
3.4 Copula approach for modeling default dependency

Two aspects of modeling the default times of several obligors

1. Default dynamics of a single obligor.
2. Model the dependence structure of defaults between the oblig-

ors.

Question How to specify a joint distribution of survival times, with
given marginal distributions?

• Knowing the joint distribution of random variables allows us to
derive the marginal distributions and the correlation structure
among the random variables but not vice versa.

• A copula function links univariate marginals to their full multi-
variate distribution.



Proposition

If a one-dimensional continuous random variable X has distribution
function F , that is, F(x) = P [X ≤ x], then the distribution of the
random variable U = F(X) is a uniform distribution on [0,1].

Proof

P [U ≤ u] = P [F(X) ≤ u] = P [X ≤ F−1(u)] =
∫ F−1(u)

−∞
f(s) ds

where f(x) = F ′(x) is the density function of X.

Let y = F(s), then dy = f(s) ds and

P [U ≤ u] =
∫ F (F−1(u))

−∞
dy =

∫ u

−∞
dy.

Conversely, if U is a random variable with uniform distribution on
[0,1], then X = F−1(U) has the distribution function F .

Remark To simulate an outcome of X, one may simulate an out-
come u from a uniform distribution then let the outcome of X be
x = F−1(u).



Multi-variate distribution function

FX1,X2,··· ,Xn(x1, x2, · · · , xn) = P [X1 ≤ x1, X2 ≤ x2, · · · , Xn ≤ xn]

• It is an increasing, right continuous function which maps a subset
of the real numbers into the unit interval [0,1].

• Monotonicity property for vector a and b

a < b ⇒ F(b) − F(a) ≥ 0

a < b means b − a is a vector with non-negative entries and at
least one strictly positive entry.

Cautious note

The probability assigned to [x1, y1] × [x2, y2] by F is

F(x2, y2) − F(x1, y2) − F(x2, y1) + F(x1, y1).

For any distribution function, we require that it assigns positive
mass to all rectangles.



Definition of a copula function

A function C : [0,1]n → [0,1] is a copula if

(a) There are random variables U1, U2, · · · , Un taking values in [0,1]
such that C is their distribution function.

(b) C has uniform marginal distributions; for all i ≤ n, ui ∈ [0,1]

C(1, · · · ,1, ui,1, · · · ,1) = ui.

In the analysis of dependency with copula function, the joint dis-
tribution can be separated into two parts, namely, the marginal
distribution functions of the random variables (marginals) and the
dependence structure between the random variables which is de-
scribed by the copula function.

Reference

Li, David (2000), “On default correlation: a copula function ap-
proach,” Journal of Fixed Income, vol. 9(4) p.43-54.



Construction of multi-variate distribution function

Given univariate marginal distribution functions F1(x1), F2(x2), · · · , Fn(xn),
the function

C(F1(x1), F2(x2), · · · , Fn(xn)) = F(x1, x2, · · · , xn)

which is defined using a copula function C, results in a multivariate
distribution function with univariate marginal distributions specified
as F1(x1), F2(x2), · · · , Fn(xn).

Proof
C(F1(x1), · · · , Fn(xn), ρ) = P [U1 ≤ F1(x1), · · · , Un ≤ Fn(xn)]

= P [F−1
1 (U1) ≤ x1, · · · , F−1

n (Un) ≤ xn]

= P [X1 ≤ x1, · · · , Xn ≤ xn]
= F(x1, · · · , xn).

The marginal distribution of Xi is

C(F1(∞), · · · , Fi(xi), · · · , Fn(∞), ρ)
= P [X1 < ∞, · · · , Xi ≤ xi, · · · , Xn < ∞]
= P [Xi ≤ xi] = Fi(xi).



Sklar’s theorem

• Any multi-variate distribution function F can be written in the
form of a copula function.

Theorem

If F(x1, x2, · · · , xn) is a joint multi-variate distribution function with
univariate marginal distribution functions F1(x1), · · ·Fn(xn), then
there exists a copula function C(u1, u2, · · · , un) such that

F(x1, x2, · · · , xn) = C(F1(x1), F2(x2), · · · , Fn(xn)).

If each Fi is continuous, then C is unique.

