3.1 Mathematical preliminaries for the construction of inten-
sity processes

e Default occurs without warning at an exogenous default rate or
intensity. The dynamics of the intensity are specified under the
pricing measure.

e Instead of asking why the firm defaults, the intensity model is
calibrated from market prices, typically bond prices.

e Cox process construction of a single jump time 7t

A process X of state variables in R™ is defined on a probability
space (2, F,Q). Let A : R™ — R be a non-negative measurable
function. Construct a jump process Ny with the property that

t
Ny — /O AX) Loy du
IS @ martingale. The jump time 7 is defined by
t
r=inf {t : /O A(Xy) du > El}.
e Model the random time of arrival of default as a stopping time.

In simple words, stopping times are random times that do not
require knowledge about the future.



Stopping times

Let 7 denote the random time of default, 7 € R4 U{oco}. Here, co is

included in order to model events that may never occur. A stopping
time with respect to F is a random variable such that

{r<t}eF forall t>0.

That is, at the time of event, it is known that this event has occurred
or not.

Example of a non-stopping random time

Consider a Brownian motion W (t) over a fixed time interval [0, T],
and let 7z be the random time at which W (¢) attains its maximum.
We need to observe the whole path of W over (0,T] in order to find
the value taken on by mmaqz.

Indicator process

Define
N-(t) =1
which jumps from O to 1 at the stopping time.



Hazard rate function

Let 7 be a stopping time, F(T) = P[r < T] be its distribution
function. Assume F(T) < 1 for all T, f(T) = F/'(T) is the density
function. The hazard rate function h of 7 is defined by

O ICD

h(1T) = = , where S(T') is the survival function.
(1) 1 — F(T) S(T) (7)
Now,
T d
wry =20 4 gy
S(T) dT
so that

T T
S(T) = exp <_ /O h(w) du> and  £(T) = h(T) exp <— /O h(w) du>.



Consider
Plr<T+ AT, 7 > T]
Plr > T]
[1 - S(r+ AT)] — [1 - S(T)]
S(T)

= 1—exp <— /TT—'_ATh(u) du)

Plr <T + AT|r > T]

soO that

1
im —P|r <T+ AT T = h(T).
im —<_Plr < T+ AT}r > T] = h(T)

The hazard rate h(T) is the local arrival probability of the stopping
time per unit time.

h(T)AT =~ conditional probability of a default in a small interval
after T' given survival up to and including T..

It is a conditional default probability which is already known at time
0. The only reason that this conditional default probability changes
with t is the passing of time itself.



Suppose we have access to information at time ¢t which is not avail-

able at time 0, we would like to condition on a more general infor-
mation set.

Conditional hazard rate

At later points in time ¢t > 0 with 7 > ¢,

@, 7)
ht,T) = 1—F@t,T)

where F(t,T) = P[r < T|F:] = conditional distribution of 7 given the

information at time t.
We obtain

FO.T) =1 — e Je hltw)du



Point processes

A point process is a collection of points in time

{Tiaie N} — {7-177-27"'}'
These points in time have been indexed in an ascending order (7; <
TH_l). They are all stopping times, distinctive from each other.
Also, there is only a finite number of such points over any finite
time horizon.

e Useful to analyze timing risk of several events, for example,
rating transitions, multiple defaults, etc.

e Counting process

N =3 1<

A sample path of N(¢t) would be a step function that starts at
zero and increases by one at each 7;. Now, N(t) is a stochastic

Process.



Intensity function

e Over small time steps, the local implied default probability is
proportional to the length of the time step. The proportionality
factor is the short-term credit spread under zero recovery.

e [ he local probability of a jump of a Poisson process over a small
time step is approximately proportional to the length of this time
interval.

We would like to build models in which we can condition on a more
general information set F;. In loose sense

Plr<t+atF]~ 1 a®AL,

where F; contains information on the survival up to time ¢t and X\ is
a stochastic process which is adapted to the filtration F.



Model for default arrival risk

e A counting process is a non-decreasing, integer-valued process
N(t) with N(0) = 0.

