3.2 Pricing of defaultable claims using the intensity approach

To price any defaultable claim, the recovery mechanism must be
modeled.

e recovery of Treasury

o(7) = aP(7),P(7) is the price of Treasury at 7,0 < a< 1
e multiple defaults
In the course of reorganization, the claim holders lose a fraction
q of the face value of the claim, but the claim continues to live.
e recovery of market value (fractional recovery)

(1) = (1 —q)P(7-), P(r_) is the value of the defaultable claim

right before .

recovery of par
* Y P o(7) = 7p,p is the par

® ZEro recovery

¢(1) =0



Marked point process

To incorporate magnitude risk into the point process framework, we
need to attach a “marker” to each event ;. Thus we have a double

sequence
{(Ti,Yi),’I; S N}

of points in time 7; with marker Y;. For default risk modeling, Y;

may be a recovery rate or a new rating class.



Assumption 1

Defaults are triggered by the jumps of a Poisson process N(t) with
(possibly stochastic) intensity A(t). The Poisson arrivals are inde-
pendent of all other modeling variables. Stochastic recovery param-
eters are markers to the Poisson process.

Assumption 2

Let p(t) be the price process of a defaultable asset, given that no
default has occurred until time ¢. If a default occurs at time 7, the
asset has a recovery of ¢(7) units of account at 7. Here, ¢(7) may
be stochastic and it is known at the time of default (F--measurable)
but not necessarily before default.

Defaultable coupon bond

N
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Recovery of market value
Consider the price process of a defaultable claim V promising a
payoff f(X7) at T. The recovery upon default is

d(r) =06V(r~) for +<T

where § is a constant, and 6 € [0,1). Given that there has not been
a default at time ¢, we would like to show that

V(t) = E; [exp <— /tT["“ + (1 =) A](X5s) dS) f(XT)



Discrete-time argument

In the discrete-time setting

e )\, is the probability of defaulting in (s,s + 1] given survival up
to time s

e 75 is the (continuously compounded) rate between s and s+ 1

e ) is the fractional recovery received at time s+ 1 in the event
of a default in (s,s+ 1].

V(t) e TTEJOV(E+ 1]+ (1 —Np)e TE[V((t+1)] for t<T
e BV (t 4 1)]

where e "t = A\e 7 Tt6 + (1 — A\p)e 2,



Iterating the expression, we obtain

V(t) = Ble” Pty (¢ 4 2))
and continuing on

V(t) = E

T—t-1
exp ( > Rt—l—i) f(XT)] :
i=0

Next, we move from a period of unit length to length of At. EXx-
panding e At in powers of At

e Al oy 1 — RAE =~ MOAE(L — 1 AL) 4+ (1 — MAL) (1 — rp AL)
so that

Rt ~ Tt —+ (1 — (5))\75.



Repeated fractional recovery of terminal payoff

If there is a default, the promised payment is reduced from f(Xr) to 6f(Xr).

00 T
Vi = Z E [exp (—/ T(XS) ds) 5kf(XT)1{NT=k:}] .
k=0 t

Conditioning on the evolution of X up to T

Z E [5kf(XT) 1{NT=k}|(Xt)OStST}
k=0

— i (ft /\(X)ds) exp (—/tTA(XS)dS) f(X7)

= f(X7p)exp (— /tTA(XS) ds) exp (5 /tTA(XS) ds)

= f(X7)exp (— /tT[(l — )A(X5)] ds)

so that
V(t) = B [exp (— / 4 (1= V(X ds) f(XT>] |



Tractable models of the spot intensity

e Stochastic intensity allows us to capture the risk of a change in
the credit quality.

e Most empirical studies find a negative correlation of around 20%
between default intensity and default-free interest rate.

e Analytic tractability and easy calibration of the model
— Gaussian dynamics could mean negative default intensity.