Remark

Going through all copula functions gives us all the possible types
of dependence structures that are compatible with the given one-
dimensional marginal distributions.



CreditMetrics

• CreditMetrics uses the normal copula function in its default cor-
relation formula even though it does not use the concept of
copula function explicitly.

• CreditMetrics calculates joint default probability of two credits
A and B using the following steps:

(i) Let qA and qB denote the one-year default probabilities for A
and B, respectively. Obtain ZA and ZB such that

qA = P [Z < ZA] and qB = P [Z < ZB]

where Z is the standard normal random variable.

(ii) Let ρ denote the asset correlation, the joint default probability
for credit A and B is given by

P [Z < ZA, Z < ZB] =
∫ ZA

−∞

∫ ZB

−∞
n2(x, y; ρ) dxdy = N2(ZA, ZB; ρ).

(A)



Bivariate normal copula function

C(u, v) = N2(N
−1(u), N−1(v); γ), −1 ≤ γ ≤ 1.

Suppose we use a bivariate normal copula function with a correlation
parameter γ, and denote the survival times for A and B as TA and
TB. The joint default probability is given by

P [TA < 1, TB < 1] = N2(N
−1(FA(1)), N−1(FB(1)), γ) (B)

where FA and FB are the distribution functions for the survival times
TA and TB.

We observe that

qi = P [Ti < 1] = Fi(1) and Zi = N−1(qi) for i = A, B,

Eqs. (A) and (B) are equivalent if we have ρ = γ.

Note that this correlation parameter is not the correlation coefficient
between the two survival times.



Simulation of survival times of a basket of obligors

Assume that for each credit i in the portfolio, we have constructed
a credit curve or a hazard rate function for its survival time Ti. Let
Fi(t) denote the distribution function of Ti.

Using a copula function C, we obtain the joint distribution of the
survival times

F(t1, t2, · · · , tn) = C(F(t1), F2(t2), · · · , Fn(tn)).

For example, suppose we use the normal copula function, we have

F(t1, t2, · · · , tn) = Nn(N
−1(F1(t1)), N

−1(F2(t2)), · · · , N−1(Fn(tn))).

To simulate correlated survival times, we introduce

Y1 = N−1(F1(T1)), Y2 = N−1(F2(T2)), · · · , Yn = N−1(Fn(Tn)).

There is a one-to-one mapping between Y and T .



Simulation scheme

• Simulate Y1, Y2, · · · , Yn from an n-dimensional normal distribu-
tion with correlation coefficient matrix Σ.

• Obtain T1, T2, · · · , Tn using Ti = F−1
i (N(Yi)), i = 1,2, · · · , n.

With each simulation run, we generate the survival times for all the
credits in the portfolio. With this information we can value any
credit derivative structure written on the portfolio.



Exponential model for dependent defaults

Reference

Kay Giesecke, “A simple exponential model for dependent defaults,”
(2003) Working paper of Cornell University.

Model setup

• A firm’s default is driven by idiosyncratic as well as other re-
gional, sectoral or economy-wide shocks, whose arrivals are mod-
eled by independent Poisson processes.

• Default times are assumed to be jointly exponentially distributed.
In this case, the exponential copula arises naturally.

Advantages

1. All relevant results are given in closed form.
2. Efficient simulation of dependent default times is straightfor-

ward.
3. Parameter calibration relies on market data as well as data pro-

vided by rating agencies.



Bivariate version of the exponential models

Suppose there are Poisson processes N1, N2 and N with respective
intensities λ1, λ2 and λ. Here, λi is the idiosyncratic shock intensity
of firm i and λ is the intensity of a macro-economic shock affecting
both firms simultaneously.

Define the default time τi of firm i by

τi = inf{t ≥ 0 : Ni(t) + N(t) > 0}.
That is, a default occurs completely unexpectedly if either an id-
iosyncratic or a systematic shock strikes the firm for the first time.
Firm i defaults with intensity λi + λ so that the survival function is

Si(t) = P [τi > t] = P [Ni(t) + N(t) = 0] = e−(λi+λ)t.

The expected default time and variance are

E[τi] =
1

λi + λ
and var(τi =

1

(λi + λ)2
.



