
3.3 Default correlation – binomial models

Desirable properties for a good model of portfolio credit risk mod-
elling

• Default dependence – produce default correlations of a realistic
magnitude.

• Estimation – number of parameters should be limited.
• Timing risk – producing “clusters” of defaults in time, several

defaults that occur close to each other
• Calibration (i) Individual term structures of default probabilities

(ii) Joint defaults and correlation information
• Implementation

Empirical evidence

There seems to be serial dependence in the default rates of sub-
sequent years. A year with high default rates is more likely to be
followed by another year with an above average default rate than
to be followed by a low default rate.



Some definitions

Consider two obligors A and B and a fixed time horizon T .

pA = prob of default of A before T
pB = prob of default of B before T

pAB = joint default probability that A and B default before T
pA|B = prob that A defaults before T , given that B has defaulted before T

pA|B =
pAB

pB
, pB|A =

pAB

pA
ρAB = linear correlation coefficient

=
pAB − pApB√

pA(1 − pA)pB(1 − pB)
.

Since default probabilities are very small, the correlation ρAB can
have a much larger effect on the joint risk of a position

pAB = pApB + ρAB

√
pA(1 − pA)pB(1 − pB)

pA|B = pA + ρAB

√
pA

pB
(1 − pA)(1 − pB) and

pB|A = pB + ρAB

√
pB

pA
(1 − pA)(1 − pB).



For N obligors, we have N(N−1)/2 correlations, N individual default
probabilities. Yet we have 2N possible joint default events. The
correlation matrix only gives the bivariate marginal distributions,
while the full distribution remains undetermined.

Price bounds for first-to-default (FtD) swaps

fee on CDS on
worst credit

≤ fee on FtD
swap

≤ portfolio of
CDSs on all
credits

sC ≤ sFtD ≤ sA + sB + sC

With low default probabilities and low default correlation

sFtD ≈ sA + sB + sC.

To see this, the probability of at least one default is

p = 1 − (1 − pA)(1 − pB)(1 − pC)
= pA + pB + pc − (pApB + pApC + pBpC) + pApBpC

so that

p / pA + pB + pC for small pA, pB and pC .



Basic mixed binomial model

Mixture distribution randomizes the default probability of the bino-
mial model to induce dependence, thus mimicking a situation where
a common background variable affects a collection of firms. The
default events of the firms are then conditionally independent given
the mixture variable.

Binomial distribution

Suppose X is binomially distributed (n, p), then

E[X] = np and var(X) = np(1 − p).

We randomize the default parameter p. Recall the following relation-
ships for random variables X and Y defined on the same probability
space

E[X] = E[E[X|Y ]] and var(X) = var(E[X|Y ]) + E[var(X|Y )].



Suppose we have a collection of n firms, Xi = Di(T ) is the default
indicator of firm i. Assume that p̃ is a random variable which is
independent of all the Xi. Assume that p̃ takes on values in [0,1].
Conditional on p̃, X1, · · · , Xn are independent and each has default
probability p̃.

p = E[p̃] =
∫ 1

0
pf(p) dp.

We have

E[Xi] = p and var(Xi) = p(1 − p)

and

cov(Xi, Xj) = E[p̃2] − p2, i 6= j.

(i) When p̃ is a constant, we have zero covariance.
(ii) By Jensen’s inequality, cov(Xi, Xj) ≥ 0.

(iii) Default event correlation

ρ(Xi, Xj) =
E[p̃2] − p2

p(1 − p)
.



Define Dn =
n∑

i=1

Xi, which is the total number of defaults; then

E[Dn] = np and var(Dn) = np(1 − p) + n(n − 1)(E[p̃2] − E[p̃]2)

(i) When p̃ = p, corresponding no randomness, var(Dn) = np(1−p),
like usual binomial distribution.

(ii) When p̃ = 1 with prob p and zero otherwise, then var(Dn) =
n2p(1 − p), corresponding to perfect correlation between all de-
fault events.