Two-factor Gaussian model
dr(t) [k(t) — ar]dt + o(t) dZ(t)
dX\(t) [k(t) —a\] dt +&(t) dZ(t)

with dZ dZ = pdt. For default-free bonds, the discount bond price
IS

dB(t,T t
(1) _ r(t) dt — o(t) 11— TD] az (1)
B(t,T) a
while the forward rate is
o ()2

df (t,T) =

e—a(T—1) [1 — e_a(T_t)} dt + a(t)e_a(T_t) dZ(t).

a



Recall that
I [e_ [T r(s) ds!ft] — JA®T)—r(t)B(t,T)

where

~ 1
B(t,T;a) == |1 —e 2]
a
~ 1 /7T 5 - 5 T
A, T;a,k,0) = 5/ c<(s)B(t,s;a)*ds —/ B(t,s;a)k(s) ds.
t t
Recall

B(t,T)=E [e_ LT () +As)] dSI — B(t, T)E" |e~ LEACs) ds] .

The dynamics of default intensity under the T-forward measure is

dA(t) = [k(t) —a)\] dt +5(t) dZ(¢)
where
k(t) = k(t) — po(t)o(t)B(t,T).



To price the defaultable claim of paying $1 at T if a default happens
at T,

e(t.T) = E | A(T)e i [r() A& ds]|
We use B(t,T) as the numeraire so that

e(t, T) = B(t, T)EL[\(T)]
and the dynamics under the new measure
d\(t) = [k(t) —a(QE(t)pE(t,T;a) —72(t)B(t,T;a) —a(t)\(t)] dt
+ 7(t)dzP (@).



The evaluation of the expectation gives

_ _ T _
e(t,T) = B(t,T) [)\(t)e_a(T 1) 4 / e=(T=)F/(5) ds
t
where
Kt =k@) — pe(t)o(t)B(t, T;a) — 52 (t)B(t,T;a).
Default digital put with maturity T

Payoff of $1 at default, if default occurs before T. Its price is

T T t ¢
— — [ A(s)ds _— [or(s) ds
/O e(0, 1) dt /O E [)\(t)e 0 e Jo dt.



Partial differential equation formulation

Payoff structure

e Final payoff: V(T) = F(r(T),\(T))

e Continuous payoffs: At all times t < T, the security pays at the
rate of f(¢,r,\), only paid before default,
t<r.

e Payoff at default: ¢(¢,r, A\, ), where w is the stochastic recovery

rate.

Let V =V (¢, r(t),A\(t)) be the price of the default-sensitive security,
t < 7. By Ito lemma,

oV oV o2 82\/ oV 82\/ 02V
dV = _dt+ — d L - d>\ dt
ot BT 5 A + > a2 U5 +2 2 oo Wt porongas

—|—/O [g(r, r, A\ ) — V(¢ A)] m(dta dm)

where m(dt,drn) is the indicator measure. The corresponding com-
pensator measure is K(dm)Adt and K(dn) is the conditional distri-
bution of the recovery rate « at default.

dt



The final integral represents the payoff of the credit derivative at
default. At a default with recovery =, the increment in V will be

g(ra T? >‘7 7.‘-*) T V(ta r, >‘)

The expected rate of return from holding any security under the

martingale measure ( must be the default-free short-term interest
rate

ER[dV + fdt] = rV dt.
Suppose under Q,dr = prdt + ordZyr and d\ = p) dt + o) dZ), then

oV oV 029V oV 03 9%V
Vdt = dt —dt —dt ——d —dt ——dt
" Jdt+ t Thrgrdit gz dtt gyt S
—|—p07~0>\8 4 dt—l—/ [g(t,r, N\, ™) — V(t,r, )] K(dr)\dt.
O\OT 0

Note that the jump measure is replaced by the compensator mea-
sure. We define the locally expected default payoff

1
g°(t,r, \) :/O g(t,r, \,m)K(dr).



The pricing pde becomes

oV oV 020°%V oV 020%V A%
ot THer T g2 TGy 5 > ax2 TP gy
—VA+r)+g° A+ f=0.

o o202 o o2 92 02
Let £ = r A
b T a2 TR T 5 a2 T P79 555,

8—V+£V (r+ MV =—g°A—f.

sO that

Remarks

-t

Modified payout stream = f 4 g°\
Discount factor is modified from r to r 4+ .