The joint survival probability is found to be

S(t, u) = P [τ1 > t, τ2 > u]
= P [N1(t) = 0, N2(u) = 0, N(t ∨ u) = 0]

= e−λ1t−λ2u−λ(t∨u)

= e−(λ1+λ)t−(λ2+λ)u+λ(t∧u)

= S1(t)S2(u)min(eλt, eλu).

Remark

All random variables are defined on a fixed probability space (Ω,F , P).
Depending on the specific application, P is the physical probability
(risk management setting) or some risk neutral probability (valua-
tion setting).



Survival copula

There exists a unique solution Cτ : [0,1]2 → [0,1], called the survival
copula of the default time vector (τ1, τ2) such that the joint survival
probabilities can be represented by

S(t, u) = Cτ(S1(t), S2(u)).

The copula Cτ describes the complete non-linear default time de-
pendence structure.

Define θi =
λ

λi + λ
, we obtain

Cτ(u, v) = S(S−1
1 (u), S−1

2 (v)) = min(vu1−θ1, uv1−θ2).

The parameter vector θ = (θ1, θ2) controls the degree of dependence
between the default times.

1. Firms default independently of each other (λ = 0 or λ1, λ2 → ∞)

θ1 = θ2 = 0, Cτ
θ (u, v) = uv (product copula)

2. Firms are perfectly correlated (firms default simultaneously, λ →
∞ or λ1 = λ2 = 0)

θ1 = θ2 = 1 and Cτ
θ (u, v) = u ∧ v.



It can be shown that

uv ≤ Cτ
θ (u, v) ≤ u ∧ v, θ ∈ [0,1]2, u, v ∈ [0,1].

Also, the default can only be positively correlated.

Similarly, define Kτ by

Kτ(P1(t), P2(t)) = P [τ1 ≤ t, τ2 ≤ u] = P(t, u)

where Pi(t) = P [τi ≤ t] = 1 − Si(t). Since

S(t, u) = 1 − P1(t) − P2(u) + P(t, u)

so that these copulas are related by

Kτ(u, v) = Cτ(1 − u,1 − v) + u + v − 1

= min([1 − v][1 − u]1−θ1; (1 − u][1 − v]1−θ2) + u + v − 1.



Correlation coefficients

1. Spearman’s rank correlation

It is simply the linear correlation ρ of the copula Kτ given by

ρS(τ1, τ2) = ρ(P1(τ1), P2(τ2))

= 12
∫ 1

0

∫ 1

0
Kτ(u, v) dudv − 3

=
3λ

3λ + 2λ1 + 2λ2

2. Linear default time correlation

ρ(τ1, τ2) =
λ

λ + λ1 + λ2
.

Note that ρ ≤ ρS.
3. Linear correlation of the default indicator variables

ρ
(
1{τ1≤t},1{τ2≤t}

)
=

S(t, t) − S1(t)S2(t)√
P1(t)S1(t)P2(t)S2(t)

.

Remark

Correlation is an increasing function of the joint shock λ and a
decreasing function of idiosyncratic intensities.



Rank and linear default correlation



Rank default correlation as a function of idiosyncratic shock
intensity, varying joint shock intensity.



Multi-variate extension

Assume that there are n ≥ 2 firms. The default of an individual
firm is driven by some idiosyncratic shock as well as other sectoral,
industry, country-specific or economy-wide shocks.

Define a matrix (aij)n×m, when aij = 1 if shock j ∈ {1,2, · · · , m}
modeled through the Poisson process Nj with intensity λj, leads to a
default of firm i ∈ {1,2, · · · , n} and aij = 0 otherwise. For example,
when n = 3

(aij) =




1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1


 .

Note that m =
n∑

k=1
nCk = 2n − 1. Suppose economy-wide shock

events are excluded, one then set aij = 0 for i = 1,2,3. This
corresponds to bivariate dependence only.



Joint survival function

Ti = inf



t ≥ 0 :

m∑

k=1

aikNk(t) > 0





meaning that firm i defaults with intensity
m∑

k=1

aikλk and

Si(t) = exp


−

m∑

k=1

aikλkt


 .

The joint survival function

S(t1, t2, · · · , tn) = P [τ1 > t1, · · · τn > tn]

= exp


−

m∑

k=1

λk max(a1kt1, · · · , anktn)


 .

