
3.1 Mathematical preliminaries for the construction of inten-
sity processes

• Default occurs without warning at an exogenous default rate or
intensity. The dynamics of the intensity are specified under the
pricing measure.

• Instead of asking why the firm defaults, the intensity model is
calibrated from market prices, typically bond prices.

• Cox process construction of a single jump time τ

A process X of state variables in Rn is defined on a probability
space (Ω,F , Q). Let λ : Rn → R be a non-negative measurable
function. Construct a jump process Nt with the property that

Nt −
∫ t

0
λ(Xu)1{τ>u} du

is a martingale. The jump time τ is defined by

τ = inf
{
t :
∫ t

0
λ(Xu) du ≥ E1

}
.

• Model the random time of arrival of default as a stopping time.
In simple words, stopping times are random times that do not
require knowledge about the future.



Stopping times

Let τ denote the random time of default, τ ∈ R+∪{∞}. Here, ∞ is
included in order to model events that may never occur. A stopping
time with respect to F is a random variable such that

{τ ≤ t} ∈ Ft for all t ≥ 0.

That is, at the time of event, it is known that this event has occurred
or not.

Example of a non-stopping random time

Consider a Brownian motion W (t) over a fixed time interval [0, T ],
and let τmax be the random time at which W (t) attains its maximum.
We need to observe the whole path of W over (0, T ] in order to find
the value taken on by τmax.

Indicator process

Define

Nτ(t) = 1{τ≤t}

which jumps from 0 to 1 at the stopping time.



Hazard rate function

Let τ be a stopping time, F(T ) = P [τ ≤ T ] be its distribution
function. Assume F(T ) < 1 for all T, f(T ) = F ′(T ) is the density
function. The hazard rate function h of τ is defined by

h(T ) =
f(T )

1 − F(T )
=

f(T )

S(T )
, where S(T ) is the survival function.

Now,

h(T ) =
f(T )

S(T )
= −

d

dT
lnS(T )

so that

S(T ) = exp

(
−
∫ T

0
h(u) du

)
and f(T ) = h(T ) exp

(
−
∫ T

0
h(u) du

)
.



Consider

P [τ ≤ T + ∆T |τ > T ] =
P [τ ≤ T + ∆T, τ > T ]

P [τ > T ]

=
[1 − S(τ + ∆T )] − [1 − S(T )]

S(T )

= 1 − exp

(
−
∫ T+∆T

T
h(u) du

)

so that

lim
∆T→0

1

∆T
P [τ ≤ T + ∆T |τ > T ] = h(T ).

The hazard rate h(T ) is the local arrival probability of the stopping
time per unit time.

h(T )∆T ≈ conditional probability of a default in a small interval
after T given survival up to and including T .

It is a conditional default probability which is already known at time
0. The only reason that this conditional default probability changes
with t is the passing of time itself.



Suppose we have access to information at time t which is not avail-
able at time 0, we would like to condition on a more general infor-
mation set.

Conditional hazard rate

At later points in time t > 0 with τ > t,

h(t, T ) =
f(t, T )

1 − F(t, T )

where F(t, T ) = P [τ ≤ T |Ft] = conditional distribution of τ given the
information at time t.

We obtain

F(t, T ) = 1 − e−
∫ T
t h(t,u) du.



Point processes

A point process is a collection of points in time

{τi, i ∈ N} = {τ1, τ2, · · · }.
These points in time have been indexed in an ascending order (τi <
τi+1). They are all stopping times, distinctive from each other.
Also, there is only a finite number of such points over any finite
time horizon.

• Useful to analyze timing risk of several events, for example,
rating transitions, multiple defaults, etc.

• Counting process

N(t) =
∑

i

1{τi≤t}

A sample path of N(t) would be a step function that starts at
zero and increases by one at each τi. Now, N(t) is a stochastic
process.



Intensity function

• Over small time steps, the local implied default probability is
proportional to the length of the time step. The proportionality
factor is the short-term credit spread under zero recovery.

• The local probability of a jump of a Poisson process over a small
time step is approximately proportional to the length of this time
interval.

We would like to build models in which we can condition on a more
general information set Ft. In loose sense

P [τ ≤ t + ∆t|Ft] ≈ 1{τ>t}λ(t)∆t,

where Ft contains information on the survival up to time t and λ is
a stochastic process which is adapted to the filtration F.



Model for default arrival risk

• A counting process is a non-decreasing, integer-valued process
N(t) with N(0) = 0.

Let N(t) be a counting process with (possibly stochastic) inten-
sity λ(t). The time of default τ is the time of the first jump of
N , that is,

τ = inf{t ∈ R+|N(t) > 0}.
The survival probability is given by

P(0, T ) = P [N(T ) = 0|F0].