3. We need to append boundary conditions at r = O+,r — 00, A =
0t and A — oo.

N



Valuation of basket credit swap

Masaaki Kijima, “Valuation of a credit swap of the basket type,”
Review of Derivatives Research, vol. 4 p.81-97 (2000).

e Derive the joint survival probability of occurrence time of credit
events in terms of stochastic intensity processes under the as-
sumption of conditional independence.

Suppose that we are given an approximated discrete-time model
for the default processes h;(kAt), i =1,2,--- ,n,k=0,1,--- and
At is fixed. Now, h;(t) are generated with a certain correlation
structure until time ¢t. Under the assumption of conditional inde-
pendence, given the realization of (h1(t), - -, hn(t)), the default
event {r; <t -+ At} occurs independently.



Conditional independence

Defaults are determined independently according to the probability
Plt<m <t+ At] =h;(t)At, i=1,---,n
while h;(t) are generated non-independently.

Model setup

Let h;(t),t > 0, be the default intensity process of defaultable dis-
count bond ¢, and assume that

[R] h;(t) is continuous, bounded in any finite interval, and satisfies
h;(t) >0 and /OOO h;(t) dt = co almost surely.
Cumulative default intensity is defined by
H(t,T) = /tT hi(uw) du,t <T.

H;(t,T) is non-decreasing in T', continuous and bounded in any finite
interval almost surely.



Since e~ HitT) g non-increasing in 7' and Tlim e~ Hi(tT) — 0, there
— 00
exists some random variable 7; such that

Prlr;, > t;] = e_Hi(t’ti), t<t;<T
given the realization Fp. In other words, we can find a random
variable 7; whose distribution function equals 1 — e~ Hi(t:ti),

Suppose h;(t) follows

dh;(t) [¢i(t) — a;h;(t)] dt + o;dZ;(t), 0 <t <Tj,
dz;(t) de (t) Pij dt

so that the default intensity processes h;(t) are not independent.

For conditional independence, we mean that given the realization
Fr where T" > maxt;, we have
7

mn
Priry > t1, 7 > to, -+ ,mn > tp] = [[ Prln >t], forany t <t; <T.
i=1



Since Pp[r; > t;] = e Hitti) ¢ < ¢, < T, we have

exp ( Zn: Hi(t,ti))] .
1=1

Note that conditional independence does not imply the usual inde-
pendence as given by

Pty > t1, 70 > to, -, > tn] = By

mn
Piry > t1,m70 > to,- -+ ,ma > tp] = || Pilr > ]
i=1
since

Ey

exp ( Zn: H@(t,ti))] 7 l_n[ Py > t;].
i=1 —1

1=

Default-free short rate process, hg(t)
T he time-t price of the default-free discount bond maturing at time
T
vo(t, T) = Eyfe 0D = pilrg > T], t<T
Here, 7o is the pseudo default time (Killing time).



Survival probability

St(to,t1, -+ ,tn) = Pilro > to, 71 > t1, - Tn > tn].
Under the Gaussian model,

. t S .
hi(s) = hi(®e 0 4 7 g (u)em it g
t
S
+ 07;/ e~ ai(s—u) dZ;(u), t<s<T;.
t
As a defect, h;(t) may become negative with positive probability.

The cumulative default intensities are
. T
H(t,T) = hi() Bi(t,T) + A6, T) + 07 [ Bi(s,T) dZ(s),
tSTafL:Oala y Ty
1 — e—ai(T—t) N T 1 — e—ai(T—s)
Bi(t,T) = and  A(t,T) = / & () ds.
¢

a; aj

Hence, H;(t,T) are normally distributed.



The mean is given by

E[H;(t,T)] = M;(t,T) = h;(t)B;(t,T) + A;(t, T)

and covariance between H;(t,u) and H;(t,v) is

min (u,v)
Cz](tjau, 'U) = O'z‘O'j/ BZ(S,’U/)B](S,’U)pZ] ds
t
0;0; e_ai(u_s) e—aJ(U—S) e—ai(u—s)—aj(v—s) s=min(u,v)
aid; @i aj Qa; + a; s=t

Lastly, the survival probability is given by

Si(to,t1, -+ ,tn) = exp( Z M;(t, t;) + = Z Z Ci(t; tz,tk)) .

z—Ok 0



Basket credit default swap

Let v;(¢,T;) denote the time-t price of the i*" discount bond maturing

at time T;, 7; be the default time of discount bond 7,7 = 1r<ni£1 T; be
<t1\n

the first-to-default time. Assume that the discount bonds are alive
at time ¢, 7; > t, and that 7} are longer than the maturity T of the
swap contract.