Joint default probabilities p is given by

p(t1, · · · , tn) =
2∑

i1=1

· · ·
2∑

in=1

(−1)i1+···+inS(vvi1, · · · , vnin),

where vj1 = tj and vj2 = 0.



Survival copula function

The exponential survival copula associated with S can be found
via Cτ(u1, · · · , un) = S(S−1

1 (u1), · · · , S−1
n (un)). Fixing some i, j ∈

{1,2, · · · , n} with i 6= j, the two-dimensional marginal copula is given
by

Cτ(ui, uj) = Cτ(1, · · · ,1, ui,1, · · · ,1, uj,1, · · · ,1)

= min(uju
1−θi
i , uiu

1−θj
j )

where we define, analogously to the bivariate case,

θi =

∑m
k=1 aikajkλk∑m

k=1 aikλk
, θj =

∑m
k=1 aikajkλk∑m

k=1 ajkλk

as the ratio of joint default intensity of firms i and j to default
intensity of firm i or j, respectively.

Spearman’s rank default time correlation matrix (ρS
ij)n×n is given by

ρS
ij =

3θiθj

2θi + 2θj − θiθj
.



Extensions

1. Shocks are not necessarily fatal

In the bivariate case, suppose an idiosyncratic shock leads to
a default of firm i only with a pre-specified probability qi. An
economy-wide shock leads to a default of both firms with prob-
ability q11, to a default of firm 1 only with probability q10, and
to a default of firm 2 only with probability q01. These lead us
to the exponential default time distribution

S(t, u) = e−γ1t−γ2u−γ(t∨u),

where γ1 = λ1q1+λq10, γ2 = q2+λq01, and γ = λq11. Of course,
with q1 = q2 = q11 = 1 we obtain the earliest model.

In the non-fatal model interpretation, the number of model pa-
rameters is quite high, which makes the model calibration very
challenging.



2. Variability of intensities over time

• In practice credit spreads vary substantially over time. To
capture these effects, in a first step, the Poisson framework
can be generalized to deterministically varying intensities i.e.
to inhomogeneous Poisson shock arrivals.

• The intensity function may be assumed to be piece-wise con-
stant, which is a reasonably flexible approximation in certain
application. In the bivariate case,

Si(t) = exp
(
−

∫ t

0
[λi(r) + λ(r)] dr

)

and

S(t, u) = e−
∫ t
0 λ1(r) dr−

∫ u
0 λ2(r) dr−

∫ t∨u
0 λ(r) dr.



• We can extend to general stochastic intensities. Such models
would capture, in a realistic way, the stochastic variation in
the term structure of credit spreads. One needs, however,
a large and reliable data base to calibrate the parameters of
such a stochastic intensity model. Now

Si(t) = E

[
exp

(
−

∫ t

0
[λi(u) + λ(u)] du

)]

and

S(t, u) = E

[
e−

∫ t
0 λ1(r) dr−

∫ u
0 λ2(r) dr−

∫ t∨u
0 λ(r) dr

]
.



Simulation of correlated default arrival times

Four-step algorithm which generates default arrival times with an
exponential dependence structure Cτ while allowing for arbitrary
marginal default time distributions.

1. Simulate an m-vector (t1, · · · , tm) of independent exponential
shock arrival times with given parameter vector (λ1, · · · , λm)
where λk > 0. This is done by drawing, for k ∈ {1,2, · · · , m}, an
independent standard uniform random variate Uk and setting

tk = −
1

λk
lnUk.

Indeed, P [tk > T ] = P [− lnUk/λk > T ] = P [Uk ≤ e−λkT ] = e−λkT .

2. Simulate an n-vector (T1, · · · , Tn) of joint exponential default
times by considering, for each firm i ∈ {1,2, · · · , n}, the minimum
of the relevant shock arrival times:

Ti = min{tk : 1 ≤ k ≤ m, aik = 1}.



3. Generate a sample (v1, · · · , vn) from the (survival) default time
copula Cτ by setting, for i ∈ {1,2, · · · , n},

vi = Si(Ti) = exp


−Ti

m∑

k=1

aikλk


 .