Let N(t) be a counting process with (possibly stochastic) inten-
sity A(t). The time of default 7 is the time of the first jump of

N, that is,
T =inf{t € R+]N(t) > 0}.
The survival probability is given by
P(0,T) = P[N(T) = 0|Fp]-
Poisson process
A Poisson process with intensity A > 0 is a non-decreasing, integer-
valued process with initial value N(0) = 0 whose increments are

independent and satisfy

P[N(T) — N(t) = n] = i'(T — )"\ AT forall 0<t<T.
n:



Intuitive construction of a Poisson process

We look at the times of the jumps 71,7, --- and the probability of
a jump in the next instant.

e [ he Poisson process has no memory

The probability of n jumps in [t,t 4+ s] is independent of N (%)
and the history of N before t.

e [WO or more jumps at exactly the same time have probability
ZEero.

PIN(t+At)—N(t) = 1] = AAt (in the continuous limit, E[dN] = A\ dt)
or
PI[N(t+ At) — N(t) = 0] =1 — M\At.

Jumps in disjoint time intervals happen independently of each other.
PI[N(t 4+ 2At) — N(t) = 0]

PIN(t+ At) — N(t) = 0]P[N(t + 2At) — N(t + At) = 0]

(1 — AA)?.



T —1

n

Subdivide the interval [¢,T] into n subintervals of length At =

1 P[N(T) = N(#)] = (1 — AAD" = [1 _ %)\(T _ t)]n

— e M7 as p — .

2 P[N(T) = N(t) =1] = n A1 —2A)" !
_ nAT—tll_)\(T—t)] /[ A(T_t)]

MNT —t) A(T — )"
1 _ AT=1) ]

n
— MT — e 2Tt as n — co.

In general,

(T - t)nAne—)\(T—t).

n!
The inter-arrival times of a Poisson process Tn41 — Tn Are exponen-
tially distributed with density

P[(Tp41 — ™) € dt] = e M dt.

P[N(T) — N(t) = n] =



Large portfolio approximation

We have a large portfolio of defaultable securities that are all driven
by independent Poisson processes. T hen we can assume that Pois-
son events happen almost continuously at a rate of Adt to the whole
portfolio.

Spreads with Poisson processes
Survival probability: P(0,T) = e~ AT,

Assuming independence of defaults and interest rate fluctuations,
1 P(t,T)
At |P(t, T + At)

1

H(t, T, T + At)

SO that
h(t,T) = .

Note that neither default hazard rates H nor h depend on the current
time t or the future time 7. In this case, the term structure of

spreads will be flat.



Inhomogeneous Poisson processes

Starting from the local jump probability
PIN(t+ At) — N(t) = 1] = A\(t) At,

we have
PI[N(T) — N(t) = 0] = ﬁ [1 — A(t 4+ iAt) At]
i=1
so that
In PIN(T) — N(t) =0] = Zn: IN[1 — \(t + 1At) At]
i=1
~ zn: At + iAt) At
z=1T
. —/t As)ds as At — 0.
Hence,

PIN(T) = N(t) = 0] — e i X®)ds a5 aAr 0.



In general,

PIN(T) — N(t) = n] = ~ </tT)\(s) ds)ne_ Ji Ms)ds

n!

For the implied hazard rate over [T,T + At] as seen at time ¢

HLT. T + At) = Ait 7 2 N (s) ds — 1] and h(t.T) = \(T)

so that default hazard rates do depend on T'.

Assuming r(t) to be independent of the arrival of default
__ T
B(0,T) = E [@_ Jo T(s) ds] E [l{N(T):O}}

— B(0,T)e Jo A®)ds.

Using B(0,T)e¥? = B(0,T), the continuously compounded vyield
spread Y of the defaultable bond over the equivalent default-free
bond is

1 T
Y:?/O A(s) ds,

which is not stochastic.



