MATH685X - Mathematical Models in Financial Economics

Homework One

Course instructor: Prof. Y.K. Kwok

1. Consider the class of power utility function

$$
U(x)=\frac{x^{\gamma}}{\gamma} \quad \text { for } \quad \gamma \leq 1
$$

This class includes the logarithm utility. (Hint: add $-\frac{1}{\gamma}$ to $U(x)$ and consider $\gamma \rightarrow 0^{+}$). The log-optimal strategy has been shown to exhibit the property that the maximization of $E\left[U\left(X_{k}\right)\right]$ with a fixed-proportions strategy only requires the maximization of the expected utility of single-period investment as given by $E\left[U\left(X_{1}\right)\right]$. Check whether such property can be extended to the power utility function.
2. This exercise is related to the Dictionary Order. Consider the choice set

$$
B=\{(x, y): x \in[0, \infty) \quad \text { and } \quad y \in[0, \infty)\}
$$

Consider the following preference relation:

$$
\begin{aligned}
& \left(x_{1}, y_{1}\right) \in B \quad \text { and } \quad\left(x_{2}, y_{2}\right) \in B \\
& \left(x_{1}, y_{1}\right) \succeq\left(x_{2}, y_{2}\right) \text { if and only if } \\
& {\left[x_{1}>x_{2}\right] \text { or } \quad\left[x_{1}=x_{2} \text { and } y_{1} \geq y_{2}\right] .}
\end{aligned}
$$

Show that \succeq satisfies the three axioms of Reflexivity, Comparability and Transitivity.
3. Recall the "Order Preserving" Axiom:

For any $x, y \in B$, where $x \succ y$ and $\alpha, \beta \in[0,1]$,
$[\alpha x+(1-\alpha) y] \succ[\beta x+(1-\beta) y]$ if and only if $\alpha>\beta$. Show that the above Dictionary Order satisfies this Axiom.
4. It is known that the Dictionary Order does not satisfy the "Intermediate Value" Axiom. Show that the function

$$
U(x, y)=\ln (x+y)
$$

cannot be an utility function representing the Dictionary Order.
Hint: A utility function $U: B \rightarrow R$ satisfies
(i) $x \succ y$ if and only if $U(x)>U(y)$.
(ii) $x \sim y$ if and only if $U(x)=U(y)$.
5. Consider the choices of a firm with 8 different input level $\left\{\ell_{1}, \cdots, \ell_{8}\right\}$ and suppose that there are 3 states $\left\{s_{1}, s_{2}, s_{3}\right\}$ which occur with equal probability. Assume that only 3 profit levels are possible $\left(\pi_{A}, \pi_{B}, \pi_{C}\right)$ which are ranked $\pi_{A}<\pi_{B}<\pi_{C}$. The mapping from states and actions (input levels) to outcomes (profit levels) is given as follows:

	Action									
		ℓ_{1}	ℓ_{2}	ℓ_{3}	ℓ_{4}	ℓ_{5}	ℓ_{6}	ℓ_{7}	ℓ_{8}	
	States	s_{1}	π_{A}	π_{A}	π_{A}	π_{A}	π_{A}	π_{A}	π_{B}	
π_{C}										
		π_{B}	π_{A}	π_{C}	π_{B}	π_{A}	π_{A}	π_{B}	π_{C}	
	s_{3}	π_{C}	π_{C}	π_{C}	π_{B}	π_{B}	π_{A}	π_{B}	π_{C}	

Choosing between actions randomly induces further probability distribution over these outcomes.
(a) Suppose the choice between input levels ℓ_{1} and ℓ_{2} is made by tossing a fair coin, say, choosing ℓ_{1} if "head" comes up and ℓ_{2} if "tail" results, find the probability distribution over the profit levels $\left(\pi_{A}, \pi_{B}, \pi_{C}\right)$.
(b) Argue why one can obtain any probability distribution over the three outcomes by using an appropriate randomization over actions.
6. Suppose indifference curves $U\left(p_{1}, p_{2}, p_{3}\right)=k_{i}$ for levels $k_{1}>k_{2}>k_{3}$ are drawn in the $p_{1}-p_{3}$ plane as follows:

Here, $p_{i}=\operatorname{Prob}\left[\left\{s \in S \mid f(s, a)=c_{i}\right\}\right]$. Explain how to deduce that c_{3} is the most preferred outcome.