(iii) One can obtain any default correlation in [0,1]; correlation of
default events depends only on the first and second moments of
f . However, the distribution of Dn can be quite different.

(iv) var
(

Dn

n

)
=

p(1 − p)

n
+

n(n − 1)

n2
var(p̃) −→ var(p̃) as n → ∞, that

is, when considering the fractional loss for n large, the only
remaining variance is that of the distribution of p̃.



Large portfolio approximation

When n is large, the realized frequency of losses is close to the
realized value of p̃.

P

[
Dn

n
< θ

]
=
∫ 1

0
P

[
Dn

n
< θ

∣∣∣∣∣p̃ = p

]
f(p) dp.

Note that
Dn

n
→ p for n → ∞ when p̃ = p, since var

(
Dn

n

)
=

p(1 − p)

n
.

we have

P

[
Dn

n
< θ

∣∣∣∣∣p̃ = p

]
n → ∞−−−−→

{
0 if θ < p
1 if θ > p

.

Furthermore,

P

[
Dn

n
< θ

]
n → ∞−−−−→

∫ 1

0
1{θ>p}f(p) dp =

∫ θ

0
f(p) dp = F(θ).

Summary

Firms share the same default probability and are mutually indepen-
dent. The loss distribution is

P [Dn = k] = nCk

∫ 1

0
zk(1 − z)n−k dF(z), k ≤ n.

The above loss probability is considered as a mixture of binomial
probabilities with the mixing distribution given by F .



Choosing the mixing distribution using Merton’s model

Consider n firms whose asset values V i
t follow

dV i
t = rV i

t dt + σV i
t dBi

t

with

Bi
t = ρB̃0

t +

√
1 − ρ2B̃i

t.

The GBM driving V i can be decomposed into a common factor B̃0
t and a firm-

specific factor B̃i
t. Also, B̃0, B̃1, B̃2, · · · are independent standard Brownian mo-

tions. Also, the firms are identical in terms of drift rate and volatility.

Firm i defaults when

V i
0 exp

((
r −

σ2

2

)
T + σBi

T

)
< Di

or

lnV i
0 − lnDi +

(
r −

σ2

2

)
T + σ

(
ρB̃0

T +

√
1 − ρ2B̃i

T

)
< 0.

We write B̃i
T = εi

√
T , where εi is a standard normal random variable. Then firm

i defaults when

lnV i
0 − lnDi +

(
r − σ2

2

)
T

σ
√

T
+ ρε0 +

√
1 − ρ2εi < 0.



Conditional on a realization of the common factor, say, ε0 = u for
some u ∈ R, firm i defaults when

εi < −
ci + ρu√
1 − ρ2

where

ci =
ln

V i
0

Di +
(
r − σ2

2

)
T

σ
√

T
.

Assume that ci = c for all i, for given ε0 = u, the probability of
default is

P(u) = N


−

c + ρu√
1 − ρ2


 .

Given ε0 = u, defaults of the firms are independent. The mixing
distribution is that of the common factor ε0, and N transforms ε0
into a distribution on [0,1].



This distribution function F(θ) for the distribution of the mixing
variable p̃ = P(ε0) is

F(θ) = P [P(ε0) ≤ θ] = P


N


−

c + ρε0√
1 − ρ2


 ≤ θ




= P

[
−ε0 ≤

1

ρ

(√
1 − ρ2N−1(θ) + c

)]

= N

(
1

ρ

(√
1 − ρ2N−1(θ) − N−1(p)

))
where p = N(−c).

Note that F(θ) has the appealing feature that it has dependence on
ρ and p. The probability that no more than a fraction θ default is

P

[
Dn

n
≤ θ

]
=
∫ 1

0

nθ∑

k=0
nCkp(u)k[1 − p(u)]n−kf(u) du.

When n → ∞,

P

[
Dn

n
≤ θ

]
n → ∞−−−−→

∫ θ

0
f(u) du = F(θ).

F(θ) is the probability of having a fractional loss less than θ on a
perfectly diversified portfolio with only factor risk.