Under the same assumption of independence, we find the value of
a contingent claim, denoted by e(0, tg, tx+1), which pays $1 at ¢34

if and only if a default occurs in (tg,tp41]. We have
k41
e(0,tg, th1) = E [6 Jo T(XS)dS] B L] = B[ Lsnanl)

tk—|—1 kk—|—1
— B(Oatk—l-l)e_ 0 A(s) ds |:eftk: A(s)ds 1]

e t

— F(Oa tk—l—l)

t:+1 A(s) ds B 1] |

In the continuous limit,

c(0.4) = lim e(0,t,t + At)

= B(0,t)\(¢).
At—0 At (0,)A@)




Stochastic dynamics of intensity

e Stochastic dynamics in the credit spreads are necessary for pric-
ing credit derivatives whose payoff is directly affected by volatil-
ity e.g. credit spread options, or payoff that is correlated with
the spread movements.

e Cox processes are Poisson processes with stochastic intensity
dA(t) = pu)(t) dt + o) (t) dZ(t).

Background driving processes

e All default-free processes and A(t) are adapted to (G¢)>q, Where
(G¢)¢>0 is the filtration generated by background driving process
X(t).

e The full filtration is obtained by combining (G¢);>0 and the fil-
tration (H:);>0 generated by N. a

Define 7 = G\ H¢, Wwhere Hy = o{Ns : 0 < s < t}, F; represents the
smallest o-field containing both G; and 'H; and so it contains the
information on both X and the jump process.



Cox process (doubly stochastic Poisson process) construction of a
single jump time

Let Gy denote the filtration generated by a process X of state vari-
ables with values in R"™ defined on (£2,F,Q), where @ is a pricing
measure and

Gy =o0{Xs;0<s <t}

Let E/1 be the exponential random variable with mean one, which is
independent of (G)¢>o.

We construct a jump process N; such that A(X;) is the Fi-intensity
of N, here M is the intensity function. Define

t
M; = Ny — /O )\(Xu)]-{7->u} du,
E[Mt’fs] :Ms s < t.



Define the jump time by

r= inf{t : /Ot)\(XS)dSZEl}.

Motivation
First, recall P[E1 <x] =1 —e"*. Now, consider

E(l.r|Gr] = Qlr > T|Gyl]

T
= Q [/O M(Xs) ds < Eq|Gr

Y

T
and as G is known, so is /o A(Xs)ds. Further, Eq is independent

of G so that
T
= exp _/o AMXg)ds | .

T
Q [/O M(Xs) ds < Eq|Gr



Pricing of risky bond at time O, assuming zero recovery

Assume that the default time 7 of the issuing firm has an intensity
A(X:). Also, there is a short-rate process r(Xs) such that the riskfree
discount bond price

B(O.t) = E [exp (— /Otr(XS) ds)] |

Assuming zero recovery, consider the price of a risky bond
E :exp (— /Otr(Xs)dS) 1{T>t}]

_ E [exp (_ /O tr(XS)ds) 1 {T>t}]Gt”
_ :exp (_ /Otr(XS)ds) B [1{T>t}]GtH

t
since exp (_/o r(Xs) ds) € Gt where Gy = 0{Xs;0 < s <t}. Further-

more,
:exp (— /Otr(XS) ds) exp (— /Ot A Xs) ds)]
i t
= Blexp (—/O(r—l— A)(Xs)ds)] |

B(0,1)

[
&

B(0,1)




The short rate has been replaced by the intensity-adjusted short
rate (r + V) (Xs). It can be extended to cover a contingent claim

with an actual payment of f(Xt)].{T>t}.

Remarks

1. If the intensity \(¢t) of the process is a deterministic function
of time, then the future path of the intensity is given by the
forward hazard rates, that is,

A(t) = h(0, ).

