

Geometric Brownian motion:

P [M̂T
t ≥ ξ] = P

[
max
t≤u≤T

I(u)

F (u)
≥ ξ

]

= e2µξ/σ
2
N

(
−
ξ+ µτ

σ
√
τ

)
+N

(
−
ξ − µτ

σ
√
τ

)
,

where µ = qp − qi −
σ2

2
and σ2 = σ2p − 2ρσpσi+ σ2i .
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