Poisson process

A Poisson process with intensity λ > 0 is a non-decreasing, integer-
valued process with initial value N(0) = 0 whose increments are
independent and satisfy

P [N(T ) − N(t) = n] =
1

n!
(T − t)nλne−λ(T−t), for all 0 ≤ t ≤ T.



Intuitive construction of a Poisson process

We look at the times of the jumps τ1, τ2, · · · and the probability of
a jump in the next instant.

• The Poisson process has no memory

The probability of n jumps in [t, t + s] is independent of N(t)
and the history of N before t.

• Two or more jumps at exactly the same time have probability
zero.

P [N(t+∆t)−N(t) = 1] = λ∆t (in the continuous limit, E[dN ] = λ dt)

or

P [N(t + ∆t) − N(t) = 0] = 1 − λ∆t.

Jumps in disjoint time intervals happen independently of each other.

P [N(t + 2∆t) − N(t) = 0]
= P [N(t + ∆t) − N(t) = 0]P [N(t + 2∆t) − N(t + ∆t) = 0]

= (1 − λ∆t)2.



Subdivide the interval [t, T ] into n subintervals of length ∆t =
T − t

n
.

1 P [N(T ) = N(t)] = (1 − λ∆t)n =
[
1 −

1

n
λ(T − t)

]n

−→ e−λ(T−t) as n → ∞.

2 P [N(T ) − N(t) = 1] = nλ∆t(1 − λ∆t)n−1

= nλ
T − t

n

[
1 −

λ(T − t)

n

]n/[
1 −

λ(T − t)

n

]

=
λ(T − t)

1 − λ(T−t)
n

[
1 −

λ(T − t)

n

]n

−→ λ(T − t)e−λ(T−t) as n → ∞.

In general,

P [N(T ) − N(t) = n] =
(T − t)n

n!
λne−λ(T−t).

The inter-arrival times of a Poisson process τn+1 − τn are exponen-
tially distributed with density

P [(τn+1 − τn) ∈ dt] = λe−λt dt.



Large portfolio approximation

We have a large portfolio of defaultable securities that are all driven
by independent Poisson processes. Then we can assume that Pois-
son events happen almost continuously at a rate of λ dt to the whole
portfolio.

Spreads with Poisson processes

Survival probability: P(0, T ) = e−λT .

Assuming independence of defaults and interest rate fluctuations,

H(t, T, T + ∆t) =
1

∆t

[
P(t, T )

P(t, T + ∆t)
− 1

]

=
1

∆t
(eλ∆t − 1)

so that

h(t, T ) = λ.

Note that neither default hazard rates H nor h depend on the current
time t or the future time T . In this case, the term structure of
spreads will be flat.



Inhomogeneous Poisson processes

Starting from the local jump probability

P [N(t + ∆t) − N(t) = 1] = λ(t)∆t,

we have

P [N(T ) − N(t) = 0] =
n∏

i=1

[1 − λ(t + i∆t)∆t]

so that

lnP [N(T ) − N(t) = 0] =
n∑

i=1

ln[1 − λ(t + i∆t)∆t]

≈
n∑

i=1

−λ(t + i∆t)∆t

→ −
∫ T

t
λ(s) ds as ∆t → 0.

Hence,

P [N(T ) − N(t) = 0] −→ e−
∫ T
t λ(s) ds as ∆t → 0.



In general,

P [N(T ) − N(t) = n] =
1

n!

(∫ T

t
λ(s) ds

)n

e−
∫ T
t λ(s) ds.

For the implied hazard rate over [T, T + ∆t] as seen at time t

H(t, T, T + ∆t) =
1

∆t

[
e
∫ T+∆t
T λ(s) ds − 1

]
and h(t, T ) = λ(T )

so that default hazard rates do depend on T .

Assuming r(t) to be independent of the arrival of default

B(0, T ) = E

[
e−
∫ T
0 r(s) ds

]
E
[
1{N(T )=0}

]

= B(0, T )e−
∫ T
0 λ(s) ds.

Using B(0, T )eY T = B(0, T ), the continuously compounded yield
spread Y of the defaultable bond over the equivalent default-free
bond is

Y =
1

T

∫ T

0
λ(s) ds,

which is not stochastic.



Under the same assumption of independence, we find the value of
a contingent claim, denoted by e(0, tk, tk+1), which pays $1 at tk+1
if and only if a default occurs in (tk, tk+1]. We have

e(0, tk, tk+1) = E

[
e−
∫ tk+1
0 r(Xs) ds

] {
E
[
1{τ>tk}

]
− E

[
1{τ>tk+1}

]}

= B(0, tk+1)e
−
∫ tk+1
0 λ(s) ds


e
∫ kk+1
tk

λ(s) ds − 1




= B(0, tk+1)


e
∫ tk+1
tk

λ(s) ds − 1


 .