2. If the short-rate process r(Xs) is independent of the arrival of

default, then
E [exp (— /Otr(Xs) dS)] 1 [1{T>t}}

— B(0,t)e Jor(Xs)ds,

B(0,1)



Dynamic survival probabilities

We quote the following result without proof:

ezl 6
{T>t}
el c

replacing the total history F with the history of the state variable process.
Note that

1 (>0 B[Z|F] = 1

Y

E [1 {T>T}|Gt}
E [1{T>t}|at} |

Qlr > T|F] = 1{T>t}E |:1{T>T}|Fti| = 1{T>t}

Furthermore,

E [1{T>T}|Gt} = E E |:1{T>T}|GT} |Gt}

T
= F |exp (—/ A(Xs)ds) |Gt]
i t ° T
= exp (—/ A Xs) ds) E [exp (—/ A Xs) ds) |Gt]
0 t

T
Q[T > T|Ft] == 1{T>t}E [eXD (_/ >\(X5) dS) |Gt] .

If we let Ny = l{Tgt}, then E[1 — N|Fs] = Q[r > t|Fs] and so

E[N; — N|Fs] = l{m} {1 —E [exp (—/ A Xw) du|Gs)] } .

hence



Martingale property
We would like to show the martingale property of
"l
Mt — Nt _/O )\u {7‘>u} du,
that is, E[M; — Ms|Fs] = 0. We consider

E [/Ot Mol oy du— /OS PV du]]-"sl —E [/: PO du]]-"sl .
Noting that

1.4 /8 t Moy du= /8 t Ml sy du
and
E [f; )‘Ul{7'>u} du’GS}
1G]

E [/: PV P du]]-"sl =1, (1)

Furthermore,

E [ /8 "l (rou) du]G8] Ml 00y]Gs] du

|
T
=

|
T
=



t
— / E [Auexp (— /Ou)\vdv) 1G8] du
7 t U
— B / ——exp (—/Ou)\vdv) du]G3]
t
= FE |exp (— /OSAUdv) — exp (_/o Audu) ]G3] :

Lastly, we obtain the RHS of Eq. (1) as
E [exp (— J§ Avdv) —exp (— J& v dv) ]GS}
exp (— J§ v dv)
¢

and hence the martingale result.

1{7‘>s}



Interacting intensities

Consider two firms A and B, and define 7% as the default time of
issuer ¢ and let N} = 1{7i<t}- Assume that the pre-default intensities

of A and B are
)\24 — a1 +a21{TB§t}
>‘tB = b1+ b21{7-A§t}7

where a1,ao,b1 and by are all different. If a» = b, = 0, we are back
to the case where the default times are independent exponential
distributions.

Markov chain approach

Four-state Markov chain in continuous time whose state space is
{(N,N),(D,N),(N,D),(D,D)}.
The generator of the Markov process is

—(a1 + b1) al b1 0
A — 0 —(b1 + b2) 0 b1 + b2
0 0 —(a1 +a2) a1+ as

0] O O O

Note that (D, D) is an absorbing state so that the entries in the last
row Is zero.



Since A is an upper triangular matrix, so its eigenvalues are just its diagonal
elements. Performing the spectral decomposition of A, we obtain

AN = BDB™ !
where
1 alcsz bllila2 1 —(a1 + b1) o) 0 0
B = 0 1 0 1 D = 0 — (b1 + b2) 0 0
O O 1 1 ’ O O _(al + b2) O ’
0] 0 0] 1 0] 0 0 0
and
ai b1 b, a,
é _bi_@ a26b1 1+ bl—a21+ a1 —bs
_]_ _ _
B=10 o 1 _1
0 0 0 1

The transition probability matrix
P(t) = BeP'B™!

so that
e~ (atbo)t 0 0 0
. 0 e~ (bitb2)t 0 0 1
P(t) =B 0 0 e—(a1+a2)t 0 B
0 0 0 1



P12(t) + P14(t)
ay — aze_(a’l—i_bl)t —l— b]. |:e_(a’1+a'2)t — 1

QI < 1]

an — by

Note that Q[r4 < t] does not depend on by; by only takes effect
after the default of A and from that time it controls the waiting
time for B to follow A in default. Changing b> only serves to move
probability mass between Pi5(t) and Pi4(t) but will not alter the
sum.