The figure shows the loss distribution in an infinitely diversified loan portfolio consisting of loans

of equal size and with one common factor of default risk. The default probability is fixed at 1%

but the correlation in asset values varies from nearly 0 to 0.2.

Remarks

1. For a given default probability p, increasing correlation increases
the probability of seeing large losses and of seeing small losses
compared with a situation with no correlation.

2. Recent reference

“The valuation of correlation-dependent credit derivatives using
a structural model,” by John Hull, Mirela Predescu and Alan
White, Working paper of University of Toronto (March 2005).



Randomizing the loss

Assume that the expected loss given p̃ is `(p̃) and it is strictly mono-
tone. We expect the loss in default increases when systematic de-
fault risk is high, perhaps because of losses in the value of collateral.

Define the loss on individual loan as

Li(p̃) = `(p̃)1{Di=1},

then

E[Li|p̃ = p] = p`(p) = ∧(p).

Define

L =
1

n

n∑

i=1

Lin → ∞−−−−→ p̃`(p̃)

so that the loss-weighted loss probability is

P [L ≤ θ]n → ∞−−−−→
∫ 1

0
1{p`(p)≤θ}f(p) dp = F(∧−1(θ))

where F is the distribution function of p̃ and ∧.



Contagion model

Reference

Davis, M. and V. Lo (2001), “Infectious defaults,” Quantitative
Finance, vol. 1, p. 382-387.

Drawback in earlier model

It is the common dependence on the background variable p̃ that
induces the correlation in the default events. It requires assumptions
of large fluctuations in p̃ to obtain significant correlation.

Contagion means that once a firm defaults, it may bring down other
firms with it. Define Yij to be an “infection” variable. Both Xi and
Yij are Bernuolli variables

P [Xi] = p and P [Yij] = q.

The default indicator of firm i is

Zi = Xi + (1 − Xi)


1 −

∏

j 6=i

(1 − XjYji)


 .



Note that Zi equals one either when there is a direct default of
firm i or if there is no direct default and

∏

j 6=i

(1 − XjYji) = 0. The

latter case occurs when at least one of the factor XjYji is 1, which
happens when firm j defaults and infects firm i.

Define Dn = Z1 + · · · + Zn, Davis and Lo (2001) find that

E[Dn] = n[1 − (1 − p)(1 − pq)n−1]

var(Dn) = n(n − 1)βpq
n − (E[Dn])2

where

βpq
n = p2 + 2p(1 − p)[1 − (1 − q)(1 − pq)n−2]

+(1 − p)2[1 − 2(1− pq)n−2 + (1 − 2pq + pq2)n−2].

cov(Zi, Zj) = βpq
n − var(Dn/n)2.



Binomial approximation using diversity scores

Seek reduction of problem of multiple defaults to binomial distribu-
tions.

If n loans each with equal face value are independent, have the same
default probability, then the distribution of the loss is a binomial
distribution with n as the number of trials.

Let Fi be the face value of each bond, pi be the probability of default
within the relevant time horizon and ρij between the correlation of

default events. With n bonds, the total principal is
n∑

i=1

Fi and the

mean and variance of the loss of principal P̂ is

E[P̂ ] =
n∑

i=1

piFi

var(P̂) =
n∑

i=1

n∑

j=1

FiFjρij

√
pi(1 − pi)pj(1 − pj).

We construct an approximating portfolio consisting D independent
loans, each with the same face value F and the same default prob-
ability p.



n∑

i=1

Fi = DF

n∑

i=1

piFi = DFp

var(P̂) = F2Dp(1 − p).

Solving the equations

p =

∑n
i=1 piFi∑n
i=1 Fi

D =

∑n
i=1 piFi

∑n
i=1(1 − pi)Fi

∑n
i=1

∑n
j=1 FiFjρij

√
ρi(1 − pi)ρj(1 − pj)

F =
n∑

i=1

Fi

/
D.

Here, D is called the diversity score.