In the continuous limit,

e(0, t) = lim
∆t→0

e(0, t, t + ∆t)

∆t
= B(0, t)λ(t).



Stochastic dynamics of intensity

• Stochastic dynamics in the credit spreads are necessary for pric-
ing credit derivatives whose payoff is directly affected by volatil-
ity e.g. credit spread options, or payoff that is correlated with
the spread movements.

• Cox processes are Poisson processes with stochastic intensity

dλ(t) = µλ(t) dt + σλ(t) dZ(t).

Background driving processes

• All default-free processes and λ(t) are adapted to (Gt)t≥0, where
(Gt)t≥0 is the filtration generated by background driving process
X(t).

• The full filtration is obtained by combining (Gt)t≥0 and the fil-
tration (Ht)t≥0 generated by Nt.

Define Ft = Gt
∨
Ht, where Ht = σ{Ns : 0 ≤ s ≤ t}, Ft represents the

smallest σ-field containing both Gt and Ht and so it contains the
information on both X and the jump process.



Cox process (doubly stochastic Poisson process) construction of a
single jump time

Let Gt denote the filtration generated by a process X of state vari-
ables with values in Rn defined on (Ω,F , Q), where Q is a pricing
measure and

Gt = σ{Xs; 0 ≤ s ≤ t}.
Let E1 be the exponential random variable with mean one, which is
independent of (Gt)t≥0.

We construct a jump process Nt such that λ(Xt) is the Ft-intensity
of N , here λ is the intensity function. Define

Mt = Nt −
∫ t

0
λ(Xu)1{τ>u} du,

E[Mt|Fs] = Ms s < t.



Define the jump time by

τ = inf
{
t :
∫ t

0
λ(Xs) ds ≥ E1

}
.

Motivation

First, recall P [E1 ≤ x] = 1 − e−x. Now, consider

E[1{τ>T}|GT ] = Q[τ > T |GT ]

= Q

[∫ T

0
λ(Xs) ds < E1|GT

]
,

and as GT is known, so is
∫ T

0
λ(Xs) ds. Further, E1 is independent

of GT so that

Q

[∫ T

0
λ(Xs) ds < E1|GT

]
= exp

(
−
∫ T

0
λ(Xs) ds

)
.



Pricing of risky bond at time 0, assuming zero recovery

Assume that the default time τ of the issuing firm has an intensity
λ(Xt). Also, there is a short-rate process r(Xs) such that the riskfree
discount bond price

B(0, t) = E

[
exp

(
−
∫ t

0
r(Xs) ds

)]
.

Assuming zero recovery, consider the price of a risky bond

B(0, t) = E

[
exp

(
−
∫ t

0
r(Xs) ds

)
1{τ>t}

]

= E
[
E
[
exp

(
−
∫ t

0
r(Xs) ds

)
1{τ>t}|Gt

]]

= E

[
exp

(
−
∫ t

0
r(Xs) ds

)
E
[
1{τ>t}|Gt

]]

since exp
(
−
∫ t

0
r(Xs) ds

)
∈ Gt where Gt = σ{Xs; 0 ≤ s ≤ t}. Further-

more,

B(0, t) = E
[
exp

(
−
∫ t

0
r(Xs) ds

)
exp

(
−
∫ t

0
λ(Xs) ds

)]

= E

[
exp

(
−
∫ t

0
(r + λ)(Xs) ds

)]
.



The short rate has been replaced by the intensity-adjusted short
rate (r + λ)(Xs). It can be extended to cover a contingent claim
with an actual payment of f(Xt)1{τ>t}.

Remarks

1. If the intensity λ(t) of the process is a deterministic function
of time, then the future path of the intensity is given by the
forward hazard rates, that is,

λ(t) = h(0, t).

2. If the short-rate process r(Xs) is independent of the arrival of
default, then

B(0, t) = E

[
exp

(
−
∫ t

0
r(Xs) ds

)]
E
[
1{τ>t}

]

= B(0, t)e−
∫ t
0 λ(Xs) ds.



Dynamic survival probabilities

We quote the following result without proof:

1{τ>t}E[Z|Ft] =1{τ>t}
E[Z1{τ>t}|Gt]

E[1{τ>t}|Gt]

,

replacing the total history F with the history of the state variable process.

Note that

Q[τ > T |Ft] =1{τ>t}E

[
1{τ>T}|Ft

]
=1{τ>t}

E

[
1{τ>T}|Gt

]

E

[
1{τ>t}|Gt

] .