Contingent payment upon first-to-default

Y(7) =v(7,T;) — (1), ifTt=7,<T,

¢;(t) is the market value of discount bond 7 in the event of default
at time t. Using the recovery of market value assumption

¢i(t) = [1 — L;(D)]v;i (¢, T3), t<Tj,
L;(t) is the (random) fractional loss of market value. Hence,
Y(7) = L;(7)v;(7,T;), ifr=r<T.



First-to-default feature

Let U denote the credit swap premium paid at ¢;,7 = 1,2,--- ,m,
where

t<t1<to<- - <tm=T.
Money market account of the time interval [t, T]

T
B(t,T) = exp </t ho(u) du> i< T

Present value of the annuity paid:
m k
U 1
Rann:Et[y: (:)1t<<t
IJ%:l j=1 B(t’tj) { kST k+1}J

where F; is the time-t conditional expectation operator under the
risk neutral probability measure.




Present value of contingent payment upon first default:

n 1
Reon = Z; Ey [B(t, T)Li(T)'Ui(Ta T;) l{T:TiST}

To find the fair value of the premium, we set Rgnn = Rcon, and
obtain

n L;(m)v;(7,1;
7 — Si1 B (B)(t,g') )1{T=T¢§T}}

1{7‘>tj}]

m
i=1 5t | By

Based on conditional independence assumption

Ran = US" B[ M0y [1, ]|
1=1

exp ( zn: Hi(t,tj))
1=0

m
=U > Si(tjtj,---,t5).
=~

m
— UZ Et
J=1 J



Present value of contingent payment

Suppose bondholder always receives $1 at T; if no default but §;
dollars at T; if default occurs before T;, then

vi(t, T;) = 600, T;) + (1 — ;) By [e HoGTD=HiTD) on {7, > 13,
Since 7; are conditionally independent, given F7, we have

Prls<m<s4+ds7;>s forall jzil

n
= h;(s)exp ( Z Hi(t,s)) ds for t<s<T.
i=1

Hence
n - AT
Reon, = ZEt / e_HO(t’S)Li(s)vi(s,ﬂ)PT[s <1 <s+ds,t;>s forall j#i]
=1 L/t
n C T n
= Y & / hi(s)exp (=" Hilt,s) | Li(s)vi(s, To) ds
i=1 R i=0

I i
= Z&-/ E; |hi(s)L;(s) exp <—Ho(t,TZ-) _ZHi(t’S)” ds
=1 " i=1

n T
+ > (1-4) / E; {hi(s)Li(s) exp (-Ho(t,m —Hi(t,T) — Y Ht, s))] ds
i=1 t

k#£0,i




Under the Gaussian model

ao

st term = 25 [ L<s>{mi<s>pio‘”"oJio<s,T@-> szk CTin s s>}

St(T7,787 ’ 78) ds

n T
2nd term = 36 [* Li(s) {mils) = 3 puTKji(s, o)
=1

ke{0,i} Ak

- Z pzk zk(s 3)}kz(3) ds

k#0,



where K;(s) = S¢(to,t1,--- ,tg) with tg = t; = T; and t; = s for
j#0,1,

mz(s) = hi(t)e—az'(s—t) _|_ /ts qbi(u)e_ai(s_u) du
_ai(s—u) e_a’i(s_u)_ak(tk—u)] SAtL

Jik(s,tE) = {e —

a; a; + aj

u=t

Remark

Given the default-free and defaultable bond prices, the parameter
function ¢;(t) can be determined by

2
¢ (t) = a;g;(0,t) + gj(o B+ 5 T (1 - em2u5ty

J
1 _ e—aot e—aot . e—(ao—l-aj)t
T POjO00; . +

100 =g (e )

j:1727'°'7n

Y

0 a;

where




