MATH685X - Mathematical Models in Financial Economics

Homework Two

Course instructor: Prof. Y.K. Kwok

1. The HARA (for hyperbolic absolute risk aversion) class of utility functions is defined by

$$
U(x)=\frac{1-\gamma}{\gamma}\left(\frac{a x}{1-\gamma}+b\right)^{\gamma}, \quad b>0
$$

The functions are defined for those values of x where the term in parentheses is nonnegative. Show how the parameters γ, a and b can be chosen to obtain the following special cases (or an equivalent form).
(a) Linear or risk neutral: $U(x)=x$
(b) Quadratic: $U(x)=x-\frac{1}{2} c x^{2}$
(c) Exponential: $U(x)=e^{-a x} \quad$ [Try $\gamma=-\infty$.]
(d) Power: $U(x)=c x^{\gamma}$
(e) Logarithmic: $U(x)=\ln x \quad\left[\operatorname{Try} U(x)=(1-\gamma)^{1-\gamma}\left(x^{\gamma}-1\right) / \gamma\right.$.]

Show that the Arrow-Pratt risk aversion coefficient is of the form $1 /(c x+d)$.
2. There is a useful approximation to the certainty equivalent that is easy to derive. A second-order expansion near $\bar{x}=E[x]$ gives

$$
U(x) \approx U(\bar{x})+U^{\prime}(\bar{x})(x-\bar{x})+\frac{1}{2} U^{\prime \prime}(\bar{x})(x-\bar{x})^{2}
$$

Hence,

$$
E[U(x)] \approx U(\bar{x})+\frac{1}{2} U^{\prime \prime}(\bar{x}) \operatorname{var}(x)
$$

On the other hand, if we let c denote the certainty equivalent and assume that it is close to x, we can use the first-order expansion

$$
U(c) \approx U(\bar{x})+U^{\prime}(\bar{x})(c-\bar{x})
$$

Using these approximations, show that

$$
c \approx \bar{x}+\frac{U^{\prime \prime}(\bar{x})}{2 U^{\prime}(\bar{x})} \operatorname{var}(x)
$$

3. The f-average of n positive numbers: $a_{1}, a_{2}, \cdots, a_{n}$, is defined by

$$
M_{f}=f^{-1}\left(\frac{f\left(a_{1}\right)+f\left(a_{2}\right)+\cdots+f\left(a_{n}\right)}{n}\right)
$$

(a) Show that if we take f to be the natural logarithm function then the corresponding f-average is the geometric mean.
(b) Let f and g be twice-differentiable strictly increasing positive-valued function defined on $(0, \infty)$. For x and $y \in(0, \infty)$ and $p \in[0,1]$, show that

$$
\begin{aligned}
f^{-1}(p f(x)+(1-p) f(y)) & \leq g^{-1}(p g(x)+(1-p) g(y)) \\
\Leftrightarrow & -\frac{g^{\prime \prime}(x)}{g^{\prime}(x)} \leq-\frac{f^{\prime \prime}(x)}{f^{\prime}(x)} .
\end{aligned}
$$

Hint: Define $h=g \circ f^{-1}$, show that

$$
=\frac{h^{\prime \prime}(x)}{g^{\prime \prime}\left(f^{-1}(x)\right)\left[f^{\prime}\left(f^{-1}(x)\right)\right]^{-1} f^{\prime}\left(f^{-1}(x)\right)-g^{\prime}\left(f^{-1}(x)\right) f^{\prime \prime}\left(f^{-1}(x)\right)\left[f^{\prime}\left(f^{-1}(x)\right)\right]^{-1}} \underset{\left[f^{\prime}\left(f^{-1}(x)\right)\right]^{2}}{.}
$$

4. Given two twice-differentiable, increasing and strictly concave utility functions $U_{1}(w)$ and $U_{2}(w)$, show that the following statements are equivalent:
(i) $R_{1}^{A}(w) \geq R_{2}^{A}(w)$ for all $w \in R_{+}$, where $R_{i}^{A}(w)$ is the absolute risk aversion coefficient of $U_{i}(w), i=1,2$.
(ii) There exists an increasing and concave function $g(\cdot)$ such that

$$
U_{1}(w)=g\left(U_{2}(w)\right) \quad \text { for all } w \in \mathbb{R}_{+}
$$

(iii) $U_{1}(w)$ is more risk averse that $U_{2}(w)$, that is,

$$
\pi_{1}(w+\widetilde{\epsilon}) \geq \pi_{2}(w+\widetilde{\epsilon})
$$

for all $w \in \mathbb{R}_{+}$and for any random variable $\widetilde{\epsilon}$ such that $E[\tilde{\epsilon}]=0$. Here, $\pi_{i}(\widetilde{w})$ is the risk premium of the gamble \widetilde{w} under $U_{i}(\cdot), i=1,2$.
5. Consider the following utility function

$$
U(w)= \begin{cases}a_{+}(w-\bar{w}), & w \geq \bar{w} \\ a_{-}(w-\bar{w}), & w<\bar{w}\end{cases}
$$

where $a_{-}>a_{+}>0$. The function U is seen to be non-differentiable at $w=\bar{w}$. Suppose the wealth level happens to be \bar{w}, and consider the fair Bernuolli gamble where the gain and loss are both δ. Show that the risk premium is

$$
\pi=\frac{1}{2}\left(a_{-}-a_{+}\right) \delta .
$$

The variance of the random return of the gamble is δ^{2}. Recall that when U is twice differentiable, $\pi \approx R_{A}(w) \delta^{2}$, where $R_{A}(w)$ is the absolute risk aversion coefficient. Given your comments on the above observations.
6. Consider the following investments:

A		B		C	
probability	return (\%)	probability	return (\%)	probability	return (\%)
0.4	3	0.1	5	0.1	5
0.3	4	0.2	6	0.1	7
0.1	6	0.1	8	0.2	8
0.1	7	0.2	9	0.2	9
0.1	9	0.4	10	0.4	11

(a) What can be said about the desirability of the investments using first-order and second-order stochastic dominance?
(b) Using geometric mean return as a criterion, which investment is preferred?
7. Assume that the utility function $u(x)$ satisfies (i) $u^{\prime}(x)>0$, (ii) $u^{\prime \prime}(x)<0$ and $u^{\prime \prime \prime}(x)>0$. The distribution F dominates G by the third order stochastic dominance if and only if

$$
\int_{C} u(x) d F(x) \geq \int_{C} u(x) d G(x)
$$

where C is the set of all possible outcomes. Show that $F(x)$ dominates G by the third order dominance if
(i) $\int_{a}^{x} \int_{a}^{t}[F(y)-G(y)] d y d t \leq 0$ for all x and the strict inequality holds for some value, where t lies between a and b, and
(ii) $\int_{a}^{b} F(t) d t \leq \int_{a}^{b} G(t) d t$.

Consider the integration by parts of

$$
\int_{a}^{b} u^{\prime \prime}(x) \int_{a}^{x}[F(y)-G(y)] d y d x
$$