4. In order to generate an n-vector Z = (Z1, · · · , Zn) of corre-
lated default arrival times with given marginal survival function
qi and exponential default dependence structure Cτ , set, for
i ∈ {1, s, · · · , n},

Zi = q−1
i (vi)

provided that the inverse q−1
i exists.

Remark

One may use a general stochastic intensity-based model or a struc-
tural model for qi, or use some estimated arrival function. To ac-
count for different types of idiosyncratic default risk, we can also
choose different survival marginals qi for different firms. The above
algorithm then generates correlated default times Zi with these given
qi and exponential dependence structure, i.e.

P [Z1 > t1, · · · , Zn > tn] = Cτ(q1(t1), · · · , qn(tn)).



Default distribution

Assume zero recovery in case of default. The default loss Lt at
some fixed horizon t is then equal to the number of the defaulted
firm Lt = n − Mt, where

Mt =
n∑

i=1

1{τi>t}

is the number of firms which still operate at t. The distribution of
Mt can be computed directly from the joint survival probabilities.
By standard arguments we find

P [Mt = k] =
n∑

i=k
iCk(−1)i−k

∑

J⊂{1,··· ,n},|J|=i

P


 ⋂

j∈J

{τj > t}


 .

where the |J |-dimensional marginal joint survival probability P


 ⋂

j∈J

{τj > t}




is directly available from the joint survival function for all J ⊂
{1, · · · , n}.



This can be simplified if the firm in the portfolio are homogeneous
and symmetric, i.e. if the default time vector is exchangeable:

(τ1, · · · , τn)
d
= (τz(1), · · · , τz(n))

for any permutation z(1), · · · , z(n) of indices (1, · · · , n) (
d
= we mean

equality in distribution).



Distribution of the number of defaults, varying joint shock
intensity, for a 10-year time horizon with n = 30 firms.



First-to-default basket

Consider a binary first-to-default swap, which involves the payment
of one unit of account upon the first default in the reference port-
folio in exchange for a periodic payment (the swap spread). The
swap spread is paid up to the maturity T of the swap or the first
default, whichever is first. The index set of the reference portfolio
is {1,2, · · · , n}.

Let us denote by τ = mini(τi) the first-to-default time. We have

P [τ > t] = exp


−t

m∑

k=1

λk max(a1k, · · · , ank)


 .

Assuming that investors are risk-neutral (i.e. P is some risk-neutral
probability), the value c of the contingent leg of the swap at time
zero is given by

c = E

[
e−

∫ τ
0 rs ds1{τ≤T}

]

where (rt)t≥0 is the riskless short rate.



• Supposing for simplicity that rt = r > 0 for all t, we get

c =
∫ ∞

0
e−ru1{u≤T}P [τ ∈ du] = Λ

∫ T

0
e−(r+Λ)u du

where Λ =
m∑

k=1

λk max(a1k, · · · , ank).

• If the (constant) swap spread R is paid at dates t1 < t2 < · · · <
tj = T , then the fee leg has a value of

f =
∑

i:ti≤T

E

[
e−

∫ ti
0 rs dsR1{τ>ti}

]

= R
∑

i:ti≤T

e−(r+Λ)ti

where we invoke the assumption of constant short rates.

• We neglect any accrued swap spread here. The value of the
fee leg paid by the protection buyer compensates the protection
seller for paying one unit of account upon the first default in
the reference portfolio. The swap spread R is that c = f at
inception of the contract (t = 0).



Swap spread as a function of the joint shock intensity, varying
individual default probability, assuming symmetry and homogeneity.



• Supposing that n = 5, r = 0, T = 1, t1 = 0.5, and t2 = 1 (i.e.
semi-annual coupon payments), we plot the swap spread R as
a function of the joint shock intensity λ for varying one-year
default probabilities (while increasing λ, we decrease λ such that
the default probability remains constant).

• Since the likelihood of a payment by the protection seller is
increasing in individual firms’ default probabilities, the spread is
increasing in these default probabilities.

• The spread of decreasing in λ, which is also intuitively clear:
for increasing (positive) default correlation the probability of
multiple defaults increases and the degree of default protection
provided by a first-to-default swap is diminished.

• With zero correlation the premium is at its maximum, because
the likelihood of multiple defaults is at its minimum (given that
negative correlation is excluded).