Furthermore,

E

[
1{τ>T}|Gt

]
= E

[
E

[
1{τ>T}|GT

]
|Gt

]

= E

[
exp

(
−
∫ T

0

λ(Xs) ds

)
|Gt

]

= exp

(
−
∫ t

0

λ(Xs) ds

)
E

[
exp

(
−
∫ T

t

λ(Xs) ds

)
|Gt

]

hence

Q[τ > T |Ft] =1{τ>t}E

[
exp

(
−
∫ T

t

λ(Xs) ds

)
|Gt

]
.

If we let Nt =1{τ≤t}, then E[1 − Nt|Fs] = Q[τ > t|Fs] and so

E[Nt − Ns|Fs] =1{τ>s}

{
1− E

[
exp

(
−
∫ t

s

λ(Xu) du|Gs

)]}
.



Martingale property

We would like to show the martingale property of

Mt = Nt −
∫ t

0
λu1{τ>u} du,

that is, E[Mt − Ms|Fs] = 0. We consider

E

[∫ t

0
λu1{τ>u} du −

∫ s

0
λu1{τ>u} du|Fs

]
= E

[∫ t

s
λu1{τ>u} du|Fs

]
.

Noting that

1{τ>s}

∫ t

s
λu1{τ>u} du =

∫ t

s
λu1{τ>u} du

and

E

[∫ t

s
λu1{τ>u} du|Fs

]
= 1{τ>s}

E
[∫ t

s λu1{τ>u} du|Gs

]

E
[
1{τ>s}|Gs

] . (1)

Furthermore,

E

[∫ t

s
λu1{τ>u} du|Gs

]
=

∫ t

s
E
[
λu1{τ>u}|Gs

]
du

=
∫ t

s
E
[
E
[
λu1{τ>u}|Gu

]]
|Gs du



=
∫ t

s
E

[
λu exp

(
−
∫ u

0
λv dv

)
|Gs

]
du

= E

[∫ t

s
λu exp

(
−
∫ u

0
λv dv

)
du|Gs

]

= E

[∫ t

s
−

∂

∂u
exp

(
−
∫ u

0
λv dv

)
du|Gs

]

= E

[
exp

(
−
∫ s

0
λv dv

)
− exp

(
−
∫ t

0
λu du

)
|Gs

]
.

Lastly, we obtain the RHS of Eq. (1) as

1{τ>s}
E
[
exp (−

∫ s
0 λv dv) − exp

(
−
∫ t
0 λv dv

)
|Gs

]

exp (−
∫ s
0 λv dv)

= 1{τ>s}

{
1 − E

[
exp

(
−
∫ t

s
λv dv

)
|Gs

]}
= E[Nt − Ns|Fs]

and hence the martingale result.



Interacting intensities

Consider two firms A and B, and define τ i as the default time of
issuer i and let Ni

t = 1{τ i≤t}. Assume that the pre-default intensities

of A and B are

λA
t = a1 + a21{τB≤t}

λB
t = b1 + b21{τA≤t},

where a1, a2, b1 and b2 are all different. If a2 = b2 = 0, we are back
to the case where the default times are independent exponential
distributions.

Markov chain approach

Four-state Markov chain in continuous time whose state space is

{(N, N), (D, N), (N, D), (D, D)}.
The generator of the Markov process is

Λ =




−(a1 + b1) a1 b1 0
0 −(b1 + b2) 0 b1 + b2
0 0 −(a1 + a2) a1 + a2
0 0 0 0


 .

Note that (D, D) is an absorbing state so that the entries in the last
row is zero.



Since Λ is an upper triangular matrix, so its eigenvalues are just its diagonal
elements. Performing the spectral decomposition of Λ, we obtain

Λ = BDB−1

where

B =




1 a1

a1−b2

b1

b1−a2
1

0 1 0 1
0 0 1 1
0 0 0 1


 , D =




−(a1 + b1) 0 0 0
0 −(b1 + b2) 0 0
0 0 −(a1 + b2) 0
0 0 0 0


 ,

and

B−1 =




1 − a1

b2−a2

b1

a2−b1
1 + b1

b1−a2
+ a1

a1−b2

0 1 0 −1
0 0 1 −1
0 0 0 1


 .

The transition probability matrix

P (t) = BeDtB−1

so that

P (t) = B




e−(a1+b1)t 0 0 0
0 e−(b1+b2)t 0 0
0 0 e−(a1+a2)t 0
0 0 0 1


B−1.



Q[τA ≤ t] = P12(t) + P14(t)

=
a2 − a2e−(a1+b1)t + b1

[
e−(a1+a2)t − 1

]

a2 − b1
.

Note that Q[τA ≤ t] does not depend on b2; b2 only takes effect
after the default of A and from that time it controls the waiting
time for B to follow A in default. Changing b2 only serves to move
probability mass between P12(t) and P14(t) but will not alter the
sum.


